WHEN THE NAGATA RING D(X) IS A SHARP DOMAIN

Gyu Whan Chang

ABSTRACT. Let D be an integral domain, X be an indeterminate over D, D[X] be the polynomial ring over D, and D(X) be the Nagata ring of D. Let [d] be the star operation on D[X], which is an extension of the d-operation on D as in [5, Theorem 2.3]. In this paper, we show that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain.

1. Introduction

Let D be an integral domain and * be a star operation on D. (The definitions related to star operations will be reviewed in Section 2.) As in [2], we say that D is a *-sharp domain if whenever $I \supseteq AB$ with I, A, B nonzero ideals of D, there exist nonzero ideals H and J of D such that $I^* = (HJ)^*$, $H^* \supseteq A$, and $J^* \supseteq B$. Following [1], we say that a d-sharp domain is a sharp domain, i.e., D is a sharp domain if whenever $I \supseteq AB$ with I, A, B nonzero ideals of D, there exist ideals $A_0 \supseteq A$ and $B_0 \supseteq B$ of D such that $I = A_0B_0$. Assume that D is a *-sharp domain. It is known that D is a t-sharp domain (and hence D is a t-sharp domain. It is known that t is a t-sharp domain (and hence t

Received March 11, 2016. Revised September 6, 2016. Accepted September 11, 2016.

²⁰¹⁰ Mathematics Subject Classification: 13A15, 13F05.

Key words and phrases: star operation, sharp domain, polynomial ring, Nagata ring.

[©] The Kangwon-Kyungki Mathematical Society, 2016.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2.4]. Also, D is a v-sharp domain if and only if D is completely integrally closed [2, Corollary 2.6].

In [2, Theorem 3.7(a)], the authors showed that D is a t-sharp domain if and only if D[X], the polynomial ring over D, is a t-sharp domain. They then remarked that "we do not have a "d-analogue" of [2, Theorem 3.7(a)] because a sharp domain has Krull dimension ≤ 1 ". In fact, if D is a sharp domain, then D is a Prüfer domain with $\dim(D) \leq 1$ [1, Theorem 11]. Hence, D[X] is a sharp domain if and only if D is a field. However, in this paper, we use the star operation [d] on D[X] (see Lemma 2) to prove the d-operation analogue of [2, Theorem 3.7(a)]. Precisely, we prove that if * is a star operation on D such that $*_w = *$, then D is a *-sharp domain if and only if D[X] is a [*]-sharp domain, if and only if $D[X]_{N_*}$ is a sharp domain, where $N_* = \{f \in D[X] \mid c(f)^* = D\}$. Let D(X) be the Nagata ring of D, i.e., $D(X) = \{\frac{f}{g} \mid f, g \in D[X] \text{ and } c(g) = D\}$. As a corollary, we have that D is a sharp domain if and only if D[X] is a [d]-sharp domain, if and only if D(X) is a sharp domain. Finally, we study when D[X] is a *-sharp domain if * is a star operation on D[X] such that $*_w = *$.

2. Definitions related to star operations

Let D be an integral domain with quotient field K, F(D) be the set of nonzero fractional ideals of D, and f(D) be the set of nonzero finitely generated fractional ideals of D; so $f(D) \subseteq F(D)$, and equality holds if and only if D is Notherian. We say that a mapping $*: F(D) \to F(D)$, $I \mapsto I^*$, is a star operation on D if the following three conditions are satisfied for all $0 \neq a \in K$ and $I, J \in F(D)$: (i) $(aD)^* = aD$ and $(aI)^* = aI^*$, (ii) $I \subseteq I^*$ and if $I \subseteq J$, then $I^* \subseteq J^*$, and (iii) $(I^*)^* = I^*$. Given a star operation * on D, two new star operations $*_f$ and $*_w$ on D can be constructed as follows for all $I \in F(D)$; $I^{*_f} = \bigcup \{J^* \mid J \subseteq I\}$ and $J \in f(D)$ and $I^{*w} = \{x \in K \mid xJ \subseteq I \text{ for some } J \in f(D)\}$ with $J^* = D$. Clearly, $(*_f)_f = *_f$ and $(*_f)_w = (*_w)_f = *_w$. An $I \in F(D)$ is called a *-ideal if $I^* = I$, and a *-ideal is a maximal *ideal if it is maximal among proper integral *-ideals. Let *-Max(D) be the set of maximal *-ideals of D. It is known that $*_f$ -Max $(D) \neq \emptyset$ when D is not a field; $*_f$ -Max(D) = $*_w$ -Max(D) [3, Theorem 2.16]; and $I^{*_w} = \bigcap_{P \in *_f \text{-Max}(D)} ID_P$ for all $I \in F(D)$ [3, Corollary 2.10]. For $I \in F(D)$, let $I^{-1} = \{x \in K \mid xI \subseteq D\}$; then $I^{-1} \in F(D)$. We say

