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THE JORDAN DERIVATIONS OF SEMIPRIME RINGS

AND NONCOMMUTATIVE BANACH ALGEBRAS

Byung-Do Kim*

Abstract. Let R be a 3!-torsion free noncommutative semiprime
ring, and suppose there exists a Jordan derivation D : R → R
such that [[D(x), x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all
x ∈ R. In this case we have [D(x), x]3 = 0 for all x ∈ R. Let A be a
noncommutative Banach algebra. Suppose there exists a continuous
linear Jordan derivation D : A → A such that [[D(x), x], x]D(x) ∈
rad(A) or D(x)[[D(x), x], x] ∈ rad(A) for all x ∈ A. In this case, we
show that D(A) ⊆ rad(A).

1. Introduction

Throughout, R represents an associative ring and A will be a real or
complex Banach algebra. We write [x, y] for the commutator xy − yx
for x, y in a ring. Let rad(R) denote the (Jacobson) radical of a ring R.
And a ring R is said to be (Jacobson ) semisimple if its Jacobson radical
rad(R) is zero.

A ring R is called n-torsion free if nx = 0 implies x = 0. Recall
that R is prime if aRb = (0) implies that either a = 0 or b = 0, and is
semiprime if aRa = (0) implies a = 0. On the other hand, let X be an
element of a normed algebra. Then for every x ∈ X the spectral radius

of x, denoted by r(x), is defined by r(x) = inf{||xn||
1
n : n ∈ N}. It is

well-known that the following theorem holds: if x be an element of a

normed algebra, then r(x) = lim
n→∞

||xn||
1
n (see Bonsall and Duncan[1]).

An additive mapping D from R to R is called a derivation if D(xy) =
D(x)y+ xD(y) holds for all x, y ∈ R. And an additive mapping D from
R to R is called a Jordan derivation if D(x2) = D(x)x + xD(x) holds
for all x ∈ R.
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Johnson and Sinclair[5] proved that any linear derivation on a semisim-
ple Banach algebra is continuous. A result of Singer and Wermer[9]
states that every continuous linear derivation on a commutative Banach
algebra maps the algebra into its radical. From these two results, we can
conclude that there are no nonzero linear derivations on a commutative
semisimple Banach algebra.
Thomas[10] proved that any linear derivation on a commutative Banach
algebra maps the algebra into its radical.

A noncommutative version of Singer and Wermer’s Conjecture states
that every continuous linear derivation on a noncommutative Banach
algebra maps the algebra into its radical.

Vukman[11] proved the following: let R be a 2-torsion free prime ring.
If D : R −→ R is a derivation such that [D(x), x]D(x) = 0 for all x ∈ R,
then D = 0.

Moreover, using the above result, he proved that the following holds:
let A be a noncommutative semisimple Banach algebra. Suppose that
[D(x), x]D(x) = 0 holds for all x ∈ A. In this case, D = 0.

Kim[6] showed that the following result holds: let R be a 3!-torsion
free semiprime ring. Suppose there exists a Jordan derivationD : R → R
such that

[D(x), x]D(x)[D(x), x] = 0

for all x ∈ R. In this case, we have [D(x), x]5 = 0 for all x ∈ R.

And, Kim[7] has showed that the following result holds:let A be a
noncommutative Banach algebra. Suppose there exists a continuous
linear Jordan derivation D : A → A such that D(x)[D(x), x]D(x) ∈
rad(A) for all x ∈ A. In this case, we have D(A) ⊆ rad(A).

In this paper, our aim is to prove the following results in the ring
theory in order to apply it to the Banach algebra theory:

let R be a 3!-torsion free semiprime ring.

Suppose there exists a Jordan derivation D : R −→ R such that

[[D(x), x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0

for all x ∈ R. In this case, we obtain [D(x), x]3 = 0 for all x ∈ R.

