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STRONG MORI MODULES OVER AN INTEGRAL DOMAIN

Gyu Whan Chang

Abstract. Let D be an integral domain with quotient field K, M a
torsion-free D-module, X an indeterminate, and Nv = {f ∈ D[X] | c(f)v
= D}. Let q(M) = M ⊗D K and MwD

= {x ∈ q(M) | xJ ⊆ M for
a nonzero finitely generated ideal J of D with Jv = D}. In this paper,
we show that MwD

= M [X]Nv
∩ q(M) and (M [X])wD[X]

∩ q(M)[X] =

MwD
[X] = M [X]Nv

∩ q(M)[X]. Using these results, we prove that M

is a strong Mori D-module if and only if M [X] is a strong Mori D[X]-
module if and only if M [X]Nv

is a Noetherian D[X]Nv
-module. This is

a generalization of the fact that D is a strong Mori domain if and only
if D[X] is a strong Mori domain if and only if D[X]Nv

is a Noetherian
domain.

0. Introduction

Let R be a commutative ring with identity. For any R-module A, let

A[X ] = {m0 +m1X + · · ·+mkX
k | mi ∈ A}

be the set of all polynomials in X with coefficients in A. Then A[X ] = A ⊗R

R[X ]. For all f = m0 +m1X + · · ·+mkX
k and g = n0 + n1X + · · ·+ nlX

l in
A[X ] with k ≤ l and h = a0 + a1X + · · ·+ anX

n in R[X ], define the addition
of f, g and the scalar product of f and h by the obvious way:

f + g = (m0 + n0) + (m1 + n1)X + · · ·+ (mk + nk)X
k

+ nk+1X
k+1 + · · ·+ nlX

l,

gf =

k+n∑

i=1

ciX
i, where ci =

∑

j+s=i

ajms.

It is routine to check that A[X ] is an R[X ]-module [2, Exercise 6, page 32].
Let f = m0 + m1X + · · · + mkX

k ∈ A[X ]. As in the case of polynomial
rings, we define “f = 0 ⇔ m0 = m1 = · · · = mk = 0”, and we also say that
if mk 6= 0, then mk is the leading coefficient of f and k is the degree of f
denoted by deg(f) (For convenience, we let deg(0) = −∞). The content of a
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polynomial f ∈ A[X ], denoted by c(f), is the R-submodule of A generated by

the coefficients of f , i.e., c(f) =
∑k

i=0 Rmi.
Let S1 be a (saturated) multiplicative subset of R with 0 6∈ S1. The lo-

calization AS1 of A with respect to S1 is defined obviously, and so AS1 is an
RS1-module. If P is a prime ideal of R, we write AP for AR\P . We say that A is
an S1-torsion-free module if sa = 0 for s ∈ S1 and a ∈ A implies a = 0. Clearly,
if A is torsion-free, then A is S-torsion-free for any multiplicative subset S of R
with 0 6∈ S. Note that the set {m ∈ A | sm = 0 for some s ∈ S1} is the kernel
of the canonical R-module homomorphism α : A → AS1 given by m 7→ m

1 .
So if A is an S1-torsion-free module, then α is injective, and hence A can be
considered as an R-submodule of AS1 ; in this case, we write m = s · m

s
∈ A

and “m
s
= m′

s′
⇔ sm′ = s′m” for any s, s′ ∈ S1 and m,m′ ∈ A.

Let D be an integral domain with quotient field K. For any nonzero frac-
tional ideal I of D, define Iv = (I−1)−1, where I−1 = {x ∈ K | xI ⊆ D},
and let It = ∪{Jv | J ⊆ I is a nonzero finitely generated ideal of D} and
Iw = {x ∈ K | xJ ⊆ I for a nonzero finitely generated ideal J of D with
J−1 = D}. Let ∗ = v, t or w. We say that I is a ∗-ideal if I = I∗. Clearly,
Iw ⊆ It ⊆ Iv, and hence v-ideals are t-ideals and t-ideals are w-ideals. Let
∗-Max(D) denote the set of ∗-ideals maximal among proper integral ∗-ideals
of D. It is known that w-Max(D) = t-Max(D) and Iw = ∩P∈t-Max(D)IDP [1,
Corollary 2.13]. Also, t-Max(D) 6= ∅ if D is not a field. For any undefined
concepts and notations, see [2], [4] or [9].