that $I \in F(D)$ is *-invertible if $(II^{-1})^* = D$, and D is a Prüfer *-multiplication domain (P*MD) if every nonzero finitely generated ideal of D is *_f-invertible. Examples of star operations include the d-, v-, t-, and w-operations. The d-operation is the identity function of F(D), i.e., $I^d = I$ for all $I \in F(D)$, the v-operation is defined by $I^v = (I^{-1})^{-1}$, the t-operation is defined by $t = v_f$, and the w-operation is given by $w = v_w$. For more on basic properties of star operations, see [8, Sections 32 and 34].

Let X be an indeterminate over D, D[X] be the polynomial ring over D, and c(f) be the ideal of D generated by the coefficients of $f \in D[X]$. The next lemma is nice characterizations of P*MDs, which appear in [7, Theorem 3.1 and Proposition 3.15] in a more general setting of semistar operations.

LEMMA 1. Let * be a star operation on D with $*_f = *$. Then the following statements are equivalent.

- 1. D is a P*MD.
- 2. D is a PvMD and * = t.
- 3. D is a PvMD and $*_w = t$.
- 4. $D[X]_{N_*}$ is a Prüfer domain, where $N_* = \{ f \in D[X] \mid c(f)^* = D \}$. In this case, $*_f = *_w = t = w$.

Let * be a star operation on D. Then there is a star operation [*] on D[X], which is an extension of $*_w$ to D[X] in the sense that $(I[X])^{[*]} \cap K = I^{*_w}$ for each $I \in F(D)$. We recall this result for easy reference of the reader.

LEMMA 2. [5, Theorem 2.3] Let X, Y be two indeterminates over D, * be a star operation on D, and let

$$\Delta = \{Q \in Spec(D[X]) \mid Q \cap D = (0) \text{ with } htQ = 1$$
 or $Q = (Q \cap D)[X] \text{ and } (Q \cap D)^{*_f} \subsetneq D\} .$ Set $\mathcal{S} = D[X][Y] \setminus (\bigcup \{Q[Y] \mid Q \in \Delta\})$ and define

$$A^{[*]} = A[Y]_{\mathcal{S}} \cap K(X) \quad \text{for all } A \in F(D[X]).$$

- 1. The mapping $[*]: F(D[X]) \to F(D[X])$, given by $A \mapsto A^{[*]}$, is a star operation on D[X] such that $[*] = [*]_f = [*]_w$.
- 2. $[*] = [*_f] = [*_w]$.
- 3. $(ID[X])^{[*]} \cap K = I^{*_w} \text{ for all } I \in F(D).$
- 4. $(ID[X])^{[*]} = I^{*w}D[X]$ for all $I \in F(D)$.

- 5. [*]- $Max(D[X]) = \{Q \mid Q \in Spec(D[X]) \text{ such that } Q \cap D = (0), htQ = 1, and <math>(\sum_{g \in Q} c(g))^{*_f} = D\} \cup \{P[X] \mid P \in *_f\text{-}Max(D)\}.$
- 6. [v] is the w-operation on D[X].

Let * be a star operation on D. It is known that D is a P*MD if and only if D[X] is a P[*]MD [5, Corollary 2.5]; hence D is a PvMD if and only if D[X] is a PvMD. Also, since a PdMD is just the Prüfer domain, D is a Prüfer domain if and only if D[X] is a P[d]MD.

3. Main Results

Let D be an integral domain with quotient field K, and we assume that $D \neq K$ in order to avoid the trivial case. Let X be an indeterminate over D, D[X] be the polynomial ring over D, and $N_v = \{f \in D[X] \mid c(f)^v = D\}$.

