THE RESULTS CONCERNING JORDAN DERIVATIONS

Byung Do Kim*

Abstract

Let R be a 3!-torsion free semiprime ring, and let D : $R \rightarrow R$ be a Jordan derivation on a semiprime ring R. In this case, we show that $[D(x), x] D(x)=0$ if and only if $D(x)[D(x), x]=0$ for every $x \in R$. In particular, let A be a Banach algebra with $\operatorname{rad}(A)$. If D is a continuous linear Jordan derivation on A, then we see that $[D(x), x] D(x) \in \operatorname{rad}(A)$ if and only if $[D(x), x] D(x) \in \operatorname{rad}(A)$ for all $x \in A$.

1. Introduction

Throughout, R represents an associative ring and A will be a real or complex Banach algebra. We write $[x, y]$ for the commutator $x y-y x$ for x, y in a ring. Let $\operatorname{rad}(R)$ denote the (Jacobson) radical of a ring R. And a ring R is said to be (Jacobson) semisimple if its Jacobson radical $\operatorname{rad}(R)$ is zero. See [1] for the more details.

A ring R is called n-torsion free if $n x=0$ implies $x=0$. Recall that R is prime if $a R b=(0)$ implies that either $a=0$ or $b=0$, and is semiprime if $a R a=(0)$ implies $a=0$.

An additive mapping D from R to R is called a derivation if $D(x y)=$ $D(x) y+x D(y)$ holds for all $x, y \in R$. And an additive mapping D from R to R is called a Jordan derivation if $D\left(x^{2}\right)=D(x) x+x D(x)$ holds for all $x \in R$.

Johnson and Sinclair [4] proved that any linear derivation on a semisimple Banach algebra is continuous. A result of Singer and Wermer [5] states that every continuous linear derivation on a commutative Banach algebra maps the algebra into its radical. From these two results, we can conclude that there are no nonzero linear derivations on a commutative semisimple Banach algebra.

[^0]Vukman [7] proved the following: let R be a 2 -torsion free prime ring. If $D: R \longrightarrow R$ is a derivation such that $[D(x), x] D(x)=0$ for all $x \in R$, then $D=0$.

Moreover, using the above result, he proved that the following holds: let A be a noncommutative semisimple Banach algebra. Suppose that $[D(x), x] D(x)=0$ holds for all $x \in A$. In this case, $D=0$.

In this paper, our first aim is to prove the following result in the ring theory in order to apply it to the Banach algebra theory:
let R be a 3 !-torsion free semiprime ring, and let $D: R \rightarrow R$ be a Jordan derivation on a semiprime ring R. In this case, we show that $[D(x), x] D(x)=0$ if and only if $D(x)[D(x), x]=0$ for every $x \in R$. In particular, let A be a Banach algebra with $\operatorname{rad}(A)$ and if D is a continuous linear Jordan derivation on A, then we see that $[D(x), x] D(x) \in \operatorname{rad}(A)$ if and only if $[D(x), x] D(x) \in \operatorname{rad}(A)$ for all $x \in A$.

2. Preliminaries

The following lemma is due to Chung and Luh [3].
Lemma 2.1. Let R be a n !-torsion free ring. Suppose there exist elements $y_{1}, y_{2}, \cdots, y_{n-1}, y_{n}$ in R such that $\sum_{k=1}^{n} t^{k} y_{k}=0$ for all $t=$ $1,2, \cdots, n$. Then we have $y_{k}=0$ for every positive integer k with $1 \leq$ $k \leq n$.

The following theorem is due to Bres̆ar [2].
Theorem 2.2. Let R be a 2-torsion free semiprime ring and let D : $R \longrightarrow R$ be a Jordan derivation. In this case, D is a derivation.

And the following theorem is proved by Vukman in [7] under the condition of the prime ring R.

Theorem 2.3. Let R be a 3!-torsionfree prime ring. Let $D: R \longrightarrow R$ be a Jordan derivation on R. In this case, we see that if $[D(x), x] D(x)=0$ for every $x \in R$, then $D(x)=0$ for all $x \in R$

