WHEN THE NAGATA RING $D(X)$ IS A SHARP DOMAIN

Gyu Whan Chang

Abstract

Let D be an integral domain, X be an indeterminate over $D, D[X]$ be the polynomial ring over D, and $D(X)$ be the Nagata ring of D. Let $[d]$ be the star operation on $D[X]$, which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if $D[X]$ is a [d]-sharp domain, if and only if $D(X)$ is a sharp domain.

1. Introduction

Let D be an integral domain and $*$ be a star operation on D. (The definitions related to star operations will be reviewed in Section 2.) As in [2], we say that D is a $*$-sharp domain if whenever $I \supseteq A B$ with I, A, B nonzero ideals of D, there exist nonzero ideals H and J of D such that $I^{*}=(H J)^{*}, H^{*} \supseteq A$, and $J^{*} \supseteq B$. Following [1], we say that a d-sharp domain is a sharp domain, i.e., D is a sharp domain if whenever $I \supseteq A B$ with I, A, B nonzero ideals of D, there exist ideals $A_{0} \supseteq A$ and $B_{0} \supseteq B$ of D such that $I=A_{0} B_{0}$. Assume that D is a *-sharp domain. It is known that D is a t-sharp domain (and hence D is a $\mathrm{P} v \mathrm{MD}$ whose prime t-ideals are maximal t-ideal); if $*=*_{w}$, then D is a $\mathrm{P} * \mathrm{MD}$ whose maximal $*$-ideals have height-one; and I_{v} is $*$-invertible for all nonzero fractional ideals I of D [2, Propositions 2.2, 3.1, 2.3 and

[^0]2.4]. Also, D is a v-sharp domain if and only if D is completely integrally closed [2, Corollary 2.6].

In [2, Theorem 3.7(a)], the authors showed that D is a t-sharp domain if and only if $D[X]$, the polynomial ring over D, is a t-sharp domain. They then remarked that "we do not have a " d-analogue" of $[2$, Theorem 3.7 (a)] because a sharp domain has Krull dimension ≤ 1 ". In fact, if D is a sharp domain, then D is a Prüfer domain with $\operatorname{dim}(D) \leq 1[1$, Theorem 11]. Hence, $D[X]$ is a sharp domain if and only if D is a field. However, in this paper, we use the star operation $[d]$ on $D[X]$ (see Lemma 2) to prove the d-operation analogue of [2, Theorem 3.7(a)]. Precisely, we prove that if $*$ is a star operation on D such that $*_{w}=*$, then D is a *-sharp domain if and only if $D[X]$ is a [*]-sharp domain, if and only if $D[X]_{N_{*}}$ is a sharp domain, where $N_{*}=\left\{f \in D[X] \mid c(f)^{*}=D\right\}$. Let $D(X)$ be the Nagata ring of D, i.e., $D(X)=\left\{\left.\frac{f}{g} \right\rvert\, f, g \in D[X]\right.$ and $c(g)=D\}$. As a corollary, we have that D is a sharp domain if and only if $D[X]$ is a $[d]$-sharp domain, if and only if $D(X)$ is a sharp domain. Finally, we study when $D[X]$ is a \star-sharp domain if \star is a star operation on $D[X]$ such that $\star_{w}=\star$.