LEMMA 3. Let $N_v = \{ f \in D[X] \mid c(f)^v = D \}, I \in F(D), \text{ and } A \in F(D[X]).$

- 1. $ID[X]_{N_v} \cap K = I^w$, and hence $I^w D[X]_{N_v} = ID[X]_{N_v}$.
- 2. $A_{N_v} = (A^w)_{N_v}$.

Proof. (1) [4, Lemma 2.1].

(2) It suffices to show that $A^w \subseteq A_{N_v}$. For this, let $0 \neq f \in A^w$. Then there is a nonzero finitely generated ideal J of D[X] such that $J^v = D[X]$ and $fJ \subseteq A$. Since $J^v = D[X]$, $J \nsubseteq P[X]$ for all $P \in t$ -Max(D), and hence $(\sum_{h \in J} c(h))^t = D$. Hence, there is a $0 \neq g \in J$ with $c(g)^v = D$; so $g \in N_v$ and $fg \in A$. Thus, $f \in A_{N_v}$.

It is known that D is a t-sharp domain if and only if D[X] is a t-sharp domain, if and only if $D[X]_{N_v}$ is a sharp domain [2, Theorem 3.7]. We next generalize this result to an arbitrary star operation * on D with $*_w = *$.

THEOREM 4. Let * be a star operation on D such that $*_w = *$. Then the following statements are equivalent.

- 1. D is a *-sharp domain.
- 2. D[X] is a [*]-sharp domain.
- 3. $D[X]_{N_*}$ is a sharp domain, where $N_* = \{ f \in D[X] \mid c(f)^* = D \}$.

In this case, * = t = w on D and [*] = t = w on D[X].

- *Proof.* (1) \Rightarrow (2) If D is a *-sharp domain, then D is a P*MD [2, Proposition 2.3], and hence D is a PvMD with *=t=w on D by Lemma 1. Hence, D is a t-sharp domain, and thus D[X] is a t-sharp domain. However, note that D[X] is a PvMD and [t] = w = t on D[X] by Lemmas 1 and 2; so [*] = t. Thus, D[X] is a [*]-sharp domain.
- $(2) \Rightarrow (3)$ Assume that D[X] is a [*]-sharp domain. Then D[X] is a PvMD and [*] = t = w on D[X]; hence $I^* = (ID[X])^{[*]} \cap K = (ID[X])^t \cap K = I^tD[X] \cap K = I^t$ for all $I \in F(D)$ by Lemma 2 and [9, Proposition 4.3]. Thus, D is a PvMD and * = t = w on D.

Let $I_{N_*} \supseteq (A_{N_*})(B_{N_*})$ with I, A, B nonzero ideals of D[X], and let $C = ID[X]_{N_*} \cap D[X]$. Then $C \supseteq AB$, and hence by assumption, there exist nonzero ideals A_0 and B_0 of D[X] such that $C^w = (A_0B_0)^w$, $(A_0)^w \supseteq A$, and $(B_0)^w \supseteq B$. Thus, by Lemma 3, $I_{N_*} = C_{N_*} = (C^w)_{N_*} = ((A_0B_0)^w)_{N_*} = (A_0B_0)_{N_*} = ((A_0)_{N_*})((B_0)_{N_*}), (A_0)_{N_*} = ((A_0)^w)_{N_*} \supseteq A_{N_*}$, and $(B_0)_{N_*} = ((B_0)^w)_{N_*} \supseteq B_{N_*}$. Thus, $D[X]_{N_*}$ is a sharp domain.

 $(3) \Rightarrow (1)$ Suppose that $D[X]_{N_*}$ is a sharp domain. Then $D[X]_{N_*}$ is a Prüfer domain [2, Theorem 11], and hence D is a P*MD by Lemma 1 and every ideal of $D[X]_{N_*}$ is extended from D [10, Theorem 3.1]. Let $I \supseteq AB$ with I, A, B nonzero ideals of D. Then $ID[X]_{N_*} \supseteq (AD[X]_{N_*})(BD[X]_{N_*})$, and hence by assumption, there exist nonzero ideals H and J of D such that

$$ID[X]_{N_*} = (HD[X]_{N_*})(JD[X]_{N_*}) = (HJ)D[X]_{N_*},$$

 $HD[X]_{N_*}\supseteq AD[X]_{N_*}$, and $JD[X]_{N_*}\supseteq BD[X]_{N_*}$. Thus, by Lemma 3, $I^*=ID[X]_{N_*}\cap K=(HJ)D[X]_{N_*}\cap K=(HJ)^*$, $H^*=HD[X]_{N_*}\cap K\supseteq AD[X]_{N_*}\cap K\supseteq A$, and $J^*=JD[X]_{N_*}\cap K\supseteq BD[X]_{N_*}\cap K\supseteq B$. Thus, D is a *-sharp domain. \square

