THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

Byung-Do Kim*

Abstract

Let R be a $3!$-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D: R \rightarrow R$ such that $[[D(x), x], x] D(x)=0$ or $D(x)[[D(x), x], x]=0$ for all $x \in R$. In this case we have $[D(x), x]^{3}=0$ for all $x \in R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D: A \rightarrow A$ such that $[[D(x), x], x] D(x) \in$ $\operatorname{rad}(A)$ or $D(x)[[D(x), x], x] \in \operatorname{rad}(A)$ for all $x \in A$. In this case, we show that $D(A) \subseteq \operatorname{rad}(A)$.

1. Introduction

Throughout, R represents an associative ring and A will be a real or complex Banach algebra. We write $[x, y]$ for the commutator $x y-y x$ for x, y in a ring. Let $\operatorname{rad}(R)$ denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson) semisimple if its Jacobson radical $\operatorname{rad}(R)$ is zero.

A ring R is called n-torsion free if $n x=0$ implies $x=0$. Recall that R is prime if $a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime if $a R a=(0)$ implies $a=0$. On the other hand, let X be an element of a normed algebra. Then for every $x \in X$ the spectral radius of x, denoted by $r(x)$, is defined by $r(x)=\inf \left\{\left\|x^{n}\right\|^{\frac{1}{n}}: n \in \mathbb{N}\right\}$. It is well-known that the following theorem holds: if x be an element of a normed algebra, then $r(x)=\lim _{n \rightarrow \infty}\left\|x^{n}\right\|^{\frac{1}{n}}$ (see Bonsall and Duncan[1]).

An additive mapping D from R to R is called a derivation if $D(x y)=$ $D(x) y+x D(y)$ holds for all $x, y \in R$. And an additive mapping D from R to R is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ holds for all $x \in R$.

[^0]Johnson and Sinclair[5] proved that any linear derivation on a semisimple Banach algebra is continuous. A result of Singer and Wermer[9] states that every continuous linear derivation on a commutative Banach algebra maps the algebra into its radical. From these two results, we can conclude that there are no nonzero linear derivations on a commutative semisimple Banach algebra.
Thomas[10] proved that any linear derivation on a commutative Banach algebra maps the algebra into its radical.

A noncommutative version of Singer and Wermer's Conjecture states that every continuous linear derivation on a noncommutative Banach algebra maps the algebra into its radical.

Vukman[11] proved the following: let R be a 2 -torsion free prime ring. If $D: R \longrightarrow R$ is a derivation such that $[D(x), x] D(x)=0$ for all $x \in R$, then $D=0$.

Moreover, using the above result, he proved that the following holds: let A be a noncommutative semisimple Banach algebra. Suppose that $[D(x), x] D(x)=0$ holds for all $x \in A$. In this case, $D=0$.
$\operatorname{Kim}[6]$ showed that the following result holds: let R be a 3!-torsion free semiprime ring. Suppose there exists a Jordan derivation $D: R \rightarrow R$ such that

$$
[D(x), x] D(x)[D(x), x]=0
$$

for all $x \in R$. In this case, we have $[D(x), x]^{5}=0$ for all $x \in R$.
And, $\operatorname{Kim}[7]$ has showed that the following result holds:let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D: A \rightarrow A$ such that $D(x)[D(x), x] D(x) \in$ $\operatorname{rad}(A)$ for all $x \in A$. In this case, we have $D(A) \subseteq \operatorname{rad}(A)$.

In this paper, our aim is to prove the following results in the ring theory in order to apply it to the Banach algebra theory:
let R be a 3!-torsion free semiprime ring.
Suppose there exists a Jordan derivation $D: R \longrightarrow R$ such that

$$
[[D(x), x], x] D(x)=0 \text { or } D(x)[[D(x), x], x]=0
$$

for all $x \in R$. In this case, we obtain $[D(x), x]^{3}=0$ for all $x \in R$.
Let A be a noncommutative Banach Algebra. Suppose there exists a continuous linear Jordan derivation $D: A \longrightarrow A$ such that

$$
[[D(x), x], x] D(x) \in \text { or } D(x)[[D(x), x], x] \in \operatorname{rad}(A)
$$

for all $x \in A$. In this case, we obtain $D(A) \subseteq \operatorname{rad}(A)$ for all $x \in A$.

