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STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

GYU WHAN CHANG

ABSTRACT. Let D be an integral domain with quotient field K, M a
torsion-free D-module, X an indeterminate, and N, = {f € D[X] | ¢(f)v
= D}. Let ¢q(M) = M ®p K and My, = {z € ¢M) | zJ C M for
a nonzero finitely generated ideal J of D with J, = D}. In this paper,
we show that Mw, = M[X]n, Ng(M) and (M[X])wpx) Na(M)[X] =
My [X] = M[X]n, Ng(M)[X]. Using these results, we prove that M
is a strong Mori D-module if and only if M[X] is a strong Mori D[X]-
module if and only if M[X]y, is a Noetherian D[X]y,-module. This is
a generalization of the fact that D is a strong Mori domain if and only
if D[X] is a strong Mori domain if and only if D[X]y, is a Noetherian
domain.

0. Introduction

Let R be a commutative ring with identity. For any R-module A, let
AlX]) = {mo+mi X +---+mp X" | m; € A}
be the set of all polynomials in X with coefficients in A. Then A[X] = A®g
R[X]. For all f =mg+m1 X +---+mpX¥and g =ng+m X +---+m X" in
AlX] with k <land h=ag+ a1 X + -+ + a, X" in R[X], define the addition
of f,g and the scalar product of f and h by the obvious way:
f+9="(mo+mno)+ (m1+n)X +- + (mp + ng) X"

+ e X+ X

k+n
gf = g ¢; X", where ¢; = E a;ms.
i=1 j+s=i

It is routine to check that A[X] is an R[X]-module [2, Exercise 6, page 32].
Let f = mo +m1 X + -+ +mpX* € A[X]. As in the case of polynomial
rings, we define “f =0 & mg = m; = --- = my = 0”7, and we also say that
if my # 0, then my is the leading coefficient of f and k is the degree of f
denoted by deg(f) (For convenience, we let deg(0) = —oc). The content of a
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polynomial f € A[X], denoted by ¢(f), is the R-submodule of A generated by
the coefficients of f, i.e., ¢(f) = Zf:o Rm,.

Let Sy be a (saturated) multiplicative subset of R with 0 ¢ S;. The lo-
calization Ag, of A with respect to S is defined obviously, and so Ag, is an
Rg,-module. If P is a prime ideal of R, we write Ap for Ap\ p. We say that A is
an S1-torsion-free module if sa = 0 for s € S7 and a € A implies a = 0. Clearly,
if A is torsion-free, then A is S-torsion-free for any multiplicative subset S of R
with 0 € S. Note that the set {m € A | sm = 0 for some s € Sy} is the kernel
of the canonical R-module homomorphism « : A — Ag, given by m > .
So if A is an Sp-torsion-free module, then « is injective, and hence A can be
considered as an R-submodule of Ag,; in this case, we write m = s- = € A
and “% = ";—,/ & sm’ = s'm” for any s,s’ € S; and m,m’ € A.

Let D be an integral domain with quotient field K. For any nonzero frac-
tional ideal I of D, define I, = (I"")™!, where ™' = {# € K | 2I C D},
and let I; = U{J, | J C I is a nonzero finitely generated ideal of D} and
I, = {x € K | zJ C I for a nonzero finitely generated ideal J of D with
J=! = D}. Let * = v,t or w. We say that I is a x-ideal if I = I,. Clearly,
I, € I; C I,, and hence v-ideals are t-ideals and t-ideals are w-ideals. Let
x-Max (D) denote the set of *-ideals maximal among proper integral x-ideals
of D. It is known that w-Max(D) = t-Max(D) and I, = Npesmax(n)IDp [1,
Corollary 2.13]. Also, t-Max(D) # 0 if D is not a field. For any undefined
concepts and notations, see [2], [4] or [9].

