STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K, M a torsion-free D-module, X an indeterminate, and $N_v = \{f \in D[X] \mid c(f)_v = D\}$. Let $q(M) = M \otimes_D K$ and $M_{w_D} = \{x \in q(M) \mid xJ \subseteq M \text{ for a nonzero finitely generated ideal <math>J$ of D with $J_v = D\}$. In this paper, we show that $M_{w_D} = M[X]_{N_v} \cap q(M)$ and $(M[X])_{w_{D[X]}} \cap q(M)[X] = M_{w_D}[X] = M[X]_{N_v} \cap q(M)[X]$. Using these results, we prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module. This is a generalization of the fact that D is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain.

0. Introduction

Let R be a commutative ring with identity. For any R-module A, let

$$A[X] = \{m_0 + m_1 X + \dots + m_k X^k \mid m_i \in A\}$$

be the set of all polynomials in X with coefficients in A. Then $A[X] = A \otimes_R R[X]$. For all $f = m_0 + m_1 X + \dots + m_k X^k$ and $g = n_0 + n_1 X + \dots + n_l X^l$ in A[X] with $k \leq l$ and $h = a_0 + a_1 X + \dots + a_n X^n$ in R[X], define the addition of f, g and the scalar product of f and h by the obvious way:

$$f + g = (m_0 + n_0) + (m_1 + n_1)X + \dots + (m_k + n_k)X^{\kappa}$$
$$+ n_{k+1}X^{k+1} + \dots + n_lX^l,$$
$$gf = \sum_{i=1}^{k+n} c_iX^i, \text{ where } c_i = \sum_{j+s=i} a_jm_s.$$

It is routine to check that A[X] is an R[X]-module [2, Exercise 6, page 32]. Let $f = m_0 + m_1 X + \cdots + m_k X^k \in A[X]$. As in the case of polynomial rings, we define " $f = 0 \Leftrightarrow m_0 = m_1 = \cdots = m_k = 0$ ", and we also say that if $m_k \neq 0$, then m_k is the leading coefficient of f and k is the degree of fdenoted by deg(f) (For convenience, we let deg $(0) = -\infty$). The *content* of a

 $\bigodot 2013$ The Korean Mathematical Society

Received May 6, 2012; Revised May 4, 2013.

²⁰¹⁰ Mathematics Subject Classification. 13A15.

Key words and phrases. polynomial module, Noetherian module, strong Mori module.

polynomial $f \in A[X]$, denoted by c(f), is the *R*-submodule of *A* generated by the coefficients of *f*, i.e., $c(f) = \sum_{i=0}^{k} Rm_i$.

Let S_1 be a (saturated) multiplicative subset of R with $0 \notin S_1$. The localization A_{S_1} of A with respect to S_1 is defined obviously, and so A_{S_1} is an R_{S_1} -module. If P is a prime ideal of R, we write A_P for $A_{R\setminus P}$. We say that A is an S_1 -torsion-free module if sa = 0 for $s \in S_1$ and $a \in A$ implies a = 0. Clearly, if A is torsion-free, then A is S-torsion-free for any multiplicative subset S of Rwith $0 \notin S$. Note that the set $\{m \in A \mid sm = 0 \text{ for some } s \in S_1\}$ is the kernel of the canonical R-module homomorphism $\alpha : A \to A_{S_1}$ given by $m \mapsto \frac{m}{1}$. So if A is an S_1 -torsion-free module, then α is injective, and hence A can be considered as an R-submodule of A_{S_1} ; in this case, we write $m = s \cdot \frac{m}{s} \in A$ and " $\frac{m}{s} = \frac{m'}{s} \Leftrightarrow sm' = s'm$ " for any $s, s' \in S_1$ and $m, m' \in A$.

and " $\frac{m}{s} = \frac{m'}{s'} \Leftrightarrow sm' = s'm$ " for any $s, s' \in S_1$ and $m, m' \in A$. Let D be an integral domain with quotient field K. For any nonzero fractional ideal I of D, define $I_v = (I^{-1})^{-1}$, where $I^{-1} = \{x \in K \mid xI \subseteq D\}$, and let $I_t = \bigcup \{J_v \mid J \subseteq I \text{ is a nonzero finitely generated ideal of } D\}$ and $I_w = \{x \in K \mid xJ \subseteq I \text{ for a nonzero finitely generated ideal } J \text{ of } D \text{ with } J^{-1} = D\}$. Let * = v, t or w. We say that I is a *-ideal if $I = I_*$. Clearly, $I_w \subseteq I_t \subseteq I_v$, and hence v-ideals are t-ideals and t-ideals are w-ideals. Let *-Max(D) denote the set of *-ideals maximal among proper integral *-ideals of D. It is known that w-Max(D) = t-Max(D) and $I_w = \cap_{P \in t - \text{Max}(D)} ID_P$ [1, Corollary 2.13]. Also, t-Max $(D) \neq \emptyset$ if D is not a field. For any undefined concepts and notations, see [2], [4] or [9].