2. Definitions related to star operations

Let D be an integral domain with quotient field $K, F(D)$ be the set of nonzero fractional ideals of D, and $f(D)$ be the set of nonzero finitely generated fractional ideals of D; so $f(D) \subseteq F(D)$, and equality holds if and only if D is Notherian. We say that a mapping $*: F(D) \rightarrow F(D)$, $I \mapsto I^{*}$, is a star operation on D if the following three conditions are satisfied for all $0 \neq a \in K$ and $I, J \in F(D)$: (i) $(a D)^{*}=a D$ and $(a I)^{*}=a I^{*}$, (ii) $I \subseteq I^{*}$ and if $I \subseteq J$, then $I^{*} \subseteq J^{*}$, and (iii) $\left(I^{*}\right)^{*}=I^{*}$. Given a star operation $*$ on D, two new star operations $*_{f}$ and $*_{w}$ on D can be constructed as follows for all $I \in F(D) ; I^{*_{f}}=\bigcup\left\{J^{*} \mid J \subseteq I\right.$ and $J \in f(D)\}$ and $I^{* w}=\{x \in K \mid x J \subseteq I$ for some $J \in f(D)$ with $\left.J^{*}=D\right\}$. Clearly, $\left(*_{f}\right)_{f}=*_{f}$ and $\left(*_{f}\right)_{w}=\left(*_{w}\right)_{f}=*_{w}$. An $I \in F(D)$ is called a $*$-ideal if $I^{*}=I$, and a $*$-ideal is a maximal $*$ ideal if it is maximal among proper integral $*$-ideals. Let $*-\operatorname{Max}(D)$ be the set of maximal $*$-ideals of D. It is known that $*_{f}-\operatorname{Max}(D) \neq \emptyset$ when D is not a field; $*_{f}-\operatorname{Max}(D)=*_{w}-\operatorname{Max}(D)$ [3, Theorem 2.16]; and $I^{* w}=\bigcap_{P \in *_{f}-\operatorname{Max}(D)} I D_{P}$ for all $I \in F(D)$ [3, Corollary 2.10]. For $I \in F(D)$, let $I^{-1}=\{x \in K \mid x I \subseteq D\}$; then $I^{-1} \in F(D)$. We say
that $I \in F(D)$ is $*$-invertible if $\left(I I^{-1}\right)^{*}=D$, and D is a Prüfer $*-$ multiplication domain $(\mathrm{P} * \mathrm{MD})$ if every nonzero finitely generated ideal of D is $*_{f}$-invertible. Examples of star operations include the $d-, v-, t$-, and w-operations. The d-operation is the identity function of $F(D)$, i.e., $I^{d}=I$ for all $I \in F(D)$, the v-operation is defined by $I^{v}=\left(I^{-1}\right)^{-1}$, the t-operation is defined by $t=v_{f}$, and the w-operation is given by $w=v_{w}$. For more on basic properties of star operations, see [8, Sections 32 and 34].

Let X be an indeterminate over $D, D[X]$ be the polynomial ring over D, and $c(f)$ be the ideal of D generated by the coefficients of $f \in D[X]$. The next lemma is nice characterizations of $\mathrm{P} * \mathrm{MDs}$, which appear in [7, Theorem 3.1 and Proposition 3.15] in a more general setting of semistar operations.

Lemma 1. Let $*$ be a star operation on D with $*_{f}=*$. Then the following statements are equivalent.

1. D is a $P * M D$.
2. D is a $P v M D$ and $*=t$.
3. D is a $P v M D$ and $*_{w}=t$.
4. $D[X]_{N_{*}}$ is a Prüfer domain, where $N_{*}=\left\{f \in D[X] \mid c(f)^{*}=D\right\}$. In this case, $*_{f}=*_{w}=t=w$.

Let $*$ be a star operation on D. Then there is a star operation $[*]$ on $D[X]$, which is an extension of $*_{w}$ to $D[X]$ in the sense that $(I[X])^{[*]} \cap$ $K=I^{*} w$ for each $I \in F(D)$. We recall this result for easy reference of the reader.

Lemma 2. [5, Theorem 2.3] Let X, Y be two indeterminates over D, * be a star operation on D, and let

$$
\begin{array}{ll}
\boldsymbol{\Delta}=\{Q \in \operatorname{Spec}(D[X]) \quad \mid & Q \cap D=(0) \text { with ht } Q=1 \\
& \text { or } \left.Q=(Q \cap D)[X] \text { and }(Q \cap D)^{*_{f}} \subsetneq D\right\} .
\end{array}
$$