2. Preliminaries

In this section, we review the basic results in semiprime rings.
The following lemma and theorem are due to Chung and Luh[4].
Lemma 2.1. Let R be a n !-torsion free ring. Suppose there exist elements $y_{1}, y_{2}, \cdots, y_{n-1}, y_{n}$ in R such that $\sum_{k=1}^{n} t^{k} y_{k}=0$ for all $t=$ $1,2, \cdots, n$. Then we have $y_{k}=0$ for every positive integer k with $1 \leq$ $k \leq n$.

Theorem 2.2. Let R be a semiprime ring with a derivation D. Suppose there exists a positive integer n such that $(D x)^{n}=0$ for all $x \in R$ and suppose R is $(n-1)$!-torsion free. Then $D=0$.

And in 1988, the following statement was obtained by Bres̆ar[3].
Theorem 2.3. Let R be a 2-torsion free semiprime ring and let D : $R \longrightarrow R$ be a Jordan derivation. In this case, D is a derivation.

We denote by $Q(A)$ the set of all quasinilpotent elements in a Banach algebra.

Bresar[2] also proved the following theorem.
Theorem 2.4. Let D be a bounded derivation of a Banach algebra A. Suppose that $[D(x), x] \in Q(A)$ for every $x \in A$. Then D maps A into $\operatorname{rad}(A)$.

3. Main results

We need the following notations. After this, by S_{m} we denote the set $\{k \in \mathbb{N} \mid 1 \leq k \leq m\}$ where m is a positive integer. when R is a ring, we shall denote the maps $B: R \times R \longrightarrow R, f, g: R \longrightarrow R$ by $B(x, y)=[D(x), y]+[D(y), x], f(x)=[D(x), x], g(x)=[f(x), x], h(x)=$ $[g(x), x]=[[[f(x), x], x]=[[[D(x), x], x], x]$ for all $x, y \in R$ respectively. And we have the basic properties:

$$
\begin{aligned}
& {[y D(x), x]=y f(x)+[y, x] D(x),[D(x) y, x]=f(x) y+D(x)[y, x]} \\
& {[[y D(x), x], x]=[y f(x)+[y, x] D(x), x]=[y f(x), x]+[[y, x] D(x), x]} \\
& =y g(x)+2[y, x] f(x)+[[y, x], x] D(x)
\end{aligned}
$$

$$
\begin{aligned}
& {[[D(x) y, x], x]=[f(x) y+D(x)[y, x], x]=[f(x) y, x]+[D(x)[y, x], x]} \\
& =g(x) y+2 f(x)[y, x]+D(x)[[y, x], x], \\
& B(x, y)=B(y, x), \\
& B(x, y z)=B(x, y) z+y B(x, z)+D(y)[z, x]+[y, x] D(z), \\
& B(x, x)=2 f(x), B\left(x, x^{2}\right)=2(f(x) x+x f(x)), \\
& {\left[B\left(x, x^{2}\right), x\right]+\left[f(x), x^{2}\right]=3(g(x) x+x g(x)), x, y, z \in R .} \\
& \quad B(x, y x)=B(x, y) x+2 y f(x)+[y, x] D(x), \\
& B(x, x y)=x B(x, y)+2 f(x) y+D(x)[y, x], \\
& B(x, y D(x))=B(x, y) D(x)+y F(x)+D(y) f(x)+[y, x] D^{2}(x), \\
& B(x, D(x) y)=D(x) B(x, y)+F(x) y+f(x) D(y)+D^{2}(x)[y, x], \\
& \quad x, y \in R .
\end{aligned}
$$

THEOREM 3.1. Let R be a 3!-torsionfree noncommutative semiprime ring. Suppose there exists a Jordan derivation $D: R \longrightarrow R$ such that

$$
[[D(x), x], x] D(x)=0
$$

for all $x \in R$. Then we have $D(x)=0$ for all $x \in R$.
Proof. By Theorem 2.3, we can see that D is a derivation on R. From the assumption,

$$
\begin{equation*}
[[D(x), x], x] D(x)=g(x) D(x)=[f(x), x] D(x)=0, x \in R \tag{3.1}
\end{equation*}
$$