Let M be a torsion-free D-module and $q(M) = M \otimes_D K$, which is the injective envelope of M. Let GV(D) be the set of nonzero finitely generated ideals J of D with $J_v = D$. As in [10, Definition 3], we define $M_{w_D} = \{x \in$ $q(M) \mid Jx \subseteq M$ for some $J \in GV(D)$ (If there is no confusion, we simply denote w_D by w). Then M_w is a D-submodule of q(M) and $(M_w)_w = M_w$ [10, Section 2]. We say that M is a w_D -module (simply, w-module) if $M = M_w$; so M_w is a w-module. A w-module M is called a strong Mori module if M satisfies the ascending chain condition on w-submodules of M, while D is a strong Mori domain if D is a strong Mori module. Clearly, Noetherian modules are strong Mori modules. Conversely, if each maximal ideal of D is a t-ideal (e.g., onedimensional integral domain), then $N_w = N$ for all D-submodules N of M, and thus a strong Mori module is a Noetherian module. Also, M is a strong Mori D-module if and only if every w-submodule N of M is of finite type, i.e., $N = (\sum_{i=1}^{k} Dm_i)_w$ for some $m_1, \ldots, m_k \in N$ [10, Theorem 4.4]. It is known that A is a Noetherian R-module if and only if A[X] is a Noetherian R[X]module [2, Exercise 10, page 85]. Also, if we set $S = \{f \in R[X] \mid c(f) = R\}$, then S is a regular multiplicative subset of R[X] [4, Proposition 33.1]. So if R is a Noetherian ring, then R[X], and thus $R[X]_S$ is a Noetherian ring. Conversely, if I is an ideal of R, then $IR[X]_S \cap R = I$ [4, Proposition 33.1]; so I is finitely generated when $IR[X]_S$ is finitely generated. Thus, R is a Noetherian ring if

and only if $R[X]_S$ is a Noetherian ring. The purpose of this paper is to extend these results to strong Mori modules.

More precisely, let X be an indeterminate and $N_v = \{f \in D[X] \mid c(f)_v = D\}$. In Section 1, we show that A is a Noetherian R-module if and only if $A[X]_S$ is a Noetherian $R[X]_S$ -module, where $S = \{f \in R[X] \mid c(f) = R\}$. Next, in Section 2, we show that $M_{w_D} = M[X]_{N_v} \cap q(M)$ and $(M[X])_{w_{D[X]}} \cap q(M)[X] = M_{w_D}[X] = M[X]_{N_v} \cap q(M)[X]$. Then we use these results to prove that M is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and only if $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$ -module. As a corollary, we have that if $0 \to M' \to M \to M'' \to 0$ is an exact sequence of torsion-free D-modules, then M is a strong Mori module if and only if M is a strong Mori D-module, then a D-module homomorphism $\phi : M \to M$ is surjective if and only if ϕ is bijective.

1. Hilbert basis theorem and Noetherian modules

Throughout this section, R denotes a commutative ring with identity, A is an R-module, X is an indeterminate, and $S = \{f \in R[X] \mid c(f) = R\}$.

The Hilbert basis theorem states that R is a Noetherian ring if and only if R[X] is a Noetherian ring. As the module analog, it is known that A is a Noetherian R-module if and only if A[X] is a Noetherian R[X]-module [2, Exercise 10, page 85], which implies the Hilbert basis theorem because R (resp., R[X]) is an R-module (resp., R[X]-module). Also, R is a Noetherian ring if and only if $R[X]_S$ is a Noetherian ring. In this section, we extend this result to Noetherian modules.

Lemma 1.1. Let S_1 be a multiplicative subset of R, and assume that A is an S_1 -torsion-free module.

- (1) If N is an R_{S_1} -submodule of A_{S_1} , then $N = (N \cap A)_{S_1}$.
- (2) If A is a Noetherian R-module, then A_{S_1} is a Noetherian R_{S_1} -module.

Proof. (1) Clearly, $(N \cap A)_{S_1} \subseteq N$. For the reverse, let $x \in N \subseteq A_{S_1}$, and so $x = \frac{m}{s}$ for some $m \in A$ and $s \in S_1$. As we noted in the introduction, A can be considered as an R-submodule of A_{S_1} ; so $sx = m \in N \cap A$. Hence $x \in (N \cap A)_{S_1}$. Thus $N \subseteq (N \cap A)_{S_1}$.