Set $\mathcal{S}=D[X][Y] \backslash(\bigcup\{Q[Y] \mid Q \in \boldsymbol{\Delta}\})$ and define

$$
A^{[*]}=A[Y]_{\mathcal{S}} \cap K(X) \quad \text { for all } A \in F(D[X])
$$

1. The mapping $[*]: F(D[X]) \rightarrow F(D[X])$, given by $A \mapsto A^{[*]}$, is a star operation on $D[X]$ such that $[*]=[*]_{f}=[*]_{w}$.
2. $[*]=\left[*_{f}\right]=\left[*_{w}\right]$.
3. $(I D[X])^{[*]} \cap K=I^{* w}$ for all $I \in F(D)$.
4. $(I D[X])^{[*]}=I^{* w} D[X]$ for all $I \in F(D)$.
5. $[*]-\operatorname{Max}(D[X])=\{Q \mid Q \in \operatorname{Spec}(D[X])$ such that $Q \cap D=(0)$, $h t Q=1$, and $\left.\left(\sum_{g \in Q} c(g)\right)^{* f}=D\right\} \cup\left\{P[X] \mid P \in *_{f}-\operatorname{Max}(D)\right\}$.
6. $[v]$ is the w-operation on $D[X]$.

Let $*$ be a star operation on D. It is known that D is a $\mathrm{P} * \mathrm{MD}$ if and only if $D[X]$ is a $\mathrm{P}[*]$ MD [5, Corollary 2.5]; hence D is a $\mathrm{P} v \mathrm{MD}$ if and only if $D[X]$ is a $\mathrm{P} v \mathrm{MD}$. Also, since a $\mathrm{P} d \mathrm{MD}$ is just the Prüfer domain, D is a Prüfer domain if and only if $D[X]$ is a $\mathrm{P}[d] \mathrm{MD}$.

3. Main Results

Let D be an integral domain with quotient field K, and we assume that $D \neq K$ in order to avoid the trivial case. Let X be an indeterminate over $D, D[X]$ be the polynomial ring over D, and $N_{v}=\{f \in D[X] \mid$ $\left.c(f)^{v}=D\right\}$.

Lemma 3. Let $N_{v}=\left\{f \in D[X] \mid c(f)^{v}=D\right\}, I \in F(D)$, and $A \in F(D[X])$.

1. $I D[X]_{N_{v}} \cap K=I^{w}$, and hence $I^{w} D[X]_{N_{v}}=I D[X]_{N_{v}}$.
2. $A_{N_{v}}=\left(A^{w}\right)_{N_{v}}$.

Proof. (1) [4, Lemma 2.1].
(2) It suffices to show that $A^{w} \subseteq A_{N_{v}}$. For this, let $0 \neq f \in A^{w}$. Then there is a nonzero finitely generated ideal J of $D[X]$ such that $J^{v}=D[X]$ and $f J \subseteq A$. Since $J^{v}=D[X], J \nsubseteq P[X]$ for all $P \in t$ $\operatorname{Max}(D)$, and hence $\left(\sum_{h \in J} c(h)\right)^{t}=D$. Hence, there is a $0 \neq g \in J$ with $c(g)^{v}=D$; so $g \in N_{v}$ and $f g \in A$. Thus, $f \in A_{N_{v}}$.

It is known that D is a t-sharp domain if and only if $D[X]$ is a t-sharp domain, if and only if $D[X]_{N_{v}}$ is a sharp domain [2, Theorem 3.7]. We next generalize this result to an arbitrary star operation $*$ on D with $*_{w}=*$.

Theorem 4. Let $*$ be a star operation on D such that $*_{w}=*$. Then the following statements are equivalent.

1. D is a *-sharp domain.
2. $D[X]$ is a $[*]$-sharp domain.
3. $D[X]_{N_{*}}$ is a sharp domain, where $N_{*}=\left\{f \in D[X] \mid c(f)^{*}=D\right\}$.

In this case, $*=t=w$ on D and $[*]=t=w$ on $D[X]$.

