Browse > Article
http://dx.doi.org/10.4134/CKMS.c180095

SOME PROPERTIES OF STRONG CHAIN TRANSITIVE MAPS  

Barzanouni, Ali (Department of Mathematics School of Mathematical Sciences Hakim Sabzevari University)
Publication Information
Communications of the Korean Mathematical Society / v.34, no.3, 2019 , pp. 951-965 More about this Journal
Abstract
Let $f:X{\rightarrow}X$ be a continuous map on a compact metric space (X, d) and for an arbitrary $x{\in}X$, $${\mathcal{SC}}_d(x,f):=\{y{\mid}x{\text{ can be strong }}d-{\text{chain to }}y\}$$. We give an example to show that ${\mathcal{SC}}_d(x,f)$ is dependent on the metric d on X but it is a closed and f-invariant set. We prove that if ${\mathcal{SC}}_d(x,f){\supseteq}{\Omega}(f)$ or f has the asymptotic-average shadowing property, then ${\mathcal{SC}}_d(x,f)=X$. Also, we show that if f has the shadowing property, then ${\lim}\;{\sup}_{n{\in}{\mathbb{N}}}\{f^n\}={\mathcal{SC}}_d(f)$ where ${\mathcal{SC}}_d(f)=\{(x,y){\mid}y{\in}{\mathcal{SC}}_d(x,f)\}$. For each $n{\in}{\mathbb{N}}$, we give an example in which ${\mathcal{SCR}}_d(f^n){\neq}{\mathcal{SCR}}_d(f)$. In spite of it, we prove that if $f^{-1}:(X,d){\rightarrow}(X,d)$ is an equicontinuous map, then ${\mathcal{SCR}}_d(f^n)={\mathcal{SCR}}_d(f)$ for all $n{\in}{\mathbb{N}}$.
Keywords
(strong) chain recurrence; (strong) chain transitive map;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. M. Corless and S. Yu. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), no. 2, 409-423. https://doi.org/10.1006/jmaa.1995.1027   DOI
2 R. Easton, Chain transitivity and the domain of in uence of an invariant set, in The structure of attractors in dynamical systems (Proc. Conf., North Dakota State Univ., Fargo, N.D., 1977), 95-102, Lecture Notes in Math., 668, Springer, Berlin.
3 A. Fakhari, F. H. Ghane, and A. Sarizadeh, Some properties of the strong chain recurrent set, Commun. Korean Math. Soc. 25 (2010), no. 1, 97-104. https://doi.org/10.4134/CKMS.2010.25.1.097   DOI
4 A. Fathi and P. Pageault, Aubry-Mather theory for homeomorphisms, Ergodic Theory Dynam. Systems 35 (2015), no. 4, 1187-1207. https://doi.org/10.1017/etds.2013.107   DOI
5 J. Franks, A variation on the Poincare-Birkhoff theorem, in Hamiltonian dynamical systems (Boulder, CO, 1987), 111-117, Contemp. Math., 81, Amer. Math. Soc., Providence, RI, 1988. https://doi.org/10.1090/conm/081/986260
6 R. Gu, The asymptotic average shadowing property and transitivity, Nonlinear Anal. 67 (2007), no. 6, 1680-1689. https://doi.org/10.1016/j.na.2006.07.040   DOI
7 M. Mazur, Weak shadowing for discrete dynamical systems on nonsmooth mani-folds, J. Math. Anal. Appl. 281 (2003), no. 2, 657-662. https://doi.org/10.1016/S0022-247X(03)00186-0   DOI
8 R. Potrie, Recurrence of non-resonant homeomorphisms on the torus, Proc. Amer. Math. Soc. 140 (2012), no. 11, 3973-3981. https://doi.org/10.1090/S0002-9939-2012-11249-3
9 D. Richeson and J. Wiseman, Chain recurrence rates and topological entropy, Topology Appl. 156 (2008), no. 2, 251-261. https://doi.org/10.1016/j.topol.2008.07.005   DOI
10 J. Wiseman, The generalized recurrent set and strong chain recurrence, Ergodic Theory Dynam. Systems 38 (2018), no. 2, 788-800. https://doi.org/10.1017/etds.2016.35   DOI
11 K. Yokoi, On strong chain recurrence for maps, Ann. Polon. Math. 114 (2015), no. 2, 165-177. https://doi.org/10.4064/ap114-2-6   DOI