3. Main results

We need the following notations. After this, by S_{m} we denote the set $\{k \in \mathbb{N} \mid 1 \leq k \leq m\}$ where m is a positive integer. When R is a
ring, we shall denote the maps $B: R \times R \longrightarrow R, f, g: R \longrightarrow R$ by $B(x, y) \equiv[D(x), y]+[D(y), x], f(x) \equiv[D(x), x], g(x) \equiv[f(x), x]$ for all $x, y \in R$ respectively. And we have the basic properties:

$$
\begin{aligned}
& B(x, y)=B(y, x) \\
& B(x, y z)=B(x, y) z+y B(x, z)+D(y)[z, x]+[y, x] D(z)
\end{aligned}
$$

for all $x, y \in R$ and $z \in R$.
Theorem 3.1. Let R be a 3!-torsionfree semiprime ring. Let D : $R \longrightarrow R$ be a Jordan derivation on R. In this case, it follows that

$$
[D(x), x] D(x)=0 \Leftrightarrow D(x)[D(x), x]=0
$$

for every $x \in R$.
Proof. (Necessity)
It is sufficient to prove the noncommutative case of R.
Assume that

$$
\begin{equation*}
[D(x), x] D(x)=f(x) D(x)=0, x \in R . \tag{3.1}
\end{equation*}
$$

Replacing $x+t y$ for x in (3.1), we have

$$
\begin{align*}
& {[D(x+t y), x+t y] D(x+t y)} \\
& \equiv f(x) D(x)+t\{B(x, y) D(x)+f(x) D(y)\}+t^{2} H(x, y) \\
& +t^{3} f(y) D(y)=0, x, y \in R, t \in S_{2} \tag{3.2}
\end{align*}
$$

where H denotes the term satisfying the identity (3.2).
From (3.1) and (3.2), we obtain

$$
\begin{align*}
& t\{B(x, y) D(x)+f(x) D(y)\}+t^{2} H(x, y) \\
& =0, x, y \in R, t \in S_{2} . \tag{3.3}
\end{align*}
$$

Since R is 2 !-torsionfree, by Lemma 2.1 the relation (3.3) yields

$$
\begin{equation*}
B(x, y) D(x)+f(x) D(y)=0, x, y \in R . \tag{3.4}
\end{equation*}
$$

Writing $y x$ for y in (3.4), we get

$$
\begin{align*}
& B(x, y x) D(x)+f(x) D(y x) \\
& =B(x, y) x D(x)+2 y f(x) D(x)+[y, x] D(x)^{2}+f(x) D(y) x \\
& +f(x) y D(x)=0, x, y \in R . \tag{3.5}
\end{align*}
$$

From (3.1) and (3.5), we obtain

$$
\begin{align*}
& B(x, y) x D(x)+[y, x] D(x)^{2}+f(x) D(y) x+f(x) y D(x) \\
& =0, x, y \in R . \tag{3.6}
\end{align*}
$$

Right multiplication of (3.4) by x leads to

$$
\begin{equation*}
B(x, y) D(x) x+f(x) D(y) x=0, x, y \in R \tag{3.7}
\end{equation*}
$$

From (3.6) and (3.7), we arrive at

$$
\begin{equation*}
-B(x, y) f(x)+[y, x] D(x)^{2}+f(x) y D(x)=0, x, y \in R \tag{3.8}
\end{equation*}
$$

Substituting $x y$ for y in (3.8), we have

$$
\begin{align*}
& -x B(x, y) f(x)-2 f(x) y f(x)-D(x)[y, x] f(x) \\
& +x[y, x] D(x)^{2}+f(x) x y D(x)=0, x, y \in R . \tag{3.9}
\end{align*}
$$

Left multiplication of (3.8) by x yields
(3.10) $-x B(x, y) f(x)+x[y, x] D(x)^{2}+x f(x) y D(x)=0, x, y \in R$.

From (3.9) and (3.10), we obtain

$$
\begin{equation*}
-2 f(x) y f(x)-D(x)[y, x] f(x)+g(x) y D(x)=0, x, y \in R \tag{3.11}
\end{equation*}
$$

Putting $D(x) y$ instead of y in (3.11), we get

$$
\begin{align*}
& -2 f(x) D(x) y f(x)-D(x)^{2}[y, x] f(x)-D(x) f(x) y f(x) \\
& +g(x) D(x) y D(x)=0, x, y \in R \tag{3.12}
\end{align*}
$$

From (3.1) and (3.12), we have

$$
\begin{align*}
& -D(x)^{2}[y, x] f(x)-D(x) f(x) y f(x)+g(x) D(x) y D(x) \\
& =0, x, y \in R \tag{3.13}
\end{align*}
$$

Left multiplication of (3.12) by $D(x)$ gives

$$
\begin{align*}
& -2 D(x) f(x) y f(x)-D(x)^{2}[y, x] f(x)+D(x) g(x) y D(x) \\
& =0, x, y \in R \tag{3.14}
\end{align*}
$$

From (3.1) and (3.14), we arrive at

$$
\begin{align*}
& D(x) f(x) y f(x)+(g(x) D(x)-D(x) g(x)) y D(x) \\
& =0, x, y \in R . \tag{3.15}
\end{align*}
$$