Let M be a torsion-free D-module and ¢(M) = M ®p K, which is the
injective envelope of M. Let GV(D) be the set of nonzero finitely generated
ideals J of D with J, = D. As in [10, Definition 3], we define M,,, = {z €
q(M) | Jx € M for some J € GV (D)} (If there is no confusion, we simply
denote wp by w). Then M, is a D-submodule of ¢(M) and (M), = My, [10,
Section 2]. We say that M is a wp-module (simply, w-module) if M = M,,; so
M., is a w-module. A w-module M is called a strong Mori module if M satisfies
the ascending chain condition on w-submodules of M, while D is a strong Mori
domain if D is a strong Mori module. Clearly, Noetherian modules are strong
Mori modules. Conversely, if each maximal ideal of D is a t-ideal (e.g., one-
dimensional integral domain), then N,, = N for all D-submodules N of M,
and thus a strong Mori module is a Noetherian module. Also, M is a strong
Mori D-module if and only if every w-submodule N of M is of finite type, i.e.,
N = (Zle Dm;),, for some my,...,my € N [10, Theorem 4.4]. It is known
that A is a Noetherian R-module if and only if A[X] is a Noetherian R[X]-
module [2, Exercise 10, page 85]. Also, if we set S = {f € R[X] | ¢(f) = R},
then S is a regular multiplicative subset of R[X] [4, Proposition 33.1]. Soif R is
a Noetherian ring, then R[X], and thus R[X]s is a Noetherian ring. Conversely,
if I is an ideal of R, then IR[X]|sN R = I [4, Proposition 33.1]; so I is finitely
generated when TR[X]g is finitely generated. Thus, R is a Noetherian ring if
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and only if R[X]g is a Noetherian ring. The purpose of this paper is to extend
these results to strong Mori modules.

More precisely, let X be an indeterminate and N, = {f € D[X] | ¢(f), =
D}. In Section 1, we show that A is a Noetherian R-module if and only if A[X]g
is a Noetherian R[X]g-module, where S = {f € R[X] | ¢(f) = R}. Next, in
Section 2, we show that M., = M[X]n,Ng(M) and (M[X])w .y, Ng(M)[X] =
My, [X] = M[X]n,Ng(M)[X]. Then we use these results to prove that M is a
strong Mori D-module if and only if M[X] is a strong Mori D[X]-module if and
only if M[X]n, is a Noetherian D[X]y, -module. As a corollary, we have that
if0 - M — M — M"” — 0 is an exact sequence of torsion-free D-modules,
then M is a strong Mori module if and only if M’ and M" are strong Mori
modules. Also, we show that if M is a strong Mori D-module, then a D-module
homomorphism ¢ : M — M is surjective if and only if ¢ is bijective.

1. Hilbert basis theorem and Noetherian modules

Throughout this section, R denotes a commutative ring with identity, A is
an R-module, X is an indeterminate, and S = {f € R[X] | ¢(f) = R}.

The Hilbert basis theorem states that R is a Noetherian ring if and only
if R[X] is a Noetherian ring. As the module analog, it is known that A is
a Noetherian R-module if and only if A[X] is a Noetherian R[X]-module [2,
Exercise 10, page 85|, which implies the Hilbert basis theorem because R (resp.,
R[X]) is an R-module (resp., R[X]-module). Also, R is a Noetherian ring if
and only if R[X]g is a Noetherian ring. In this section, we extend this result
to Noetherian modules.

Lemma 1.1. Let S1 be a multiplicative subset of R, and assume that A is an
S1-torsion-free module.

(1) If N is an Rg,-submodule of Ag,, then N = (NN A)g,.

(2) If A is a Noetherian R-module, then Ag, is a Noetherian Rg,-module.

Proof. (1) Clearly, (N N A)s, € N. For the reverse, let © € N C Ag,, and
S0 ¥ = % for some m € A and s € S;. As we noted in the introduction, A
can be considered as an R-submodule of Ag,; so sx = m € N N A. Hence
x€(NNA)g,. Thus NC(NNAg,.