The next result is the *d*-operation analogue of [2, Theorem 3.7(a)] that D is a *t*-sharp domain if and only if D[X] is a *t*-sharp domain.

COROLLARY 5. The following statements are equivalent for an integral domain D.

- 1. D is a sharp domain.
- 2. D[X] is a [d]-sharp domain.
- 3. D(X) is a sharp domain.

Proof. This follows directly from Theorem 4 because $D(X) = D[X]_{N_d}$.

Let \star be a star operation on D[X], and let $I^* = (ID[X])^* \cap K$ for all $I \in F(D)$. Then it is easy to see that * is a star operation on D (cf. [6, Lemma 5]). A nonzero prime ideal Q of D[X] is said to be an upper to zero in D[X] if $Q \cap D = (0)$; so each upper to zero in D[X] has height-one. Let $\star = \star_f$, and note that if every upper to zero in D[X] is a maximal \star -ideal, then \star -Max(D[X]) = t-Max(D[X]) [11, Theorem 2.9], and hence $\star_w = w$ on D[X].

COROLLARY 6. Let \star be a star operation on D[X] with $\star_w = \star$, and let * be the star operation on D defined by $I^* = (ID[X])^* \cap K$ for all $I \in F(D)$. Suppose that every upper to zero in D[X] is a maximal \star -ideal. Then D[X] is a \star -sharp domain if and only if D is a \star -sharp domain.

Proof. (\Rightarrow) Assume that D[X] is a \star -sharp domain. Then D[X] is a PvMD and $\star = t = w$ on D[X] as in the proof of Theorem 4, and hence D is a PvMD and * = t = w on D[6, Lemma 5]. Note that [t] = w on D[X]; so $[*] = \star$. Thus, D is a *-sharp domain by Theorem 4.

(\Leftarrow) Suppose that D is a *-sharp domain, and note that $*_w = *$ [6, Lemma 5] because $*_w = *$. Hence, D[X] is a [*]-sharp domain and [*] = t = w on D[X] by Theorem 4. Since every upper to zero in D[X] is a maximal *-ideal, * = w = [*] on D[X]. Thus, D[X] is a *-sharp domain.

References

- [1] Z. Ahmad, T. Dumitrescu, and M. Epure, A Schreier domain type condition, Bull. Math. Soc. Sci. Math. Roumanie 55 (2012), 241–247.
- [2] Z. Ahmad, T. Dumitrescu, and M. Epure, A Schreier Domain Type Condition II, Algebra Colloquium 22 (2015), 923–934.
- [3] D.D. Anderson and S.J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), 2461–2475.
- [4] G.W. Chang, Strong Mori domains and the ring $D[\mathbf{X}]_{N_v}$, J. Pure Appl. Algebra 197 (2005), 293–304.
- [5] G.W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), 484–493.
- [6] G.W. Chang and M. Fontana, An overring-theoretic approach to polynomial extensions of star and semistar operations, Comm. Algebra 39 (2011), 1956– 1978.
- [7] M. Fontana, P. Jara, and E. Santos, *Prüfer*-multiplication domains and semistar operations*, J. Algebra Appl. **2** (2003), 1–30.
- [8] R. Gilmer, Multiplicative Ideal Theory, Marcel Dekker, New York, 1972.

- [9] J. Hedstrom and E. Houston, *Some remarks on star-operations*, J. Pure Appl. Algebra **18** (1980), 37–44.
- [10] B.G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), 151–170.
- [11] A. Mimouni, Note on star operations over polynomial rings, Comm. Algebra **36** (2008), 4249–4256.

Gyu Whan Chang Department of Mathematics Education Incheon National University Incheon 22012, Korea E-mail: whan@inu.ac.kr