Let M be a torsion-free D-module and q(M) = M ⊗D K, which is the
injective envelope of M . Let GV (D) be the set of nonzero finitely generated
ideals J of D with Jv = D. As in [10, Definition 3], we define MwD

= {x ∈
q(M) | Jx ⊆ M for some J ∈ GV (D)} (If there is no confusion, we simply
denote wD by w). Then Mw is a D-submodule of q(M) and (Mw)w = Mw [10,
Section 2]. We say that M is a wD-module (simply, w-module) if M = Mw; so
Mw is a w-module. A w-module M is called a strong Mori module if M satisfies
the ascending chain condition on w-submodules of M , while D is a strong Mori

domain if D is a strong Mori module. Clearly, Noetherian modules are strong
Mori modules. Conversely, if each maximal ideal of D is a t-ideal (e.g., one-
dimensional integral domain), then Nw = N for all D-submodules N of M ,
and thus a strong Mori module is a Noetherian module. Also, M is a strong
Mori D-module if and only if every w-submodule N of M is of finite type, i.e.,

N = (
∑k

i=1 Dmi)w for some m1, . . . ,mk ∈ N [10, Theorem 4.4]. It is known
that A is a Noetherian R-module if and only if A[X ] is a Noetherian R[X ]-
module [2, Exercise 10, page 85]. Also, if we set S = {f ∈ R[X ] | c(f) = R},
then S is a regular multiplicative subset of R[X ] [4, Proposition 33.1]. So if R is
a Noetherian ring, then R[X ], and thus R[X ]S is a Noetherian ring. Conversely,
if I is an ideal of R, then IR[X ]S ∩R = I [4, Proposition 33.1]; so I is finitely
generated when IR[X ]S is finitely generated. Thus, R is a Noetherian ring if
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and only if R[X ]S is a Noetherian ring. The purpose of this paper is to extend
these results to strong Mori modules.

More precisely, let X be an indeterminate and Nv = {f ∈ D[X ] | c(f)v =
D}. In Section 1, we show that A is a Noetherian R-module if and only if A[X ]S
is a Noetherian R[X ]S-module, where S = {f ∈ R[X ] | c(f) = R}. Next, in
Section 2, we show that MwD

= M [X ]Nv
∩q(M) and (M [X ])wD[X]

∩q(M)[X ] =

MwD
[X ] = M [X ]Nv

∩q(M)[X ]. Then we use these results to prove that M is a
strong Mori D-module if and only if M [X ] is a strong Mori D[X ]-module if and
only if M [X ]Nv

is a Noetherian D[X ]Nv
-module. As a corollary, we have that

if 0 → M ′ → M → M ′′ → 0 is an exact sequence of torsion-free D-modules,
then M is a strong Mori module if and only if M ′ and M ′′ are strong Mori
modules. Also, we show that if M is a strong Mori D-module, then a D-module
homomorphism φ : M → M is surjective if and only if φ is bijective.

1. Hilbert basis theorem and Noetherian modules

Throughout this section, R denotes a commutative ring with identity, A is
an R-module, X is an indeterminate, and S = {f ∈ R[X ] | c(f) = R}.

The Hilbert basis theorem states that R is a Noetherian ring if and only
if R[X ] is a Noetherian ring. As the module analog, it is known that A is
a Noetherian R-module if and only if A[X ] is a Noetherian R[X ]-module [2,
Exercise 10, page 85], which implies the Hilbert basis theorem because R (resp.,
R[X ]) is an R-module (resp., R[X ]-module). Also, R is a Noetherian ring if
and only if R[X ]S is a Noetherian ring. In this section, we extend this result
to Noetherian modules.