(2) Let N be an Rg,-submodule of Ag,; then N = (N N A)g, by (1). Since
N N A is an R-submodule of A, there exist some ni,...,ny € N N A such
that NN A = Y% | Rn; [2, Proposition 6.2], and hence N = (N N A)g, =
Zle Rg,n;. Thus Ag, is a Noetherian Rg,-module [2, Proposition 6.2]. O

Lemma 1.2. Let N be an R[X]-submodule of A[X] and let N be the set of
leading coefficients of polynomials of degree < k in N. Then Ni is an R-
submodule of A.

Proof. Let a,b € N, and let f,g € A[X] such that deg(f) < deg(g) < k and
a,b are the leading coefficients of f, g, respectively. Clearly, N C A. Since
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A[X]is an R[X]-module, we have h := Xdeg(9)=dea(f) f 44 ¢ A[X]and deg(h) <
deg(g) <k. Ifatb=0,thenat+be& N_oo C Ni. fa+tb=+#0,then atbis
the leading coefficient of i, and hence a + b € Ni. Thus Nj is a subgroup of
A. Next, if r € R, then rf € A[X]. If ra =0, then ra € Nj. If ra # 0, then ra
is the leading coeflicient of rf and deg(rf) = deg(f) < k; so ra € Ng. Thus
Ny is an R-submodule of A. O

The Dedekind-Mertens lemma states that if f,g € R[X] with deg(g) = m,
then c(f)™ e(g) = c(f)™e(fg) (see, for example, [4, Theorem 28.1]). The next
result is the module analog, whose proof is the same as that of [4, Theorem
28.1].

Proposition 1.3 (]9, Theorem 1.8.11]). If f € R[X] and g € A[X], then
c(f)™He(g) = c(f)™c(fg) for some integer m > 1.

We next give the main result of this section. For easy reference of the reader,
we also give the proof of the fact that A is a Noetherian R-module if and only
if A[X] is a Noetherian R[X]-module.

Theorem 1.4. For any R-module A, the following statements are equivalent.

(1) A is a Noetherian R-module.

(2) A[X] is a Noetherian R[X]-module.

(3) A[X]s is a Noetherian R[X]s-module, where S = {f € R[X] | c(f)

= R}.

Proof. (1) = (2) Tt suffices to show that every submodule of A[X] is finitely
generated. Let B be an R[X]-submodule of A[X], and let N be the set of
leading coefficients of polynomials in B of degree < k. Then Nj is an R-
submodule of A by Lemma 1.2 and N9y € N; C Ny C --- C A. Let N =
Uk>1Nk. Since A is a Noetherian R-module, all the Nj and IV are finitely
generated R-submodules of A. Let fi,..., f, € B such that f; = a; X"+ (lower
terms) and N = > " | Ra;. Let r = max{ry,...,7,}. For each j from 1
to r — 1, pick gj1,...,9;x, € B such that gj; = b;; X" 4(lower terms) and
Nj = Y01, Rbi.

Let f = aX™+(lower terms) € B; then a € N, and hence a = uja; +usas +
-+ + upay, for some u; € R. If m >, then f — > " | w;X™ " f; € B and has
degree < m — 1. Repeating this process, we have polynomials h; € R[X] such
that A0 := f — 3"  h;f; € B and deg(h(®)) = k) <7 — 1. Next, note that
the leading coefficient of h(®) is in Nk, )3 80 there are polynomials R} € R[X]
such that h") := n® — 37 higy € B and deg(hV) < kjo — 1. This
process continues until 29 = 0, because deg(h(?)) > deg(hV)) > deg(h®) >
.-+ > 0 cannot contain more than deg(h(?)) integers. Hence f € > | R[X]f;+
>, BIX]gji. Thus we have B = 371 | RIX|fi + 3, , R[X]gj:.