Right multiplication of (3.15) by $D(x)$ leads to

$$
\begin{align*}
& D(x) f(x) y f(x) D(x)+(g(x) D(x)-D(x) g(x)) y D(x)^{2} \\
& =0, x, y \in R \tag{3.16}
\end{align*}
$$

From (3.1) and (3.16), we obtain

$$
\begin{equation*}
(g(x) D(x)-D(x) g(x)) y D(x)^{2}=0, x, y \in R \tag{3.17}
\end{equation*}
$$

Writing $y D(x)$ for y in (3.15), we have

$$
\begin{align*}
& D(x) f(x) y D(x) f(x)+(g(x) D(x)-D(x) g(x)) y D(x)^{2} \\
& =0, x, y \in R . \tag{3.18}
\end{align*}
$$

From (3.17) and (3.18), we get

$$
\begin{equation*}
D(x) f(x) y D(x) f(x)=0, x, y \in R . \tag{3.19}
\end{equation*}
$$

Since R is semiprime, (3.19) gives

$$
D(x) f(x)=0, x \in R .
$$

Therefore the necessity is proved.
The inverse statement is symmetrically proved in the expressions proved.
(Sufficiency)
Suppose

$$
\begin{equation*}
D(x)[D(x), x]=D(x) f(x)=0, x \in R . \tag{3.20}
\end{equation*}
$$

Replacing $x+t y$ for x in (3.20), we have

$$
\begin{aligned}
& D(x+t y)[D(x+t y), x+t y] \\
& \equiv D(x) f(x)+t\{D(y) f(x)+D(x) B(x, y)\}+t^{2} I(x, y) \\
& +t^{3} D(y) f(y)=0, x, y \in R, t \in S_{2}
\end{aligned}
$$

where I denotes the term satisfying the identity (3.21).
From (3.20) and (3.21), we obtain

$$
\begin{align*}
& t\{D(y) f(x)+D(x) B(x, y)\}+t^{2} I(x, y) \\
& =0, x, y \in R, t \in S_{2} . \tag{3.22}
\end{align*}
$$

Since R is 2 !-torsionfree, by Lemma 2.1 the relation (3.22) yields

$$
\begin{equation*}
D(y) f(x)+D(x) B(x, y)=0, x, y \in R . \tag{3.23}
\end{equation*}
$$

Writing $x y$ for y in (3.23), we get

$$
\begin{align*}
& x D(y) f(x)+D(x) y f(x)+D(x) x B(x, y)+2 D(x) f(x) y \\
& +D(x)^{2}[y, x]=0, x, y \in R . \tag{3.24}
\end{align*}
$$

From (3.20) and (3.24), it follows from that

$$
\begin{align*}
& x D(y) f(x)+D(x) y f(x)+D(x) x B(x, y)+D(x)^{2}[y, x] \\
& =0, x, y \in R . \tag{3.25}
\end{align*}
$$

Left multiplication of (3.23) by x leads to

$$
\begin{equation*}
x D(y) f(x)+x D(x) B(x, y)=0, x, y \in R . \tag{3.26}
\end{equation*}
$$

From (3.25) and (3.26), we get

$$
\begin{equation*}
D(x) y f(x)+f(x) B(x, y)+D(x)^{2}[y, x]=0, x, y \in R . \tag{3.27}
\end{equation*}
$$

Right multiplication of (3.27) by x yields

$$
\begin{equation*}
D(x) y f(x) x+f(x) B(x, y) x+D(x)^{2}[y, x] x=0, x, y \in R . \tag{3.28}
\end{equation*}
$$

Replacing $y x$ for y in (3.27), we have

$$
D(x) y x f(x)+f(x) B(x, y) x+2 f(x) y f(x)+f(x)[y, x] D(x)
$$

(3.29) $\quad+D(x)^{2}[y, x] x=0, x, y \in R$.

From (3.28) and (3.29), we obtain
(3.30) $D(x) y g(x)-2 f(x) y f(x)-f(x)[y, x] D(x)=0, x, y \in R$.