Proof. (1) \Rightarrow (2) If D is a $*$-sharp domain, then D is a $\mathrm{P} * \mathrm{MD}[2$, Proposition 2.3], and hence D is a $\mathrm{P} v \mathrm{MD}$ with $*=t=w$ on D by Lemma 1. Hence, D is a t-sharp doman, and thus $D[X]$ is a t-sharp domain. However, note that $D[X]$ is a $\mathrm{P} v \mathrm{MD}$ and $[t]=w=t$ on $D[X]$ by Lemmas 1 and 2 ; so $[*]=t$. Thus, $D[X]$ is a $[*]$-sharp domain.
$(2) \Rightarrow(3)$ Assume that $D[X]$ is a $[*]$-sharp domain. Then $D[X]$ is a $\mathrm{P} v \mathrm{MD}$ and $[*]=t=w$ on $D[X]$; hence $I^{*}=(I D[X])^{[*]} \cap K=$ $(I D[X])^{t} \cap K=I^{t} D[X] \cap K=I^{t}$ for all $I \in F(D)$ by Lemma 2 and $[9$, Proposition 4.3]. Thus, D is a $\mathrm{P} v \mathrm{MD}$ and $*=t=w$ on D.

Let $I_{N_{*}} \supseteq\left(A_{N_{*}}\right)\left(B_{N_{*}}\right)$ with I, A, B nonzero ideals of $D[X]$, and let $C=I D[X]_{N_{*}} \cap D[X]$. Then $C \supseteq A B$, and hence by assumption, there exist nonzero ideals A_{0} and B_{0} of $D[X]$ such that $C^{w}=\left(A_{0} B_{0}\right)^{w}$, $\left(A_{0}\right)^{w} \supseteq A$, and $\left(B_{0}\right)^{w} \supseteq B$. Thus, by Lemma 3, $I_{N_{*}}=C_{N_{*}}=\left(C^{w}\right)_{N_{*}}=$ $\left(\left(A_{0} B_{0}\right)^{w}\right)_{N_{*}}=\left(A_{0} B_{0}\right)_{N_{*}}=\left(\left(A_{0}\right)_{N_{*}}\right)\left(\left(B_{0}\right)_{N_{*}}\right),\left(A_{0}\right)_{N_{*}}=\left(\left(A_{0}\right)^{w}\right)_{N_{*}} \supseteq$ $A_{N_{*}}$, and $\left(B_{0}\right)_{N_{*}}=\left(\left(B_{0}\right)^{w}\right)_{N_{*}} \supseteq B_{N_{*}}$. Thus, $D[X]_{N_{*}}$ is a sharp domain.
$(3) \Rightarrow(1)$ Suppose that $D[X]_{N_{*}}$ is a sharp domain. Then $D[X]_{N_{*}}$ is a Prüfer domain [2, Theorem 11], and hence D is a $\mathrm{P} * \mathrm{MD}$ by Lemma 1 and every ideal of $D[X]_{N_{*}}$ is extended from D [10, Theorem 3.1]. Let $I \supseteq A B$ with I, A, B nonzero ideals of D. Then $I D[X]_{N_{*}} \supseteq$ $\left(A D[X]_{N_{*}}\right)\left(B D[X]_{N_{*}}\right)$, and hence by assumption, there exist nonzero ideals H and J of D such that

$$
I D[X]_{N_{*}}=\left(H D[X]_{N_{*}}\right)\left(J D[X]_{N_{*}}\right)=(H J) D[X]_{N_{*}},
$$

$H D[X]_{N_{*}} \supseteq A D[X]_{N_{*}}$, and $J D[X]_{N_{*}} \supseteq B D[X]_{N_{*}}$. Thus, by Lemma 3, $I^{*}=I D[X]_{N_{*}} \cap K=(H J) D[X]_{N_{*}} \cap K=(H J)^{*}, H^{*}=H D[X]_{N_{*}} \cap K \supseteq$ $A D[X]_{N_{*}} \cap K \supseteq A$, and $J^{*}=J D[X]_{N_{*}} \cap K \supseteq B D[X]_{N_{*}} \cap K \supseteq B$. Thus, D is a $*$-sharp domain.