(2) = (3) Let f € S and g € A[X] such that fg = 0. Then, since ¢(f) = R,
by Proposition 1.3 we have ¢(g) = ¢(fg) = (0); so g = 0. Hence A[X] is S-
torsion-free, and thus by Lemma 1.1(2), A[X]g is a Noetherian R[X]g-module.
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(3) = (1) Suppose that N is an R-submodule of A. Then N[X] is an R[X]-
submodule of A[X], and hence N[X]g is an R[X]s-submodule of A[X]s. Let
fi,- -, fx € N[X] such that N[X]s = 3%, R[X]sfi. Note that N C N[X]s;
so if a € N, then there exist polynomials hq,...,hx € R[X] and ¢1,...,9x € S

such that o = 50 5 fi € (Ui e(fi))[X]s © N[X]s. Soa € S elfi);
Hence N C Zf 1¢(fi), and thus N = Zl L ¢(fi). Thus N is finitely generated,
so A is a Noetherian R-module [2, Proposition 6.2]. O

2. Strong Mori modules

Let D denote an integral domain with quotient field K, M a torsion-free D-
module, ¢(M) = M®p K, X an indeterminate, N, = {f € D[X] | ¢(f), = D}.

Note that, since M is torsion-free, = = T—,, if and only if s'm = sm’ for
m,m’ € M and s,s' € D\ {0}. Also, if f =mg+m1 X +---+mpX* € M[X]
with mg Z0 and h =ag + a1 X + -+ + a, X™ € D[X] with a,, # 0, then hf =
anmp X4 (lower terms), and since M is torsion-free, we have a,my # 0,
and hence hf # 0. Thus, M[X] is a torsion-free D[X]-module.

Lemma 2.1. (1) (M) = Mp\{o}-
(2) If S is a multiplicative subset of D, then Mg is a Dg-module.
(3) M is a D-submodule of q(M).
(4) M[X]n, is a D[X]n,-module.
(5) If S C T are multiplicative subsets of D, then (Mg)r = My C q(M).
)

Proof. (1) [7, Theorem 4.4]. (2) See [7, page 25]. (3) If we let S = D\ {0}, then
Mg = q(M) by (1), and since M is S-torsion-free, M is a D-submodule of ¢(M).
(4) This is an immediate consequence of (2) because N, is a multiplicative
subset of D[X]. (5) Clear. O

Lemma 2.2. Let M be a w-module and P € t-Max(D). If N is a Dp-
submodule of Mp, then

(1) N=(NNnM)p and

(2) NNM is a w-module.

Proof. (1) This follows directly from Lemma 1.1(1) because M is a torsion-free
D-module.

(2) Let x € (NN M),,. Let J € GV(D) such that Jx C NNM; then J ¢ P.
Choose a € J\P. Then ax € Jr € NNM, and hence x = “* € (NNM)p = N.
So (NNM), CNNM, and thus (NN M), = NNM. O

Proposition 2.3. If M is a strong Mori D-module, then Mp is a Noetherian
Dp-module for all P € t-Max(D).

Proof. Let N; C Ny C --- be an ascending chain of Dp-submodules of Mp.
Then NN M C NonN M C --- is an ascending chain of w-submodules of
M over D by Lemma 2.2(2). So there exists a positive integer k such that
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NeNM = Ngypi N M for i = 1,2,3,.... Thus by Lemma 2.2(1), we have
Nk:(NkﬂM)p:(Nk_HﬂM)p:Nk_H fori=1,2,3,.... Il

It is known that I, = ID[X]|n, N K = Npepmax(p)IDp for all nonzero
fractional ideals I of D. Our next result is a torsion-free module analog.

Lemma 2.4. (1) Mp = (My,)p for all P € t-Max(D).
(2) My, = M[X]n, Ng(M) = Npet-pMax(p)yMp-
(3) M[X]n, = My, [X]n,-
(4) (M[XDwpix Ng(M)[X] = My, [X].
(5) My, [X] = M[X]n, Nq(M)[X].

v

Proof. (1) [10, page 1297].