Right multiplication of (3.30) by $D(x)$ gives

$$
\begin{align*}
& D(x) y g(x) D(x)-2 f(x) y f(x) D(x)-f(x)[y, x] D(x)^{2} \\
& =0, x, y \in R . \tag{3.31}
\end{align*}
$$

Putting $y D(x)$ instead of y in (3.30), it is obvious that

$$
\begin{align*}
& D(x) y D(x) g(x)-2 f(x) y D(x) f(x)-f(x)[y, x] D(x)^{2} \\
& -f(x) y f(x) D(x)=0, x, y \in R . \tag{3.32}
\end{align*}
$$

From (3.20) and (3.32), we have

$$
\begin{align*}
& D(x) y D(x) g(x)-f(x)[y, x] D(x)^{2}-f(x) y f(x) D(x) \\
& =0, x, y \in R . \tag{3.33}
\end{align*}
$$

From (3.31) and (3.33), we get

$$
\begin{align*}
& D(x) y\{g(x) D(x)-D(x) g(x)\}-f(x) y f(x) D(x) \\
& =0, x, y \in R . \tag{3.34}
\end{align*}
$$

Left multiplication of (3.34) by $D(x)$ leads to

$$
\begin{align*}
& D(x)^{2} y\{g(x) D(x)-D(x) g(x)\}-D(x) f(x) y f(x) D(x) \\
& =0, x, y \in R . \tag{3.35}
\end{align*}
$$

From (3.20) and (3.35), we obtain

$$
\begin{equation*}
D(x)^{2} y\{g(x) D(x)-D(x) g(x)\}=0, x, y \in R . \tag{3.36}
\end{equation*}
$$

Substituting $D(x) y$ for y in (3.34), we have

$$
\begin{align*}
& D(x)^{2} y\{g(x) D(x)-D(x) g(x)\}-f(x) D(x) y f(x) D(x) \\
& =0, x, y \in R . \tag{3.37}
\end{align*}
$$

From (3.36) and (3.37), we obtain

$$
\begin{equation*}
f(x) D(x) y f(x) D(x)=0, x, y \in R \tag{3.38}
\end{equation*}
$$

Since R is semiprime, (3.38) gives

$$
f(x) D(x)=0, x \in R .
$$

Therefore the sufficiency is proved.
We obtain the equivalent property of continuous Jordan derivations on Banach algebras as the application to the Banach algebra theory.

Theorem 3.2. Let A be a Banach algebra with $\operatorname{rad}(A)$. Let D : $A \longrightarrow A$ be a continuous linear Jordan derivation. Then we obtain

$$
[D(x), x] D(x) \in \operatorname{rad}(A) \Longleftrightarrow D(x)[D(x), x] \in \operatorname{rad}(A)
$$

for every $x \in A$.
Proof. It suffices to prove the case that A is noncommutative. By the result of B.E. Johnson and A.M. Sinclair [4] any linear derivation on a semisimple Banach algebra is continuous. Sinclair [5] has proved that every continuous linear Jordan derivation on a Banach algebra leaves the primitive ideals of A invariant. Hence for any primitive ideal $P \subseteq A$ one can introduce a derivation $D_{P}: A / P \longrightarrow A / P$, where A / P is a prime and factor Banach algebra, by $D_{P}(\hat{x})=D(x)+P, \hat{x}=x+P$. By the assumption that $[D(x), x] D(x) \in \operatorname{rad}(A), x \in A$, we obtain $\left[D_{P}(\hat{x}), \hat{x}\right] D_{P}(\hat{x})=0 \Longleftrightarrow D_{P}(\hat{x})\left[D_{P}(\hat{x}), \hat{x}\right]=0, \hat{x} \in A / P$, since all the assumptions of Theorem 3.1 are fulfilled. Thus we see that

$$
[D(x), x] D(x) \in P \Longleftrightarrow D(x)[D(x), x] \in P
$$

for every $x \in A$ and all primitive ideals of A. Therefore we conclude that

$$
[D(x), x] D(x) \in \operatorname{rad}(A) \Longleftrightarrow D(x)[D(x), x] \in \operatorname{rad}(A)
$$

for every $x \in A$.
As a special case of Theorem 3.2 we get the following result which characterizes commutative semisimple Banach algebras.

Corollary 3.3. Let A be a semisimple Banach algebra. Then we have

$$
[[y, x], x]][y, x]=0 \Longleftrightarrow[y, x][[y, x], x]=0
$$

for every $x, y \in A$.

Acknowledgment

The author wishes to thank the referees for their valuable comments.

References

[1] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-HeidelbergNew York, 1973.
[2] M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 1988, no. 4, 1003-1006.
[3] L.O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 1981, no. 4, 415-421.
[4] B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 1968, 1067-1073.
[5] A. M. Sinclair, Jordan homohorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 1970, 209-214.
[6] I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 1955, 260-264.
[7] J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glasnik Math. 26 1991, 83-88.
*
Department of Mathematics
Gangneung-Wonju National University
Gangneung 25457, Republic of Korea
E-mail: bdkim@gwnu.ac.kr

[^0]: Received March 10, 2016; Accepted October 17, 2016.
 2010 Mathematics Subject Classification: Primary 16N60, 16W25, 17B40.
 Key words and phrases: Banach algebra, Jordan derivation, prime and semiprime ring, (Jacobson) radical.