Replacing $x+t y$ for x in (3.1), we have

$$
\begin{align*}
& {[[D(x+t y), x+t y] D(x+t y)} \tag{3.2}\\
& \equiv[[D(x), x], x] D(x)+t\{[B(x, y), x] D(x) \\
& +[f(x), y] D(x)+g(x) D(y)\}+t^{2} J_{1}(x, y) \\
& +t^{3} J_{2}(x, y)+t^{4} g(y) D(y) \\
& =0, x, y \in R, t \in S_{3}
\end{align*}
$$

where $J_{i}, 1 \leq i \leq 3$, denotes the term satisfying the identity (3.2).
From (3.1) and (3.2), we obtain

$$
\begin{align*}
& t\{[B(x, y), x] D(x)+[f(x), y] D(x)+g(x) D(y)\} \tag{3.3}\\
& +t^{2} J_{1}(x, y)+t^{3} J_{2}(x, y) \\
& =0, x, y \in R, t \in S_{3}
\end{align*}
$$

Since R is 3!-torsionfree, by Lemma 2.1 the relation (3.3) yields

$$
\begin{align*}
& {[B(x, y), x] D(x)+[f(x), y] D(x)+g(x) D(y)} \tag{3.4}\\
& =0, x, y \in R
\end{align*}
$$

Let $y=x^{2}$ in (3.4). Then using (1), (3.1), we get

$$
\begin{align*}
& 2\{[f(x) x+x f(x), x]\} D(x)+(g(x) x+x g(x)) D(x) \tag{3.5}\\
& +g(x)(D(x) x+x D(x)) \\
& =2 g(x) x D(x)+2 x g(x) D(x)+g x D(x)+x g(x) D(x) \\
& +g D(x) x+g(x) x D(x) \\
& =4 g(x) x D(x)+3 x g(x) D(x)+ \\
& +g D(x) x \\
& =4 g(x) x D(x)=4 h(x) D(x)=-4 g(x) f(x) \\
& =0, x \in R .
\end{align*}
$$

Since R is 3!-torsion free, it follows from (3.5) that

$$
\begin{equation*}
h(x) D(x)=g(x) f(x)=0, x \in R . \tag{3.6}
\end{equation*}
$$

Substituting $x y$ for y in (3.4), we arrive at

$$
\begin{align*}
& {[x B(x, y)+2 f(x) y+D(x)[y, x], x] D(x)+g(x) y D(x)} \tag{3.7}\\
& +x[f(x), y] D(x)+g(x) x D(y)+g(x) D(x) y \\
& =x[B(x, y), x] D(x)+2 f(x)[y, x] D(x)+2 g(x) y D(x) \\
& +D(x)[[y, x], x] D(x)+f(x)[y, x] D(x) \\
& +g(x) y D(x)+x[f(x), y] D(x)+g(x) x D(y)+g(x) D(x) y \\
& =x[B(x, y), x] D(x)+3 f(x)[y, x] D(x)+3 g(x) y D(x) \\
& +D(x)[y, x], x] D(x)+x[f(x), y] D(x)+g(x) x D(y) \\
& +g(x) D(x) y=0, x, y \in R .
\end{align*}
$$

Left multiplication of (3.4) by x leads to

$$
\begin{align*}
& x[B(x, y), x] D(x)+x[f(x), y] D(x)+x g(x) D(y) \tag{3.8}\\
& =0, x, y \in R .
\end{align*}
$$

Combining (3.1), (3.7) with (3.8),

$$
\begin{align*}
& 3 f(x)[y, x] D(x)+3 g(x) y D(x)+D(x)[[y, x], x] D(x) \tag{3.9}\\
& +h(x) D(y)=0, x, y \in R .
\end{align*}
$$

Writing $y D(x)$ for y in (3.9), we have

$$
\begin{align*}
& 3 f(x)[y, x] D(x)^{2}+3 f(x) y f(x) D(x)+3 g(x) y D(x)^{2} \tag{3.10}\\
& +D(x) y g(x) D(x)+2 D(x)[y, x] f(x) D(x) \\
& +D(x)[[y, x], x] D(x)^{2}+h(x) D(y) D(x) \\
& +h(x) y D^{2}(x)=0, x, y \in R .
\end{align*}
$$