(2) It is known that M, = Npermax(p)yMp [1, p. 2463]; so it suffices to
show that M,, = M[X]n, Nq(M):

(C) Let 0 # 2 € M,,. Then there exists an I € GV (D) such that I C M.
So if we choose an f € D[X] with ¢(f) = I, then f € N,, and thus = % €
M[X]n, N q(M).

(2) Let m € M[X]n, Ng(M). Then m =
so fm = g. Hence (c¢(f))m = c(fm) = c(g)
c(f) € GV(D).

(3) This follows directly from (2).

(4) Put R = D[X]. Let ¢ be an indeterminate over R, N = {f € R[t] |
c(f)y = R}, and N,(t) = {g € DJ[t] | ¢(9)» = D}. Recall that (ID[X]), =
I,D[X] for a nonzero ideal I of D [5, Proposition 4.3]; so N,(t) C N, an
hence M, = My, N a(M) € (MX)[t]ly 0 (MIX]) = (M[X])u by (2)
Thus M, [X] C (M[X])w Nqg(M)[X].

Conversely, let g € (M[X]), Ng(M)[X], and let J = (f1,..., fs) be a finitely
generated ideal of D[X] such that J, = D[X] and Jg C M[X]. Let m be
a positive integer such that c(f;)™*te(g) = c(fi)™c(fig) for i = 1,...,s by
Proposition 1.3. Then (c(f1)™ " + - +c(fs) " )e(g) = c(fr)™c(frg) + - +
c(fs)™c(fsg) € M. Since (3" c(fi))o = D [5, Lemma 4.2], (c(f1)™ " + - +
c(fs)™*1), = D, and hence c¢(g) C M,,. Thus g € M,,[X].

(5) Since My, € M[X]n, Ng(M) by (2), M,[X] C M[X]n, Nq(M)[X]. For
the reverse containment, let f = % € M[X]|n, Ng(M)[X], where g € N, and
h € M[X]. Then fg = h, and hence c¢(9)™ " c(f) = c(g)™c(fg) = c(g)™c(h) C
M for some m > 1 by Proposition 1.3. Note that c¢(g)™*! is finitely generated
and (c(g)™™h), = ((c(g)y)™ 1), = D; hence c(g)™™t € GV(D), and thus
c(f) € My, or f € My[X]. Thus M[X]y, Nq(M)[X] C M,[X]. 0

for some g € M[X] and f € N,,

g
f
C M, and thus m € M, because

We next give the main result of this paper, which generalizes the fact that
D is a strong Mori domain if and only if D[X] is a strong Mori domain if and
only if D[X]y, is a Noetherian domain [3, Theorem 2.2] (Note that an integral
domain R is a strong Mori (resp., Noetherian) domain if and only if R is a
strong Mori (resp., Noetherian) R-module).
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Theorem 2.5. The following statements are equivalent for a w-module M.

(1) M is a strong Mori D-module.
(2) M[X] is a strong Mori D[ X]-module.
(3) M[X]n, is a Noetherian D[X]|n,-module.

Proof. (1) = (3) Suppose that M is a strong Mori D-module, and let B’ be
a D[X]n,-submodule of M[X]y,. Then B’ = By,, where B = B’ N M[X],
by Lemma 1.1, so it suffices to show that By, is a finitely generated D[X]y,-
module. Let Nj be the set of the leading coefficients of polynomials in B of
degree < k; then Ny is a D-submodule of M by Lemma 1.2 and Ny C N; C
Ny C -+ Set N = Up>0(Nk)w- Since M is a strong Mori module, all the
(Nk) are finite type w-submodules of M and N = (Nj),, for some s.