Lemma 1.1. Let S1 be a multiplicative subset of R, and assume that A is an

S1-torsion-free module.

(1) If N is an RS1-submodule of AS1 , then N = (N ∩ A)S1 .

(2) If A is a Noetherian R-module, then AS1 is a Noetherian RS1-module.

Proof. (1) Clearly, (N ∩ A)S1 ⊆ N . For the reverse, let x ∈ N ⊆ AS1 , and
so x = m

s
for some m ∈ A and s ∈ S1. As we noted in the introduction, A

can be considered as an R-submodule of AS1 ; so sx = m ∈ N ∩ A. Hence
x ∈ (N ∩ A)S1 . Thus N ⊆ (N ∩ A)S1 .

(2) Let N be an RS1-submodule of AS1 ; then N = (N ∩A)S1 by (1). Since
N ∩ A is an R-submodule of A, there exist some n1, . . . , nk ∈ N ∩ A such

that N ∩ A =
∑k

i=1 Rni [2, Proposition 6.2], and hence N = (N ∩ A)S1 =∑k
i=1 RS1ni. Thus AS1 is a Noetherian RS1 -module [2, Proposition 6.2]. �

Lemma 1.2. Let N be an R[X ]-submodule of A[X ] and let Nk be the set of

leading coefficients of polynomials of degree ≤ k in N . Then Nk is an R-

submodule of A.

Proof. Let a, b ∈ Nk, and let f, g ∈ A[X ] such that deg(f) ≤ deg(g) ≤ k and
a, b are the leading coefficients of f, g, respectively. Clearly, Nk ⊆ A. Since
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A[X ] is an R[X ]-module, we have h := Xdeg(g)−deg(f)f±g ∈ A[X ] and deg(h) ≤
deg(g) ≤ k. If a± b = 0, then a ± b ∈ N−∞ ⊆ Nk. If a ± b 6= 0, then a ± b is
the leading coefficient of h, and hence a ± b ∈ Nk. Thus Nk is a subgroup of
A. Next, if r ∈ R, then rf ∈ A[X ]. If ra = 0, then ra ∈ Nk. If ra 6= 0, then ra

is the leading coefficient of rf and deg(rf) = deg(f) ≤ k; so ra ∈ Nk. Thus
Nk is an R-submodule of A. �

The Dedekind-Mertens lemma states that if f, g ∈ R[X ] with deg(g) = m,
then c(f)m+1c(g) = c(f)mc(fg) (see, for example, [4, Theorem 28.1]). The next
result is the module analog, whose proof is the same as that of [4, Theorem
28.1].

Proposition 1.3 ([9, Theorem 1.8.11]). If f ∈ R[X ] and g ∈ A[X ], then

c(f)m+1c(g) = c(f)mc(fg) for some integer m ≥ 1.

We next give the main result of this section. For easy reference of the reader,
we also give the proof of the fact that A is a Noetherian R-module if and only
if A[X ] is a Noetherian R[X ]-module.

Theorem 1.4. For any R-module A, the following statements are equivalent.

(1) A is a Noetherian R-module.

(2) A[X ] is a Noetherian R[X ]-module.

(3) A[X ]S is a Noetherian R[X ]S-module, where S = {f ∈ R[X ] | c(f)
= R}.

Proof. (1) ⇒ (2) It suffices to show that every submodule of A[X ] is finitely
generated. Let B be an R[X ]-submodule of A[X ], and let Nk be the set of
leading coefficients of polynomials in B of degree ≤ k. Then Nk is an R-
submodule of A by Lemma 1.2 and N0 ⊆ N1 ⊆ N2 ⊆ · · · ⊆ A. Let N =
∪k≥1Nk. Since A is a Noetherian R-module, all the Nk and N are finitely
generated R-submodules of A. Let f1, . . . , fn ∈ B such that fi = aiX

ri+(lower
terms) and N =

∑n
i=1 Rai. Let r = max{r1, . . . , rn}. For each j from 1

to r − 1, pick gj1, . . . , gjkj
∈ B such that gji = bjiX

rji+(lower terms) and

Nj =
∑kj

i=1 Rbji.
Let f = aXm+(lower terms) ∈ B; then a ∈ N , and hence a = u1a1+u2a2+

· · ·+ unan for some ui ∈ R. If m ≥ r, then f −
∑n

i=1 uiX
m−rifi ∈ B and has

degree ≤ m− 1. Repeating this process, we have polynomials hi ∈ R[X ] such
that h(0) := f −