Let A be a noncommutative Banach Algebra. Suppose there exists a
continuous linear Jordan derivation D : A −→ A such that

[[D(x), x], x]D(x) ∈ or D(x)[[D(x), x], x] ∈ rad(A)

for all x ∈ A. In this case, we obtain D(A) ⊆ rad(A) for all x ∈ A.
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2. Preliminaries

In this section, we review the basic results in semiprime rings.
The following lemma and theorem are due to Chung and Luh[4].

Lemma 2.1. Let R be a n!-torsion free ring. Suppose there exist

elements y1, y2, · · · , yn−1, yn in R such that

n∑
k=1

tkyk = 0 for all t =

1, 2, · · · , n. Then we have yk = 0 for every positive integer k with 1 ≤
k ≤ n.

Theorem 2.2. Let R be a semiprime ring with a derivation D. Sup-
pose there exists a positive integer n such that (Dx)n = 0 for all x ∈ R
and suppose R is (n− 1)!-torsion free. Then D = 0.

And in 1988, the following statement was obtained by Bres̆ar[3].

Theorem 2.3. Let R be a 2-torsion free semiprime ring and let D :
R −→ R be a Jordan derivation. In this case, D is a derivation.

We denote by Q(A) the set of all quasinilpotent elements in a Banach
algebra.

Bresar[2] also proved the following theorem.

Theorem 2.4. Let D be a bounded derivation of a Banach algebra
A. Suppose that [D(x), x] ∈ Q(A) for every x ∈ A. Then D maps A into
rad(A).

3. Main results

We need the following notations. After this, by Sm we denote the
set {k ∈ N | 1 ≤ k ≤ m} where m is a positive integer. when R is
a ring, we shall denote the maps B : R × R −→ R, f, g : R −→ R by
B(x, y) = [D(x), y]+[D(y), x], f(x) = [D(x), x], g(x) = [f(x), x], h(x) =
[g(x), x] = [[[f(x), x], x] = [[[D(x), x], x], x] for all x, y ∈ R respectively.
And we have the basic properties:

[yD(x), x] = yf(x) + [y, x]D(x), [D(x)y, x] = f(x)y +D(x)[y, x],

[[yD(x), x], x] = [yf(x) + [y, x]D(x), x] = [yf(x), x] + [[y, x]D(x), x]

= yg(x) + 2[y, x]f(x) + [[y, x], x]D(x),
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[[D(x)y, x], x] = [f(x)y +D(x)[y, x], x] = [f(x)y, x] + [D(x)[y, x], x]

= g(x)y + 2f(x)[y, x] +D(x)[[y, x], x],

B(x, y) = B(y, x),

B(x, yz) = B(x, y)z + yB(x, z) +D(y)[z, x] + [y, x]D(z),

B(x, x) = 2f(x), B(x, x2) = 2(f(x)x+ xf(x)),

[B(x, x2), x] + [f(x), x2] = 3(g(x)x+ xg(x)), x, y, z ∈ R.

B(x, yx) = B(x, y)x+ 2yf(x) + [y, x]D(x),

B(x, xy) = xB(x, y) + 2f(x)y +D(x)[y, x],

B(x, yD(x)) = B(x, y)D(x) + yF (x) +D(y)f(x) + [y, x]D2(x),

B(x,D(x)y) = D(x)B(x, y) + F (x)y + f(x)D(y) +D2(x)[y, x],

x, y ∈ R.

Theorem 3.1. Let R be a 3!-torsionfree noncommutative semiprime
ring. Suppose there exists a Jordan derivation D : R −→ R such that

[[D(x), x], x]D(x) = 0

for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.