(2) Let N be an R_{S_1} -submodule of A_{S_1} ; then $N = (N \cap A)_{S_1}$ by (1). Since $N \cap A$ is an R-submodule of A, there exist some $n_1, \ldots, n_k \in N \cap A$ such that $N \cap A = \sum_{i=1}^k Rn_i$ [2, Proposition 6.2], and hence $N = (N \cap A)_{S_1} = \sum_{i=1}^k R_{S_1}n_i$. Thus A_{S_1} is a Noetherian R_{S_1} -module [2, Proposition 6.2]. \Box

Lemma 1.2. Let N be an R[X]-submodule of A[X] and let N_k be the set of leading coefficients of polynomials of degree $\leq k$ in N. Then N_k is an R-submodule of A.

Proof. Let $a, b \in N_k$, and let $f, g \in A[X]$ such that $\deg(f) \leq \deg(g) \leq k$ and a, b are the leading coefficients of f, g, respectively. Clearly, $N_k \subseteq A$. Since

A[X] is an R[X]-module, we have $h := X^{\deg(g) - \deg(f)} f \pm g \in A[X]$ and $\deg(h) \leq \deg(g) \leq k$. If $a \pm b = 0$, then $a \pm b \in N_{-\infty} \subseteq N_k$. If $a \pm b \neq 0$, then $a \pm b$ is the leading coefficient of h, and hence $a \pm b \in N_k$. Thus N_k is a subgroup of A. Next, if $r \in R$, then $rf \in A[X]$. If ra = 0, then $ra \in N_k$. If $ra \neq 0$, then ra is the leading coefficient of rf and $\deg(rf) = \deg(f) \leq k$; so $ra \in N_k$. Thus N_k is an R-submodule of A.

The Dedekind-Mertens lemma states that if $f, g \in R[X]$ with $\deg(g) = m$, then $c(f)^{m+1}c(g) = c(f)^m c(fg)$ (see, for example, [4, Theorem 28.1]). The next result is the module analog, whose proof is the same as that of [4, Theorem 28.1].

Proposition 1.3 ([9, Theorem 1.8.11]). If $f \in R[X]$ and $g \in A[X]$, then $c(f)^{m+1}c(g) = c(f)^m c(fg)$ for some integer $m \ge 1$.

We next give the main result of this section. For easy reference of the reader, we also give the proof of the fact that A is a Noetherian R-module if and only if A[X] is a Noetherian R[X]-module.

Theorem 1.4. For any R-module A, the following statements are equivalent.

- (1) A is a Noetherian R-module.
- (2) A[X] is a Noetherian R[X]-module.
- (3) $A[X]_S$ is a Noetherian $R[X]_S$ -module, where $S = \{f \in R[X] \mid c(f) = R\}$.

Proof. (1) ⇒ (2) It suffices to show that every submodule of A[X] is finitely generated. Let *B* be an R[X]-submodule of A[X], and let N_k be the set of leading coefficients of polynomials in *B* of degree $\leq k$. Then N_k is an *R*submodule of *A* by Lemma 1.2 and $N_0 \subseteq N_1 \subseteq N_2 \subseteq \cdots \subseteq A$. Let $N = \bigcup_{k\geq 1}N_k$. Since *A* is a Noetherian *R*-module, all the N_k and *N* are finitely generated *R*-submodules of *A*. Let $f_1, \ldots, f_n \in B$ such that $f_i = a_i X^{r_i} + (\text{lower}$ terms) and $N = \sum_{i=1}^n Ra_i$. Let $r = \max\{r_1, \ldots, r_n\}$. For each *j* from 1 to r - 1, pick $g_{j1}, \ldots, g_{jk_j} \in B$ such that $g_{ji} = b_{ji} X^{r_{ji}} + (\text{lower terms})$ and $N_j = \sum_{i=1}^{k_j} Rb_{ji}$.

Let $f = aX^m + (\text{lower terms}) \in B$; then $a \in N$, and hence $a = u_1a_1 + u_2a_2 + \cdots + u_na_n$ for some $u_i \in R$. If $m \ge r$, then $f - \sum_{i=1}^n u_i X^{m-r_i} f_i \in B$ and has degree $\le m - 1$. Repeating this process, we have polynomials $h_i \in R[X]$ such that $h^{(0)} := f - \sum_{i=1}^n h_i f_i \in B$ and $\deg(h^{(0)}) = k_{h^{(0)}} \le r - 1$. Next, note that the leading coefficient of $h^{(0)}$ is in $N_{k_{h^{(0)}}}$; so there are polynomials $h'_i \in R[X]$ such that $h^{(1)} := h^{(0)} - \sum_i h'_i g_{k_{h^{(0)}i}} \in B$ and $\deg(h^{(1)}) \le k_{h^{(0)}} - 1$. This process continues until $h^{(i)} = 0$, because $\deg(h^{(0)}) > \deg(h^{(1)}) > \deg(h^{(2)}) > \cdots \ge 0$ cannot contain more than $\deg(h^{(0)})$ integers. Hence $f \in \sum_{i=1}^n R[X]f_i + \sum_{j,i} R[X]g_{ji}$. Thus we have $B = \sum_{i=1}^n R[X]f_i + \sum_{j,i} R[X]g_{ji}$. (2) \Rightarrow (3) Let $f \in S$ and $g \in A[X]$ such that fg = 0. Then, since c(f) = R,

 $(2) \Rightarrow (3)$ Let $f \in S$ and $g \in A[X]$ such that fg = 0. Then, since c(f) = R, by Proposition 1.3 we have c(g) = c(fg) = (0); so g = 0. Hence A[X] is Storsion-free, and thus by Lemma 1.1(2), $A[X]_S$ is a Noetherian $R[X]_S$ -module.