Let f1,..., fr €B such that f; =m; X"+ (lower terms) and N= (ZleDmi)w.
Let r = max{ry,...,r}. For each j from 1 to r — 1, choose g;1,...,g;x, € B
such that gj; = b;; X" +(lower terms) and (N;), = (Zf;l Dbj;)w. We claim
that By, = >, D[X]n, fi + 32, DIXIn, gjm-

Let A =3, DIX]|n, fi + > n DIX]N,gjm, and let Q be a maximal ideal of
D[X]n,. Then A = Ay, and Q = P[X]y, for some P € t-Max(D). Note that
Mp is a Noetherian D p-module by Proposition 2.3; so Mp[X] is a Noetherian
Dp[X]-module by Theorem 1.4. Also, since Np = Zle Dpm,; and (Nj)p =
Zfi1 Dpbj; by Lemma 2.4(1), the proof of (1) = (2) of Theorem 1.4 shows
that Bp\p = Ap\p. Thus by Lemma 2.1(5),

(Bn,)q = (BN,)PiX)n, = Brix) = (Bp\P)PDp(X]
= (Ap\rP)pPDpix] = Arix] = (AN,) Px]N, = (AN,)Q-

Since @ is an arbitrary maximal ideal of D[X]y,, we conclude By, = Ay, =
A.

(3) = (2) Let t be an indeterminate over D[X], M = M|[t], and R = DJt].
By replacing ¢ with X, it suffices to show that M is a strong Mori R-module.
Note that (M[X]n,)[t] = M[X]n, and (D[X]n,)[t] = R[X]n,; so M[X]n,
is a Noetherian R[X]y,-module by (3) and Theorem 1.4. Let N = {g €
R[X]|c(g)y = R}; then N, C N (see the proof of Lemma 2.4(4)), and hence
(M[X]n,)n = M[X]n and (R[X]n, )~ = R[X]n by Lemma 2.1(5). Hence, by
Theorem 1.4, M[X]y is a Noetherian R[X]y-module.

Let M7 C My C --- be an ascending chain of w-submodules of M over R.
Then M;[X]n C M2[X]n C --- is an ascending chain of R[X]y-submodules of
M[X]n. So there exists a positive integer k such that My[X|ny = My:[X]|n
for i =1,2,3,.... Thus by Lemma 2.4(2), we have M}, = M;[X]|n Ng(M) =
Mp+i[Xn NgM) = My for ¢ = 1,2,3,.... Thus M is a strong Mori R-
module.

(2) = (1) Let My € M3 C -+ be an ascending chain of w-submodules of M.
Then (M;[X])w € (M2[X])w C --- is an ascending chain of w-submodules of
(M[X])w over D[X]. So there exists a positive integer k such that (My[X]).,, =
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(Mp4i[X])w for i =1,2,3,.... Thus by Lemma 2.4(4), we have
My = (Mk[X])w n q(M) = (Mk—i-i[X])w ﬂq(M) = My, fori=1,2,3,....0

Corollary 2.6 ([10, Theorem 4.5]). D is an SM domain if and only if every
finite type w-module M over D is a strong Mori module.

Proof. Suppose that D is an SM domain, and let M = N,, for some finitely gen-
erated D-submodule N of M; so M[X]|n, = N[X]|n, by Lemma 2.4(3). Hence
M[X]n, is a finitely generated D[X]x,-module, and since D[X]y, is Noetheian
[3, Theorem 2.2], M[X]y, is a Noetherian D[X]y,-module [2, Proposition 6.5].
Thus M is a strong Mori module by Theorem 2.5. The converse follows because
D is a finite type w-module over D itself. (I

Let R be a commutative ring with identity. It is well known that if M, ...,
M, are Noetherian R-modules, then G}le M; is also a Noetherian R-module.
This follows directly from the fact that f 0 - L — M — N — 0 is an
exact sequence of R-modules, then M is Noetherian if and only if L and IV are
Noetherian [2, Proposition 6.3]. We next generalize this result to strong Mori
module, which shows that if D is a strong Mori domain, then D" = @?:1 D;,
where D; = D, is a strong Mori D-module for any positive integer n (see
Corollary 2.8).