Proof. By Theorem 2.3, we can see that D is a derivation on R. From
the assumption,

[[D(x), x], x]D(x) = g(x)D(x) = [f(x), x]D(x) = 0, x ∈ R.(3.1)

Replacing x+ ty for x in (3.1), we have

[[D(x+ ty), x+ ty]D(x+ ty)(3.2)

≡ [[D(x), x], x]D(x) + t{[B(x, y), x]D(x)

+[f(x), y]D(x) + g(x)D(y)}+ t2J1(x, y)

+t3J2(x, y) + t4g(y)D(y)

= 0, x, y ∈ R, t ∈ S3

where Ji, 1 ≤ i ≤ 3, denotes the term satisfying the identity (3.2).
From (3.1) and (3.2), we obtain

t{[B(x, y), x]D(x) + [f(x), y]D(x) + g(x)D(y)}(3.3)

+t2J1(x, y) + t3J2(x, y)

= 0, x, y ∈ R, t ∈ S3.

Since R is 3!-torsionfree, by Lemma 2.1 the relation (3.3) yields

[B(x, y), x]D(x) + [f(x), y]D(x) + g(x)D(y)(3.4)

= 0, x, y ∈ R.
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Let y = x2 in (3.4). Then using (1), (3.1), we get

2{[f(x)x+ xf(x), x]}D(x) + (g(x)x+ xg(x))D(x)(3.5)

+g(x)(D(x)x+ xD(x))

= 2g(x)xD(x) + 2xg(x)D(x) + gxD(x) + xg(x)D(x)

+gD(x)x+ g(x)xD(x)

= 4g(x)xD(x) + 3xg(x)D(x) +

+gD(x)x

= 4g(x)xD(x) = 4h(x)D(x) = −4g(x)f(x)

= 0, x ∈ R.

Since R is 3!-torsion free, it follows from (3.5) that

h(x)D(x) = g(x)f(x) = 0, x ∈ R.(3.6)

Substituting xy for y in (3.4), we arrive at

[xB(x, y) + 2f(x)y +D(x)[y, x], x]D(x) + g(x)yD(x)(3.7)

+x[f(x), y]D(x) + g(x)xD(y) + g(x)D(x)y

= x[B(x, y), x]D(x) + 2f(x)[y, x]D(x) + 2g(x)yD(x)

+D(x)[[y, x], x]D(x) + f(x)[y, x]D(x)

+g(x)yD(x) + x[f(x), y]D(x) + g(x)xD(y) + g(x)D(x)y

= x[B(x, y), x]D(x) + 3f(x)[y, x]D(x) + 3g(x)yD(x)

+D(x)[[y, x], x]D(x) + x[f(x), y]D(x) + g(x)xD(y)

+g(x)D(x)y = 0, x, y ∈ R.

Left multiplication of (3.4) by x leads to

x[B(x, y), x]D(x) + x[f(x), y]D(x) + xg(x)D(y)(3.8)

= 0, x, y ∈ R.

Combining (3.1), (3.7) with (3.8),

3f(x)[y, x]D(x) + 3g(x)yD(x) +D(x)[[y, x], x]D(x)(3.9)

+h(x)D(y) = 0, x, y ∈ R.

Writing yD(x) for y in (3.9), we have

3f(x)[y, x]D(x)2 + 3f(x)yf(x)D(x) + 3g(x)yD(x)2(3.10)

+D(x)yg(x)D(x) + 2D(x)[y, x]f(x)D(x)

+D(x)[[y, x], x]D(x)2 + h(x)D(y)D(x)

+h(x)yD2(x) = 0, x, y ∈ R.
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Right multiplication of (3.9) by D(x) gives

3f(x)[y, x]D(x)2 + 3g(x)yD(x)2(3.11)

+D(x)[[y, x], x]D(x)2 + h(x)D(y)D(x) = 0, x, y ∈ R.

From (3.10) and (3.11), we get

3f(x)yf(x)D(x) +D(x)yg(x)D(x)(3.12)

+2D(x)[y, x]f(x)D(x) + h(x)yD2(x)

= 0, x, y ∈ R.

From (3.1) and (3.12), one obtains

3f(x)yf(x)D(x) + 2D(x)[y, x]f(x)D(x)(3.13)

+h(x)yD2(x) = 0, x, y ∈ R.