Right multiplication of (3.9) by $D(x)$ gives

$$
\begin{align*}
& 3 f(x)[y, x] D(x)^{2}+3 g(x) y D(x)^{2} \tag{3.11}\\
& +D(x)[[y, x], x] D(x)^{2}+h(x) D(y) D(x)=0, x, y \in R
\end{align*}
$$

From (3.10) and (3.11), we get

$$
\begin{align*}
& 3 f(x) y f(x) D(x)+D(x) y g(x) D(x) \tag{3.12}\\
& +2 D(x)[y, x] f(x) D(x)+h(x) y D^{2}(x) \\
& =0, x, y \in R
\end{align*}
$$

From (3.1) and (3.12), one obtains

$$
\begin{align*}
& 3 f(x) y f(x) D(x)+2 D(x)[y, x] f(x) D(x) \tag{3.13}\\
& +h(x) y D^{2}(x)=0, x, y \in R
\end{align*}
$$

Right multiplication of (3.9) by x yields

$$
\begin{align*}
& 3 f(x)[y, x] D(x) x+3 g(x) y D(x) x+D(x)[[y, x], x] D(x) x \tag{3.14}\\
& +h(x) D(y) x=0, x, y \in R
\end{align*}
$$

Putting $y x$ instead of y in (3.9), we have

$$
\begin{align*}
& 3 f(x)[y, x] x D(x)+3 g(x) y x D(x)+D(x)[[y, x], x] x D(x) \tag{3.15}\\
& +h(x) D(y) x+h(x) y D(x)=0, x, y \in R .
\end{align*}
$$

From (3.14) and (3.15),

$$
\begin{align*}
& 3 f(x)[y, x] f(x)+3 g(x) y f(x)+D(x)[[y, x], x] f(x) \tag{3.16}\\
& -h(x) y D(x)=0, x, y \in R
\end{align*}
$$

Let $y=D(x)$ in (3.16). Then we obtain

$$
\begin{align*}
& 3 f(x)^{3}+3 g(x) D(x) f(x)+D(x) g(x) f(x) \tag{3.17}\\
& +h(x) D(x)^{2}=0, x, y \in R
\end{align*}
$$

From $(3.1),(3.6)$ and (3.17), we get

$$
\begin{equation*}
3 f(x)^{3}=0, x \in R \tag{3.18}
\end{equation*}
$$

Since R is 3 !-torsionfree, (3.18) yields

$$
\begin{equation*}
f(x)^{3}=0, x \in R \tag{3.19}
\end{equation*}
$$

Theorem 3.2. Let R be a 3 !-torsionfree noncommutative semiprime ring. Suppose there exists a Jordan derivation $D: R \longrightarrow R$ such that

$$
D(x)[[D(x), x], x]=0
$$

for all $x \in R$. Then we have $D(x)=0$ for all $x \in R$.

Proof. By Theorem 2.3, we can see that D is a derivation on R. From the assumption,

$$
\begin{equation*}
D(x)[[D(x), x], x]=D(x) g(x)=D(x)[f(x), x]=0, x \in R \tag{3.20}
\end{equation*}
$$

Replacing $x+t y$ for x in (3.20), we have

$$
\begin{align*}
& D(x+t y)[[D(x+t y), x+t y] \tag{3.21}\\
& \equiv D(x)[[D(x), x], x]+t\{D(y) g(x)+D(x)[B(x, y), x] \\
& +D(x)[f(x), y]\}+t^{2} K_{1}(x, y) \\
& +t^{3} K_{2}(x, y)+t^{4} D(y) g(y) \\
& =0, x, y \in R, t \in S_{3}
\end{align*}
$$

where $K_{i}, 1 \leq i \leq 3$, denotes the term satisfying the identity (3.21). From (3.20) and (3.21), we obtain

$$
\begin{align*}
& t\{D(y) g(x)+D(x)[B(x, y), x]+D(x)[f(x), y]\} \tag{3.22}\\
& +t^{2} K_{1}(x, y)+t^{3} K_{2}(x, y) \\
& =0, x, y \in R, t \in S_{3}
\end{align*}
$$