Corollary 2.7 (cf. [8, Proposition 3.5(2)]). Let 0 — M’ %+ M L M0
be an exact sequence of torsion-free D-modules. If M', M, and M" are w-
modules, then M 1is a strong Mori module if and only if M' and M" are strong
Mort modules.

Proof. For each f =mqg+m1 X +---+mpX* € M'[X], define
k
o/(f) = almy)X".
i=0
It is obvious that the map o' : M'[X] — M[X], given by f — &/(f), is an
D[X]-module homomorphism. Also, the map 5’ : M[X] — M"[X], defined by
ﬁ’(zfzo m; X% = Zf:o B(m;) Xt is a D[X]-module homomorphism. More-

over, since the sequence 0 — M’ % M LM S 0is sequence, it follows

that 0 — M'[X] LN M[X] LN M"[X] — 0 is an exact sequence of D[X]-

modules; hence 0 — M'[X]n, (V)7 e M[X]n (Vo) 8 M"[X]n, — 0 is an
exact sequence [2, Proposition 3.3]. Thus by Theorem 2.5 and [2, Proposition
6.3], we have that M is a strong Mori module < M[X]y, is a Noetherian

module & M'[X]y, and M"[X]y, are Noetherian < M’ and M" are strong
Mori modules. g

v

Corollary 2.8 ([8, Corollary 3.2] or [11, Proposition 4.5]). If M; (i=1,...,n)
are strong Mori D-modules, then @?:1 M; is also a strong Mori D-module.
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Proof. This can be proved by induction on n and Corollary 2.7 applying to the
exact sequence 0 — M, — @, M; — @?;11 M; — 0. O

The following lemma is a variant of [6, Corollary 2.15].

Lemma 2.9. Let M be a w-module. If ¢ : M — M is a module homomor-
phism, then the kernel of ¢ is a w-module.

Proof. Let N be the kernel of . If € N, there exists a J € GV(D) such that
Jx € N. Choose 0 # a € J; then az € N, and hence 0 = p(ax) = ap(z). Since
M is torsion-free, we have p(x) = 0, and hence x € N. Thus N, C N. O

Theorem 2.10. Let M be a strong Mori D-module and ¢ : M — M be a
D-module homomorphism. If ¢ is surjective, then @ is an isomorphism.

Proof. Tt suffices to prove that ¢ is injective. Let ¢ = poyp and " = " Loy
for all integers n > 2. Clearly, ¢™ is a D-module homomorphism from M
onto itself. Hence ker(¢™), the kernel of ¢", is a w-module by Lemma 2.9,
and since ker(p) C ker(p?) C ---, there exists a positive integer k such that
ker(ok) = ker(of4) fori =1,2,.... Let u € ker(p). Then u € ker(o*). Since
¢ is onto, there exists v € M such that u = ¢*(v). Then 0 = ¢*(u) = p**(v);
so v € ker(¢®) = ker(p*), and hence u = ©*(v) = 0. Thus ¢ is injective. [

Remark 2.11. As in [8], we say that M is of finite type if there is a finitely
generated submodule B of M such that Mp = Bp for all P € w-Max(D);
M is w-Noetherian if every submodule of M is of finite type; and a sequence
A — B — C of modules is w-exact if the sequence Ap — Bp — Cp is exact
for any maximal w-ideal P of D. Wang proved that if 0 -+ A - B - C — 0 is
w-exact, then B is w-Noetherian if and only if A and C' are w-Noetherian [8,
Proposition 3.5(2)] and that @' ; M; is w-Noetherian if and only if each M;
is w-Noetherian [8, Corollary 3.2] (The definitions and results of [8] are given
in a more general setting of commutative rings with zero divisors). By Lemma
2.4(1) and (2), if M is a w-module, then M is w-Noetherian if and only if M
is a strong Mori module. Thus, Corollaries 2.7 and 2.8 follow directly from [8,
Proposition 3.5(2) and Corollary 3.2].
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