Right multiplication of (3.9) by x yields

3f(x)[y, x]D(x)x+ 3g(x)yD(x)x+D(x)[[y, x], x]D(x)x(3.14)

+h(x)D(y)x = 0, x, y ∈ R.

Putting yx instead of y in (3.9), we have

3f(x)[y, x]xD(x) + 3g(x)yxD(x) +D(x)[[y, x], x]xD(x)(3.15)

+h(x)D(y)x+ h(x)yD(x) = 0, x, y ∈ R.

From (3.14) and (3.15),

3f(x)[y, x]f(x) + 3g(x)yf(x) +D(x)[[y, x], x]f(x)(3.16)

−h(x)yD(x) = 0, x, y ∈ R.

Let y = D(x) in (3.16). Then we obtain

3f(x)3 + 3g(x)D(x)f(x) +D(x)g(x)f(x)(3.17)

+h(x)D(x)2 = 0, x, y ∈ R.

From (3.1),(3.6) and (3.17), we get

3f(x)3 = 0, x ∈ R.(3.18)

Since R is 3!-torsionfree, (3.18) yields

f(x)3 = 0, x ∈ R.(3.19)

Theorem 3.2. Let R be a 3!-torsionfree noncommutative semiprime
ring. Suppose there exists a Jordan derivation D : R −→ R such that

D(x)[[D(x), x], x] = 0

for all x ∈ R. Then we have D(x) = 0 for all x ∈ R.
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Proof. By Theorem 2.3, we can see that D is a derivation on R. From
the assumption,

D(x)[[D(x), x], x] = D(x)g(x) = D(x)[f(x), x] = 0, x ∈ R.(3.20)

Replacing x+ ty for x in (3.20), we have

D(x+ ty)[[D(x+ ty), x+ ty](3.21)

≡ D(x)[[D(x), x], x] + t{D(y)g(x) +D(x)[B(x, y), x]

+D(x)[f(x), y]}+ t2K1(x, y)

+t3K2(x, y) + t4D(y)g(y)

= 0, x, y ∈ R, t ∈ S3

where Ki, 1 ≤ i ≤ 3, denotes the term satisfying the identity (3.21).
From (3.20) and (3.21), we obtain

t{D(y)g(x) +D(x)[B(x, y), x] +D(x)[f(x), y]}(3.22)

+t2K1(x, y) + t3K2(x, y)

= 0, x, y ∈ R, t ∈ S3.

Since R is 3!-torsionfree, by Lemma 2.1 the relation (3.22) yields

D(y)g(x) +D(x)[B(x, y), x] +D(x)[f(x), y](3.23)

= 0, x, y ∈ R.

Let y = x2 in (3.23). Then using (3.20), we get

{D(x)x+ xD(x)}g(x) + 2D(x){[f(x)x+ xf(x), x]}(3.24)

+D(x)(g(x)x+ xg(x))

= D(x)xg(x) + xD(x)g(x) + 2D(x)g(x)x+ 2D(x)xg(x)

+D(x)g(x)x+D(x)xg(x)

= 4D(x)xg(x) + 3D(x)g(x)x+ xD(x)g(x)

= 4f(x)g(x) = −4D(x)h(x) = 0, x ∈ R.

Since R is 3!-torsion free, we obtain from (3.24)

f(x)g(x) = D(x)h(x) = 0, x ∈ R.(3.25)

Right multiplication of (3.23) by x leads to

D(y)g(x)x+D(x)[B(x, y), x]x+D(x)[f(x), y]x(3.26)

= 0, x, y ∈ R.
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Substituting yx for y in (3.23), we have

D(y)xg(x) + yD(x)g(x) +D(x)[B(x, y)x+ 2yf(x)(3.27)

+[y, x]D(x), x] +D(x)[f(x), y]x+D(x)yg(x)

= D(y)xg(x) + yD(x)g(x) +D(x)[B(x, y), x]x

+2D(x)yg(x) + 2D(x)[y, x]f(x) +D(x)[y, x]f(x)

+D(x)[[y, x], x]D(x) +D(x)[f(x), y]x+D(x)yg(x)

= D(y)xg(x) + yD(x)g(x) +D(x)[B(x, y), x]x

+3D(x)yg(x) + 3D(x)[y, x]f(x)

+D(x)[[y, x], x]D(x) +D(x)[f(x), y]x

= 0, x, y ∈ R.