 $(3) \Rightarrow (1)$ Suppose that N is an R-submodule of A. Then N[X] is an R[X]-submodule of A[X], and hence $N[X]_S$ is an $R[X]_S$ -submodule of $A[X]_S$. Let $f_1, \ldots, f_k \in N[X]$ such that $N[X]_S = \sum_{i=1}^k R[X]_S f_i$. Note that $N \subseteq N[X]_S$; so if $a \in N$, then there exist polynomials $h_1, \ldots, h_k \in R[X]$ and $g_1, \ldots, g_k \in S$ such that $a = \sum_{i=1}^k \frac{h_i}{g_i} f_i \in (\sum_{i=1}^k c(f_i))[X]_S \subseteq N[X]_S$. So $a \in \sum_{i=1}^k c(f_i)$. Hence $N \subseteq \sum_{i=1}^k c(f_i)$, and thus $N = \sum_{i=1}^k c(f_i)$. Thus N is finitely generated, so A is a Noetherian R-module [2, Proposition 6.2].

2. Strong Mori modules

Let D denote an integral domain with quotient field K, M a torsion-free Dmodule, $q(M) = M \otimes_D K$, X an indeterminate, $N_v = \{f \in D[X] \mid c(f)_v = D\}$.

Note that, since M is torsion-free, $\frac{m}{s} = \frac{m'}{s'}$ if and only if s'm = sm' for $m, m' \in M$ and $s, s' \in D \setminus \{0\}$. Also, if $f = m_0 + m_1 X + \dots + m_k X^k \in M[X]$ with $m_k \neq 0$ and $h = a_0 + a_1 X + \dots + a_n X^n \in D[X]$ with $a_n \neq 0$, then $hf = a_n m_k X^{n+k} +$ (lower terms), and since M is torsion-free, we have $a_n m_k \neq 0$, and hence $hf \neq 0$. Thus, M[X] is a torsion-free D[X]-module.

Lemma 2.1. (1) $q(M) = M_{D \setminus \{0\}}$.

- (2) If S is a multiplicative subset of D, then M_S is a D_S -module.
- (3) M is a D-submodule of q(M).
- (4) $M[X]_{N_v}$ is a $D[X]_{N_v}$ -module.
- (5) If $S \subseteq T$ are multiplicative subsets of D, then $(M_S)_T = M_T \subseteq q(M)$.

Proof. (1) [7, Theorem 4.4]. (2) See [7, page 25]. (3) If we let $S = D \setminus \{0\}$, then $M_S = q(M)$ by (1), and since M is S-torsion-free, M is a D-submodule of q(M). (4) This is an immediate consequence of (2) because N_v is a multiplicative subset of D[X]. (5) Clear.

Lemma 2.2. Let M be a w-module and $P \in t$ -Max(D). If N is a D_P -submodule of M_P , then

- (1) $N = (N \cap M)_P$ and
- (2) $N \cap M$ is a w-module.

Proof. (1) This follows directly from Lemma 1.1(1) because M is a torsion-free D-module.

(2) Let $x \in (N \cap M)_w$. Let $J \in GV(D)$ such that $Jx \subseteq N \cap M$; then $J \nsubseteq P$. Choose $a \in J \setminus P$. Then $ax \in Jx \subseteq N \cap M$, and hence $x = \frac{ax}{a} \in (N \cap M)_P = N$. So $(N \cap M)_w \subseteq N \cap M$, and thus $(N \cap M)_w = N \cap M$.

Proposition 2.3. If M is a strong Mori D-module, then M_P is a Noetherian D_P -module for all $P \in t$ -Max(D).

Proof. Let $N_1 \subseteq N_2 \subseteq \cdots$ be an ascending chain of D_P -submodules of M_P . Then $N_1 \cap M \subseteq N_2 \cap M \subseteq \cdots$ is an ascending chain of w-submodules of M over D by Lemma 2.2(2). So there exists a positive integer k such that $N_k \cap M = N_{k+i} \cap M$ for $i = 1, 2, 3, \ldots$ Thus by Lemma 2.2(1), we have $N_k = (N_k \cap M)_P = (N_{k+i} \cap M)_P = N_{k+i}$ for $i = 1, 2, 3, \dots$

It is known that $I_w = ID[X]_{N_v} \cap K = \bigcap_{P \in t-Max(D)} ID_P$ for all nonzero fractional ideals I of D. Our next result is a torsion-free module analog.