The next result is the d-operation analogue of [2, Theorem 3.7(a)] that D is a t-sharp domain if and only if $D[X]$ is a t-sharp domain.

Corollary 5. The following statements are equivalent for an integral domain D.

1. D is a sharp domain.
2. $D[X]$ is a $[d]$-sharp domain.
3. $D(X)$ is a sharp domain.

Proof. This follows directly from Theorem 4 because $D(X)=D[X]_{N_{d}}$.

Let \star be a star operation on $D[X]$, and let $I^{*}=(I D[X])^{\star} \cap K$ for all $I \in F(D)$. Then it is easy to see that $*$ is a star operation on D (cf. [6, Lemma 5]). A nonzero prime ideal Q of $D[X]$ is said to be an upper to zero in $D[X]$ if $Q \cap D=(0)$; so each upper to zero in $D[X]$ has height-one. Let $\star=\star_{f}$, and note that if every upper to zero in $D[X]$ is a maximal \star-ideal, then $\star-\operatorname{Max}(D[X])=t-\operatorname{Max}(D[X])$ [11, Theorem 2.9], and hence $\star_{w}=w$ on $D[X]$.

Corollary 6. Let \star be a star operation on $D[X]$ with $\star_{w}=\star$, and let * be the star operation on D defined by $I^{*}=(I D[X])^{*} \cap K$ for all $I \in F(D)$. Suppose that every upper to zero in $D[X]$ is a maximal *-ideal. Then $D[X]$ is a $*$-sharp domain if and only if D is a $*$-sharp domain.

Proof. (\Rightarrow) Assume that $D[X]$ is a \star-sharp domain. Then $D[X]$ is a $\mathrm{P} v \mathrm{MD}$ and $\star=t=w$ on $D[X]$ as in the proof of Theorem 4, and hence D is a $\mathrm{P} v \mathrm{MD}$ and $*=t=w$ on $D[6$, Lemma 5]. Note that $[t]=w$ on $D[X]$; so $[*]=\star$. Thus, D is a $*$-sharp domain by Theorem 4.
(\Leftarrow) Suppose that D is a $*$-sharp domain, and note that $*_{w}=*[6$, Lemma 5] because $\star_{w}=\star$. Hence, $D[X]$ is a [*]-sharp domain and $[*]=t=w$ on $D[X]$ by Theorem 4 . Since every upper to zero in $D[X]$ is a maximal \star-ideal, $\star=w=[*]$ on $D[X]$. Thus, $D[X]$ is a \star-sharp domain.

References

[1] Z. Ahmad, T. Dumitrescu, and M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie 55 (2012), 241-247.
[2] Z. Ahmad, T. Dumitrescu, and M. Epure, A Schreier Domain Type Condition II, Algebra Colloquium 22 (2015), 923-934.
[3] D.D. Anderson and S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461-2475.
[4] G.W. Chang, Strong Mori domains and the ring $D[\mathbf{X}]_{N_{v}}$, J. Pure Appl. Algebra 197 (2005), 293-304.
[5] G.W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), 484-493.
[6] G.W. Chang and M. Fontana, An overring-theoretic approach to polynomial extensions of star and semistar operations, Comm. Algebra 39 (2011), 19561978.
[7] M. Fontana, P. Jara, and E. Santos, Prüfer *-multiplication domains and semistar operations, J. Algebra Appl. 2 (2003), 1-30.
[8] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.
[9] J. Hedstrom and E. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), 37-44.
[10] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), 151-170.
[11] A. Mimouni, Note on star operations over polynomial rings, Comm. Algebra 36 (2008), 4249-4256.

Gyu Whan Chang
Department of Mathematics Education
Incheon National University
Incheon 22012, Korea
E-mail: whan@inu.ac.kr

[^0]: Received March 11, 2016. Revised September 6, 2016. Accepted September 11, 2016.

 2010 Mathematics Subject Classification: 13A15, 13F05.
 Key words and phrases: star operation, sharp domain, polynomial ring, Nagata ring.
 (c) The Kangwon-Kyungki Mathematical Society, 2016.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