From (3.20), (3.26) and (3.27), we arrive at

D(y)h(x) + 3D(x)yg(x) + 3D(x)[y, x]f(x)(3.28)

+D(x)[[y, x], x]D(x) = 0, x, y ∈ R.

Replacing D(x)y for y in (3.28), we obtain

D(x)D(y)h(x) +D2(x)yh(x) + 3D(x)2yg(x)(3.29)

+3D(x)2[y, x]f(x) + 3D(x)f(x)yf(x)

+D(x)2[[y, x], x]D(x) + 2D(x)f(x)[y, x]D(x)

+D(x)g(x)yD(x) = 0, x, y ∈ R.

Left multiplication of (3.28) by D(x) gives

D(x)D(y)h(x) + 3D(x)2yg(x) + 3D(x)2[y, x]f(x)(3.30)

+D(x)2[[y, x], x]D(x) = 0, x, y ∈ R.

From (3.29) and (3.30), it follows that

D2(x)yh(x) + 3D(x)f(x)yf(x) + 2D(x)f(x)[y, x]D(x)(3.31)

+D(x)g(x)yD(x) = 0, x, y ∈ R.

From (3.20) and (3.31), we get

D2(x)yh(x) + 3D(x)f(x)yf(x) + 2D(x)f(x)[y, x]D(x)(3.32)

+D(x)g(x)yD(x) = 0, x, y ∈ R.

Writing xy for y in (3.28), we arrived at

xD(y)h(x) +D(x)yh(x) + 3D(x)xyg(x) + 3D(x)x[y, x]f(x)(3.33)

+D(x)x[[y, x], x]D(x) = 0, x, y ∈ R.
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Left multiplication of (3.28) by x yields

xD(y)h(x) + 3xD(x)yg(x) + 3xD(x)[y, x]f(x)(3.34)

+xD(x)[[y, x], x]D(x) = 0, x, y ∈ R.

From (3.33) and (3.34), one obtains

D(x)yh(x) + 3f(x)yg(x) + 3f(x)[y, x]f(x)(3.35)

+f(x)[[y, x], x]D(x) = 0, x, y ∈ R.

Let y = D(x) in (3.35). Then we have

D(x)2h(x) + 3f(x)D(x)g(x) + 3f(x)3(3.36)

+f(x)g(x)D(x) = 0, x, y ∈ R.

From (3.20),(3.25) and (3.36), we get

3f(x)3 = 0, x ∈ R.(3.37)

Since R is 3!-torsionfree, (3.37) gives

f(x)3 = 0, x ∈ R.

Combining Vukman’s idea [12] with and Bres̆ar [2] and Kim’s idea [6],
we have the following theorem from the simple calculations.

Theorem 3.3. Let A be a Banach algebra. Suppose there exists a
continuous linear Jordan derivation D : A −→ A such that

[[D(x), x], x]D(x) ∈ rad(A)

for all x ∈ A. Then we have D(A) ⊆ rad(A).

Proof. It suffices to prove the case that A is noncommutative. By the
result of B.E. Johnson and A.M. Sinclair [5] any linear derivation on a
semisimple Banach algebra is continuous. Sinclair [9] has proved that
every continuous linear Jordan derivation on a Banach algebra leaves
the primitive ideals of A invariant. Hence for any primitive ideal P ⊆ A
one can introduce a derivation DP : A/P −→ A/P, where A/P is a
prime and factor Banach algebra, by DP (x̂) = D(x) + P, x̂ = x +
P. By the assumption that [[D(x), x], x]D(x) ∈ rad(A), x ∈ A, we
obtain [[DP (x̂), x̂], x̂]DP (x̂) = 0, x̂ ∈ A/P, since all the assumptions
of Theorem 3.1 is fulfilled. Let the factor prime Banach algebra A/P
be noncommutative. Then from Theorem 3.1 we have [DP (x̂), x̂]