Lemma 2.4. (1) $M_P = (M_{w_D})_P$ for all $P \in t$ -Max(D). (2) $M_{w_D} = M[X]_{N_v} \cap q(M) = \bigcap_{P \in t \cdot Max(D)} M_P.$

(3) $M[X]_{N_v} = M_{w_D}[X]_{N_v}$

(4) $(M[X])_{w_{D[X]}} \cap q(M)[X] = M_{w_{D}}[X].$ (5) $M_{w_{D}}[X] = M[X]_{N_{v}} \cap q(M)[X].$

Proof. (1) [10, page 1297].

(2) It is known that $M_w = \bigcap_{P \in t-\operatorname{Max}(D)} M_P$ [1, p. 2463]; so it suffices to show that $M_w = M[X]_{N_v} \cap q(M)$:

 (\subseteq) Let $0 \neq x \in M_w$. Then there exists an $I \in GV(D)$ such that $xI \subseteq M$. So if we choose an $f \in D[X]$ with c(f) = I, then $f \in N_v$, and thus $x = \frac{xf}{f} \in I$ $M[X]_{N_v} \cap q(M).$

 (\supseteq) Let $m \in M[X]_{N_v} \cap q(M)$. Then $m = \frac{g}{f}$ for some $g \in M[X]$ and $f \in N_v$, so fm = g. Hence $(c(f))m = c(fm) = c(g) \subseteq M$, and thus $m \in M_w$ because $c(f) \in GV(D).$

(3) This follows directly from (2).

(4) Put R = D[X]. Let t be an indeterminate over $R, N = \{f \in R[t] \mid$ $c(f)_v = R$, and $N_v(t) = \{g \in D[t] \mid c(g)_v = D\}$. Recall that $(ID[X])_v =$ $I_v D[X]$ for a nonzero ideal I of D [5, Proposition 4.3]; so $N_v(t) \subseteq N$, and hence $M_w = M[t]_{N_v(t)} \cap q(M) \subseteq (M[X])[t]_N \cap q(M[X]) = (M[X])_w$ by (2). Thus $M_w[X] \subseteq (M[X])_w \cap q(M)[X].$

Conversely, let $g \in (M[X])_w \cap q(M)[X]$, and let $J = (f_1, \ldots, f_s)$ be a finitely generated ideal of D[X] such that $J_v = D[X]$ and $Jg \subseteq M[X]$. Let m be a positive integer such that $c(f_i)^{m+1}c(g) = c(f_i)^m c(f_ig)$ for i = 1, ..., s by Proposition 1.3. Then $(c(f_1)^{m+1} + \cdots + c(f_s)^{m+1})c(g) = c(f_1)^m c(f_1g) + \cdots + c(f_s)^{m+1}c(g) = c(f_1)^m c(f_1g) + \cdots + c(f_s)^m c(g) = c(f_1)^m c(g) + \cdots + c(g)^m c(g) = c(g)^m c(g) + \cdots + c(g)^m c(g) = c(g)^m c(g) + \cdots + c(g)^m c(g) = c(g)^m c(g)^m c(g) = c(g)^m c(g)^$ $c(f_s)^m c(f_s g) \subseteq M$. Since $(\sum c(f_i))_v = D$ [5, Lemma 4.2], $(c(f_1)^{m+1} + \cdots + C(f_s)^m c(f_s)) = 0$ $c(f_s)^{m+1})_v = D$, and hence $c(g) \subseteq M_w$. Thus $g \in M_w[X]$

(5) Since $M_w \subseteq M[X]_{N_v} \cap q(M)$ by (2), $M_w[X] \subseteq M[X]_{N_v} \cap q(M)[X]$. For the reverse containment, let $f = \frac{h}{g} \in M[X]_{N_v} \cap q(M)[X]$, where $g \in N_v$ and $h \in M[X]$. Then fg = h, and hence $c(g)^{m+1}c(f) = c(g)^m c(fg) = c(g)^m c(h) \subseteq c(g)^m c(h)$ M for some $m \ge 1$ by Proposition 1.3. Note that $c(g)^{m+1}$ is finitely generated and $(c(g)^{m+1})_v = ((c(g)_v)^{m+1})_v = D$; hence $c(g)^{m+1} \in GV(D)$, and thus $c(f) \in M_w$ or $f \in M_w[X]$. Thus $M[X]_{N_v} \cap q(M)[X] \subseteq M_w[X]$. П

We next give the main result of this paper, which generalizes the fact that D is a strong Mori domain if and only if D[X] is a strong Mori domain if and only if $D[X]_{N_v}$ is a Noetherian domain [3, Theorem 2.2] (Note that an integral domain R is a strong Mori (resp., Noetherian) domain if and only if R is a strong Mori (resp., Noetherian) *R*-module).