Since R is 3 !-torsionfree, by Lemma 2.1 the relation (3.22) yields

$$
\begin{align*}
& D(y) g(x)+D(x)[B(x, y), x]+D(x)[f(x), y] \tag{3.23}\\
& =0, x, y \in R .
\end{align*}
$$

Let $y=x^{2}$ in (3.23). Then using (3.20), we get

$$
\begin{align*}
& \{D(x) x+x D(x)\} g(x)+2 D(x)\{[f(x) x+x f(x), x]\} \tag{3.24}\\
& +D(x)(g(x) x+x g(x)) \\
& =D(x) x g(x)+x D(x) g(x)+2 D(x) g(x) x+2 D(x) x g(x) \\
& +D(x) g(x) x+D(x) x g(x) \\
& =4 D(x) x g(x)+3 D(x) g(x) x+x D(x) g(x) \\
& =4 f(x) g(x)=-4 D(x) h(x)=0, x \in R .
\end{align*}
$$

Since R is 3 !-torsion free, we obtain from (3.24)

$$
\begin{equation*}
f(x) g(x)=D(x) h(x)=0, x \in R . \tag{3.25}
\end{equation*}
$$

Right multiplication of (3.23) by x leads to

$$
\begin{align*}
& D(y) g(x) x+D(x)[B(x, y), x] x+D(x)[f(x), y] x \tag{3.26}\\
& =0, x, y \in R .
\end{align*}
$$

Substituting $y x$ for y in (3.23), we have

$$
\begin{align*}
& D(y) x g(x)+y D(x) g(x)+D(x)[B(x, y) x+2 y f(x) \tag{3.27}\\
& +[y, x] D(x), x]+D(x)[f(x), y] x+D(x) y g(x) \\
& =D(y) x g(x)+y D(x) g(x)+D(x)[B(x, y), x] x \\
& +2 D(x) y g(x)+2 D(x)[y, x] f(x)+D(x)[y, x] f(x) \\
& +D(x)[[y, x], x] D(x)+D(x)[f(x), y] x+D(x) y g(x) \\
& =D(y) x g(x)+y D(x) g(x)+D(x)[B(x, y), x] x \\
& +3 D(x) y g(x)+3 D(x)[y, x] f(x) \\
& +D(x)[[y, x], x] D(x)+D(x)[f(x), y] x \\
& =0, x, y \in R .
\end{align*}
$$

From (3.20), (3.26) and (3.27), we arrive at

$$
\begin{align*}
& D(y) h(x)+3 D(x) y g(x)+3 D(x)[y, x] f(x) \tag{3.28}\\
& +D(x)[[y, x], x] D(x)=0, x, y \in R .
\end{align*}
$$

Replacing $D(x) y$ for y in (3.28), we obtain

$$
\begin{align*}
& D(x) D(y) h(x)+D^{2}(x) y h(x)+3 D(x)^{2} y g(x) \tag{3.29}\\
& +3 D(x)^{2}[y, x] f(x)+3 D(x) f(x) y f(x) \\
& +D(x)^{2}[[y, x], x] D(x)+2 D(x) f(x)[y, x] D(x) \\
& +D(x) g(x) y D(x)=0, x, y \in R
\end{align*}
$$

Left multiplication of (3.28) by $D(x)$ gives

$$
\begin{align*}
& D(x) D(y) h(x)+3 D(x)^{2} y g(x)+3 D(x)^{2}[y, x] f(x) \tag{3.30}\\
& +D(x)^{2}[[y, x], x] D(x)=0, x, y \in R .
\end{align*}
$$

From (3.29) and (3.30), it follows that

$$
\begin{align*}
& D^{2}(x) y h(x)+3 D(x) f(x) y f(x)+2 D(x) f(x)[y, x] D(x) \tag{3.31}\\
& +D(x) g(x) y D(x)=0, x, y \in R .
\end{align*}
$$

From (3.20) and (3.31), we get

$$
\begin{align*}
& D^{2}(x) y h(x)+3 D(x) f(x) y f(x)+2 D(x) f(x)[y, x] D(x) \tag{3.32}\\
& +D(x) g(x) y D(x)=0, x, y \in R .
\end{align*}
$$

Writing $x y$ for y in (3.28), we arrived at
(3.33) $\quad x D(y) h(x)+D(x) y h(x)+3 D(x) x y g(x)+3 D(x) x[y, x] f(x)$
$+D(x) x[[y, x], x] D(x)=0, x, y \in R$.