3 =
0, x̂ ∈ A/P. Hence by using Theorem 2.4, we get DP (x̂) ∈ rad(A/P ) =
{0}, x̂ ∈ A/P. Thus we obtain D(x) ∈ P for all x ∈ A and all primitive
ideals P of A. HenceD(A) ⊆ rad(A). And we consider the case that A/P
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is commutative. Then since A/P is a commutative Banach semisimple
Banach algebra, from the result of B.E. Johnson and A.M. Sinclair [5],
it follows that DP (x̂) = 0, x̂ ∈ A/P. And so, D(x) ∈ P for all x ∈ A
and all primitive ideals P of A. Hence D(A) ⊆ rad(A). Therefore in any
case we obtain D(A) ⊆ rad(A).

The following theorem is similarly proved in the above proof of The-
orem 3.3.

Theorem 3.4. Let A be a (noncommutative) Banach algebra. Sup-
pose there exists a continuous linear Jordan derivation D : A −→ A
such that

D(x)[[D(x), x], x] ∈ rad(A)

for all x ∈ A. Then we have D(A) ⊆ rad(A).

Theorem 3.5. Let A be a semisimple Banach algebra. Suppose there
exists a linear Jordan derivation D : A −→ A such that

[[D(x), x], x]D(x) = 0

for all x ∈ A. Then we have D = 0.

Proof. It suffices to prove the case that A is noncommutative. Ac-
cording to the result of B.E. Johnson and A.M. Sinclair[5] every lin-
ear derivation on a semisimple Banach algebra is continuous. A.M.
Sinclair[9] proved that any continuous linear derivation on a Banach al-
gebra leaves the primitive ideals of A invariant. Hence for any primitive
ideal P ⊆ A one can introduce a derivation DP : A/P −→ A/P, where
A/P is a prime and factor Banach algebra, by DP (x̂) = D(x) + P, x̂ =
x + P. From the given assumptions [[D(x), x], x]D(x) = 0, x ∈ A, it
follows that [[DP (x̂), x̂], x̂]DP (x̂) = 0, x̂ ∈ A/P, since all the assump-
tions of Theorem 3.1 is fulfilled. The factor algebra A/P is noncom-
mutative, by Theorem 3.1 we have [DP (x̂), x̂]

3 = 0, x̂ ∈ A/P. Thus
we obtain [DP (x̂), x̂] ∈ Q(A/P ). Then by Theorem 2.4, we obtain
DP (x̂) ∈ rad(A/P ) = {0} for all x̂ ∈ A/P and all primitive ideals
P of A. That is, D(x) ∈ P for all x ∈ A and primitive ideals P in
A. Hence we get D(A) ⊆ P for all primitive ideals P of A. Therefore
D(A) ⊆ rad(A). But since A is semisimple, D = 0.

The following theorem is similarly proved in the above proof of the-
orem.

Theorem 3.6. Let A be a semisimple Banach algebra. Suppose there
exists a linear Jordan derivation D : A −→ A such that

D(x)[[D(x), x], x] = 0
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for all x ∈ A. Then we have D = 0.

As a special case of Theorem 3.3 we have the following result which
characterizes commutative semisimple Banach algebras.

Corollary 3.7. Let A be a semisimple Banach algebra. Suppose

[[[x, y], x], x][x, y] = 0

for all x, y ∈ A. In this case, A is commutative.

As a special case of Theorem 3.5 we get the following statement which
characterizes commutative semisimple Banach algebras.

Corollary 3.8. Let A be a semisimple Banach algebra. Suppose

[x, y][[[x, y], x], x] = 0

for all x, y ∈ A. In this case, A is commutative.
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