Theorem 2.5. The following statements are equivalent for a w-module M.

- (1) M is a strong Mori D-module.
- (2) M[X] is a strong Mori D[X]-module.
- (3) $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$ -module.

Proof. (1) \Rightarrow (3) Suppose that M is a strong Mori D-module, and let B' be a $D[X]_{N_v}$ -submodule of $M[X]_{N_v}$. Then $B' = B_{N_v}$, where $B = B' \cap M[X]$, by Lemma 1.1, so it suffices to show that B_{N_v} is a finitely generated $D[X]_{N_v}$ module. Let N_k be the set of the leading coefficients of polynomials in B of degree $\leq k$; then N_k is a D-submodule of M by Lemma 1.2 and $N_0 \subseteq N_1 \subseteq$ $N_2 \subseteq \cdots$. Set $N = \bigcup_{k \geq 0} (N_k)_w$. Since M is a strong Mori module, all the $(N_k)_w$ are finite type w-submodules of M and $N = (N_s)_w$ for some s.

Let $f_1, \ldots, f_k \in B$ such that $f_i = m_i X^{r_i} + (\text{lower terms})$ and $N = (\sum_{i=1}^k Dm_i)_w$. Let $r = \max\{r_1, \ldots, r_k\}$. For each j from 1 to r - 1, choose $g_{j1}, \ldots, g_{jk_j} \in B$ such that $g_{ji} = b_{ji}X^{r_{ji}} + (\text{lower terms})$ and $(N_j)_w = (\sum_{i=1}^{k_j} Db_{ji})_w$. We claim that $B_{N_v} = \sum_i D[X]_{N_v} f_i + \sum_{j,m} D[X]_{N_v} g_{jm}$. Let $A = \sum_i D[X]_{N_v} f_i + \sum_{j,m} D[X]_{N_v} g_{jm}$, and let Q be a maximal ideal of $D[X]_{N_v}$. Then $A = A_{N_v}$ and $Q = P[X]_{N_v}$ for some $P \in t$ -Max(D). Note that

Let $A = \sum_{i} D[X]_{N_v} f_i + \sum_{j,m} D[X]_{N_v} g_{jm}$, and let Q be a maximal ideal of $D[X]_{N_v}$. Then $A = A_{N_v}$ and $Q = P[X]_{N_v}$ for some $P \in t$ -Max(D). Note that M_P is a Noetherian D_P -module by Proposition 2.3; so $M_P[X]$ is a Noetherian $D_P[X]$ -module by Theorem 1.4. Also, since $N_P = \sum_{i=1}^k D_P m_i$ and $(N_j)_P = \sum_{i=1}^{k_j} D_P b_{ji}$ by Lemma 2.4(1), the proof of (1) \Rightarrow (2) of Theorem 1.4 shows that $B_{D\setminus P} = A_{D\setminus P}$. Thus by Lemma 2.1(5),

$$(B_{N_v})_Q = (B_{N_v})_{P[X]_{N_v}} = B_{P[X]} = (B_{D \setminus P})_{PD_P[X]}$$

= $(A_{D \setminus P})_{PD_P[X]} = A_{P[X]} = (A_{N_v})_{P[X]_{N_v}} = (A_{N_v})_Q.$

Since Q is an arbitrary maximal ideal of $D[X]_{N_v}$, we conclude $B_{N_v} = A_{N_v} = A$.

 $(3) \Rightarrow (2)$ Let t be an indeterminate over D[X], $\mathcal{M} = M[t]$, and R = D[t]. By replacing t with X, it suffices to show that \mathcal{M} is a strong Mori R-module. Note that $(M[X]_{N_v})[t] = \mathcal{M}[X]_{N_v}$ and $(D[X]_{N_v})[t] = R[X]_{N_v}$; so $\mathcal{M}[X]_{N_v}$ is a Noetherian $R[X]_{N_v}$ -module by (3) and Theorem 1.4. Let $N = \{g \in R[X]|c(g)_v = R\}$; then $N_v \subseteq N$ (see the proof of Lemma 2.4(4)), and hence $(\mathcal{M}[X]_{N_v})_N = \mathcal{M}[X]_N$ and $(R[X]_{N_v})_N = R[X]_N$ by Lemma 2.1(5). Hence, by Theorem 1.4, $\mathcal{M}[X]_N$ is a Noetherian $R[X]_N$ -module.