Left multiplication of (3.28) by x yields

$$
\begin{align*}
& x D(y) h(x)+3 x D(x) y g(x)+3 x D(x)[y, x] f(x) \tag{3.34}\\
& +x D(x)[[y, x], x] D(x)=0, x, y \in R .
\end{align*}
$$

From (3.33) and (3.34), one obtains

$$
\begin{align*}
& D(x) y h(x)+3 f(x) y g(x)+3 f(x)[y, x] f(x) \tag{3.35}\\
& +f(x)[[y, x], x] D(x)=0, x, y \in R .
\end{align*}
$$

Let $y=D(x)$ in (3.35). Then we have

$$
\begin{align*}
& D(x)^{2} h(x)+3 f(x) D(x) g(x)+3 f(x)^{3} \tag{3.36}\\
& +f(x) g(x) D(x)=0, x, y \in R .
\end{align*}
$$

From (3.20),(3.25) and (3.36), we get

$$
\begin{equation*}
3 f(x)^{3}=0, x \in R . \tag{3.37}
\end{equation*}
$$

Since R is $3!$-torsionfree, (3.37) gives

$$
f(x)^{3}=0, x \in R .
$$

Combining Vukman's idea [12] with and Bres̆ar [2] and Kim's idea [6], we have the following theorem from the simple calculations.

Theorem 3.3. Let A be a Banach algebra. Suppose there exists a continuous linear Jordan derivation $D: A \longrightarrow A$ such that

$$
[[D(x), x], x] D(x) \in \operatorname{rad}(A)
$$

for all $x \in A$. Then we have $D(A) \subseteq \operatorname{rad}(A)$.
Proof. It suffices to prove the case that A is noncommutative. By the result of B.E. Johnson and A.M. Sinclair [5] any linear derivation on a semisimple Banach algebra is continuous. Sinclair [9] has proved that every continuous linear Jordan derivation on a Banach algebra leaves the primitive ideals of A invariant. Hence for any primitive ideal $P \subseteq A$ one can introduce a derivation $D_{P}: A / P \longrightarrow A / P$, where A / P is a prime and factor Banach algebra, by $D_{P}(\hat{x})=D(x)+P, \hat{x}=x+$ P. By the assumption that $[[D(x), x], x] D(x) \in \operatorname{rad}(A), x \in A$, we obtain $\left[\left[D_{P}(\hat{x}), \hat{x}\right], \hat{x}\right] D_{P}(\hat{x})=0, \hat{x} \in A / P$, since all the assumptions of Theorem 3.1 is fulfilled. Let the factor prime Banach algebra A / P be noncommutative. Then from Theorem 3.1 we have $\left[D_{P}(\hat{x}), \hat{x}\right]^{3}=$ $0, \hat{x} \in A / P$. Hence by using Theorem 2.4, we get $D_{P}(\hat{x}) \in \operatorname{rad}(A / P)=$ $\{0\}, \hat{x} \in A / P$. Thus we obtain $D(x) \in P$ for all $x \in A$ and all primitive ideals P of A. Hence $D(A) \subseteq \operatorname{rad}(A)$. And we consider the case that A / P
is commutative. Then since A / P is a commutative Banach semisimple Banach algebra, from the result of B.E. Johnson and A.M. Sinclair [5], it follows that $D_{P}(\hat{x})=0, \hat{x} \in A / P$. And so, $D(x) \in P$ for all $x \in A$ and all primitive ideals P of A. Hence $D(A) \subseteq \operatorname{rad}(A)$. Therefore in any case we obtain $D(A) \subseteq \operatorname{rad}(A)$.

The following theorem is similarly proved in the above proof of Theorem 3.3.