Let $M_1 \subseteq M_2 \subseteq \cdots$ be an ascending chain of *w*-submodules of \mathcal{M} over *R*. Then $M_1[X]_N \subseteq M_2[X]_N \subseteq \cdots$ is an ascending chain of $R[X]_N$ -submodules of $\mathcal{M}[X]_N$. So there exists a positive integer *k* such that $M_k[X]_N = M_{k+i}[X]_N$ for $i = 1, 2, 3, \ldots$ Thus by Lemma 2.4(2), we have $M_k = M_k[X]_N \cap q(\mathcal{M}) = M_{k+i}[X]_N \cap q(\mathcal{M}) = M_{k+i}$ for $i = 1, 2, 3, \ldots$ Thus \mathcal{M} is a strong Mori *R*-module.

 $(2) \Rightarrow (1)$ Let $M_1 \subseteq M_2 \subseteq \cdots$ be an ascending chain of w-submodules of M. Then $(M_1[X])_w \subseteq (M_2[X])_w \subseteq \cdots$ is an ascending chain of w-submodules of $(M[X])_w$ over D[X]. So there exists a positive integer k such that $(M_k[X])_w =$

GYU WHAN CHANG

$$(M_{k+i}[X])_w$$
 for $i = 1, 2, 3, ...$ Thus by Lemma 2.4(4), we have

 $M_k = (M_k[X])_w \cap q(M) = (M_{k+i}[X])_w \cap q(M) = M_{k+i}$ for $i = 1, 2, 3, \dots$

Corollary 2.6 ([10, Theorem 4.5]). D is an SM domain if and only if every finite type w-module M over D is a strong Mori module.

Proof. Suppose that D is an SM domain, and let $M = N_w$ for some finitely generated D-submodule N of M; so $M[X]_{N_v} = N[X]_{N_v}$ by Lemma 2.4(3). Hence $M[X]_{N_v}$ is a finitely generated $D[X]_{N_v}$ -module, and since $D[X]_{N_v}$ is Noetheian [3, Theorem 2.2], $M[X]_{N_v}$ is a Noetherian $D[X]_{N_v}$ -module [2, Proposition 6.5]. Thus M is a strong Mori module by Theorem 2.5. The converse follows because D is a finite type w-module over D itself.

Let R be a commutative ring with identity. It is well known that if M_1, \ldots, M_k are Noetherian R-modules, then $\bigoplus_{i=1}^k M_i$ is also a Noetherian R-module. This follows directly from the fact that if $0 \to L \to M \to N \to 0$ is an exact sequence of R-modules, then M is Noetherian if and only if L and N are Noetherian [2, Proposition 6.3]. We next generalize this result to strong Mori module, which shows that if D is a strong Mori domain, then $D^n = \bigoplus_{i=1}^n D_i$, where $D_i = D$, is a strong Mori D-module for any positive integer n (see Corollary 2.8).

Corollary 2.7 (cf. [8, Proposition 3.5(2)]). Let $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ be an exact sequence of torsion-free D-modules. If M', M, and M'' are wmodules, then M is a strong Mori module if and only if M' and M'' are strong Mori modules.

Proof. For each $f = m_0 + m_1 X + \dots + m_k X^k \in M'[X]$, define

$$\alpha'(f) = \sum_{i=0}^{k} \alpha(m_i) X^i.$$

It is obvious that the map $\alpha': M'[X] \to M[X]$, given by $f \mapsto \alpha'(f)$, is an D[X]-module homomorphism. Also, the map $\beta': M[X] \to M''[X]$, defined by $\beta'(\sum_{i=0}^{k} m_i X^i) = \sum_{i=0}^{k} \beta(m_i) X^i$, is a D[X]-module homomorphism. Moreover, since the sequence $0 \to M' \xrightarrow{\alpha} M \xrightarrow{\beta} M'' \to 0$ is sequence, it follows that $0 \to M'[X] \xrightarrow{\alpha'} M[X] \xrightarrow{\beta'} M''[X] \to 0$ is an exact sequence of D[X]modules; hence $0 \to M'[X] \xrightarrow{\alpha'} M[X] \xrightarrow{\beta'} M''[X] \to 0$ is an exact sequence of D[X]modules; hence $0 \to M'[X]_{N_v} \xrightarrow{(N_v)^{-1}\alpha'} M[X]_{N_v} \xrightarrow{(N_v)^{-1}\beta'} M''[X]_{N_v} \to 0$ is an exact sequence [2, Proposition 3.3]. Thus by Theorem 2.5 and [2, Proposition 6.3], we have that M is a strong Mori module $\Leftrightarrow M[X]_{N_v}$ is a Noetherian module $\Leftrightarrow M'[X]_{N_v}$ and $M''[X]_{N_v}$ are Noetherian $\Leftrightarrow M'$ and M'' are strong Mori modules. \Box

Corollary 2.8 ([8, Corollary 3.2] or [11, Proposition 4.5]). If M_i (i = 1, ..., n) are strong Mori D-modules, then $\bigoplus_{i=1}^n M_i$ is also a strong Mori D-module.

Proof. This can be proved by induction on n and Corollary 2.7 applying to the exact sequence $0 \to M_n \longrightarrow \bigoplus_{i=1}^n M_i \longrightarrow \bigoplus_{i=1}^{n-1} M_i \to 0$.

The following lemma is a variant of [6, Corollary 2.15].

Lemma 2.9. Let M be a w-module. If $\varphi : M \to M$ is a module homomorphism, then the kernel of φ is a w-module.

Proof. Let N be the kernel of φ . If $x \in N_w$, there exists a $J \in GV(D)$ such that $Jx \in N$. Choose $0 \neq a \in J$; then $ax \in N$, and hence $0 = \varphi(ax) = a\varphi(x)$. Since M is torsion-free, we have $\varphi(x) = 0$, and hence $x \in N$. Thus $N_w \subseteq N$.

Theorem 2.10. Let M be a strong Mori D-module and $\varphi : M \to M$ be a D-module homomorphism. If φ is surjective, then φ is an isomorphism.

Proof. It suffices to prove that φ is injective. Let $\varphi^2 = \varphi \circ \varphi$ and $\varphi^n = \varphi^{n-1} \circ \varphi$ for all integers $n \geq 2$. Clearly, φ^n is a *D*-module homomorphism from *M* onto itself. Hence $ker(\varphi^n)$, the kernel of φ^n , is a *w*-module by Lemma 2.9, and since $ker(\varphi) \subseteq ker(\varphi^2) \subseteq \cdots$, there exists a positive integer *k* such that $ker(\varphi^k) = ker(\varphi^{k+i})$ for $i = 1, 2, \ldots$. Let $u \in ker(\varphi)$. Then $u \in ker(\varphi^k)$. Since φ^k is onto, there exists $v \in M$ such that $u = \varphi^k(v)$. Then $0 = \varphi^k(u) = \varphi^{2k}(v)$; so $v \in ker(\varphi^{2k}) = ker(\varphi^k)$, and hence $u = \varphi^k(v) = 0$. Thus φ is injective. \Box

Remark 2.11. As in [8], we say that M is of finite type if there is a finitely generated submodule B of M such that $M_P = B_P$ for all $P \in w$ -Max(D); M is w-Noetherian if every submodule of M is of finite type; and a sequence $A \to B \to C$ of modules is w-exact if the sequence $A_P \to B_P \to C_P$ is exact for any maximal w-ideal P of D. Wang proved that if $0 \to A \to B \to C \to 0$ is w-exact, then B is w-Noetherian if and only if A and C are w-Noetherian [8, Proposition 3.5(2)] and that $\bigoplus_{i=1}^{n} M_i$ is w-Noetherian if and only if each M_i is w-Noetherian [8, Corollary 3.2] (The definitions and results of [8] are given in a more general setting of commutative rings with zero divisors). By Lemma 2.4(1) and (2), if M is a w-module, then M is w-Noetherian if and only if Mis a strong Mori module. Thus, Corollaries 2.7 and 2.8 follow directly from [8, Proposition 3.5(2) and Corollary 3.2].

Acknowledgements. The author would like to thank the referees for their several valuable comments and suggestions (including an information on the paper [8]). This work was supported by the University of Incheon Research Fund in 2012 (2012-0045).

References

- D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), no. 5, 2461–2475.
- [2] M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [3] G. W. Chang, Strong Mori domains and the ring D[X]_{Nv}, J. Pure Appl. Algebra 197 (2005), no. 1-3, 293–304.

GYU WHAN CHANG

- [4] R. Gilmer, *Multiplicative Ideal Theory*, Marcel Dekker, New York, 1972.
- [5] J. R. Hedstrom and E. G. Houston, Some remarks on star-operations, J. Pure Appl. Algebra 18 (1980), no. 1, 37–44.
- [6] H. Kim, Module-theoretic characterizations of t-linkative domains, Comm. Algebra 36 (2008), no. 5, 1649–1670.
- [7] H. Matsumura, Commutative Ring Theory, Cambridge Univ. Press, 1986.
- [8] F. Wang, Finitely presented type modules and w-coherent rings, J. Sichuan Normal Univ. 33 (2010), 1–9.
- [9] _____, Foundations of Commutative Ring Theory, unpublished book.
- [10] F. Wang and R. L. McCasland, On w-modules over strong Mori domains, Comm. Algebra 25 (1997), no. 4, 1285–1306.
- [11] H. Yin, F. Wang, X. Zhu, and Y. Chen, w-modules over commutative rings, J. Korean Math. Soc. 48 (2011), no. 1, 207–222.

DEPARTMENT OF MATHEMATICS INCHEON NATIONAL UNIVERSITY INCHEON 406-772, KOREA *E-mail address*: whan@incheon.ac.kr