Theorem 3.4. Let A be a (noncommutative) Banach algebra. Suppose there exists a continuous linear Jordan derivation $D: A \longrightarrow A$ such that

$$
D(x)[[D(x), x], x] \in \operatorname{rad}(A)
$$

for all $x \in A$. Then we have $D(A) \subseteq \operatorname{rad}(A)$.
Theorem 3.5. Let A be a semisimple Banach algebra. Suppose there exists a linear Jordan derivation $D: A \longrightarrow A$ such that

$$
[[D(x), x], x] D(x)=0
$$

for all $x \in A$. Then we have $D=0$.
Proof. It suffices to prove the case that A is noncommutative. According to the result of B.E. Johnson and A.M. Sinclair[5] every linear derivation on a semisimple Banach algebra is continuous. A.M. Sinclair[9] proved that any continuous linear derivation on a Banach algebra leaves the primitive ideals of A invariant. Hence for any primitive ideal $P \subseteq A$ one can introduce a derivation $D_{P}: A / P \longrightarrow A / P$, where A / P is a prime and factor Banach algebra, by $D_{P}(\hat{x})=D(x)+P, \hat{x}=$ $x+P$. From the given assumptions $[[D(x), x], x] D(x)=0, x \in A$, it follows that $\left[\left[D_{P}(\hat{x}), \hat{x}\right], \hat{x}\right] D_{P}(\hat{x})=0, \hat{x} \in A / P$, since all the assumptions of Theorem 3.1 is fulfilled. The factor algebra A / P is noncommutative, by Theorem 3.1 we have $\left[D_{P}(\hat{x}), \hat{x}\right]^{3}=0, \hat{x} \in A / P$. Thus we obtain $\left[D_{P}(\hat{x}), \hat{x}\right] \in Q(A / P)$. Then by Theorem 2.4 , we obtain $D_{P}(\hat{x}) \in \operatorname{rad}(A / P)=\{0\}$ for all $\hat{x} \in A / P$ and all primitive ideals P of A. That is, $D(x) \in P$ for all $x \in A$ and primitive ideals P in A. Hence we get $D(A) \subseteq P$ for all primitive ideals P of A. Therefore $D(A) \subseteq \operatorname{rad}(A)$. But since A is semisimple, $D=0$.

The following theorem is similarly proved in the above proof of theorem.

Theorem 3.6. Let A be a semisimple Banach algebra. Suppose there exists a linear Jordan derivation $D: A \longrightarrow A$ such that

$$
D(x)[[D(x), x], x]=0
$$

for all $x \in A$. Then we have $D=0$.
As a special case of Theorem 3.3 we have the following result which characterizes commutative semisimple Banach algebras.

Corollary 3.7. Let A be a semisimple Banach algebra. Suppose

$$
[[[x, y], x], x][x, y]=0
$$

for all $x, y \in A$. In this case, A is commutative.
As a special case of Theorem 3.5 we get the following statement which characterizes commutative semisimple Banach algebras.

Corollary 3.8. Let A be a semisimple Banach algebra. Suppose

$$
[x, y][[[x, y], x], x]=0
$$

for all $x, y \in A$. In this case, A is commutative.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-HeidelbergNew York, 1973.
[2] M. Bres̆ar, Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994), 56-59.
[3] M. Bres̆ar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006.
[4] L. O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415-421.
[5] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073.
[6] B. D. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Mathematica Sinica 16 (2000), no. 1, 21-28.
[7] B. D. Kim, Derivations of semiprime rings and noncommutative Banach algebras, Commun. Korean Math. Soc 17 (2002), no. 4, 607-618.
[8] B. D. Kim, Jordan derivations of semiprime rings and noncommutative Banach algebras, II, J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 15 (2008), no. 3, 259-296.
[9] A. M. Sinclair, Jordan homohorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
[10] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264.
[11] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glasnik Mathematicki 26 (1991), 83-88.
[12] J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884.
$*$
Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Republic of Korea
E-mail: bdkim@gwnu.ac.kr

[^0]: Received March 10, 2016; Accepted October 17, 2016.
 2010 Mathematics Subject Classification: Primary 16N60, 16W25, 17B40.
 Key words and phrases: Banach algebra, Jordan derivation, prime and semiprime ring, (Jacobson) radical.