∑n

i=1 hifi ∈ B and deg(h(0)) = kh(0) ≤ r − 1. Next, note that

the leading coefficient of h(0) is in Nk
h(0)

; so there are polynomials h′
i ∈ R[X ]

such that h(1) := h(0) −
∑

i h
′
igkh(0)i

∈ B and deg(h(1)) ≤ kh(0) − 1. This

process continues until h(i) = 0, because deg(h(0)) > deg(h(1)) > deg(h(2)) >
· · · ≥ 0 cannot contain more than deg(h(0)) integers. Hence f ∈

∑n

i=1 R[X ]fi+∑
j,iR[X ]gji. Thus we have B =

∑n

i=1 R[X ]fi +
∑

j,iR[X ]gji.

(2) ⇒ (3) Let f ∈ S and g ∈ A[X ] such that fg = 0. Then, since c(f) = R,
by Proposition 1.3 we have c(g) = c(fg) = (0); so g = 0. Hence A[X ] is S-
torsion-free, and thus by Lemma 1.1(2), A[X ]S is a Noetherian R[X ]S-module.
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(3) ⇒ (1) Suppose that N is an R-submodule of A. Then N [X ] is an R[X ]-
submodule of A[X ], and hence N [X ]S is an R[X ]S-submodule of A[X ]S . Let

f1, . . . , fk ∈ N [X ] such that N [X ]S =
∑k

i=1 R[X ]Sfi. Note that N ⊆ N [X ]S ;
so if a ∈ N , then there exist polynomials h1, . . . , hk ∈ R[X ] and g1, . . . , gk ∈ S

such that a =
∑k

i=1
hi

gi
fi ∈ (

∑k
i=1 c(fi))[X ]S ⊆ N [X ]S. So a ∈

∑k
i=1 c(fi).

Hence N ⊆
∑k

i=1 c(fi), and thus N =
∑k

i=1 c(fi). Thus N is finitely generated,
so A is a Noetherian R-module [2, Proposition 6.2]. �

2. Strong Mori modules

Let D denote an integral domain with quotient field K, M a torsion-free D-
module, q(M) = M⊗DK, X an indeterminate, Nv = {f ∈ D[X ] | c(f)v = D}.

Note that, since M is torsion-free, m
s

= m′

s′
if and only if s′m = sm′ for

m,m′ ∈ M and s, s′ ∈ D \ {0}. Also, if f = m0 +m1X + · · ·+mkX
k ∈ M [X ]

with mk 6= 0 and h = a0 + a1X + · · ·+ anX
n ∈ D[X ] with an 6= 0, then hf =

anmkX
n+k+ (lower terms), and since M is torsion-free, we have anmk 6= 0,

and hence hf 6= 0. Thus, M [X ] is a torsion-free D[X ]-module.

Lemma 2.1. (1) q(M) = MD\{0}.

(2) If S is a multiplicative subset of D, then MS is a DS-module.

(3) M is a D-submodule of q(M).
(4) M [X ]Nv

is a D[X ]Nv
-module.

(5) If S ⊆ T are multiplicative subsets of D, then (MS)T = MT ⊆ q(M).

Proof. (1) [7, Theorem 4.4]. (2) See [7, page 25]. (3) If we let S = D\{0}, then
MS = q(M) by (1), and sinceM is S-torsion-free,M is aD-submodule of q(M).
(4) This is an immediate consequence of (2) because Nv is a multiplicative
subset of D[X ]. (5) Clear. �

Lemma 2.2. Let M be a w-module and P ∈ t-Max(D). If N is a DP -

submodule of MP , then

(1) N = (N ∩M)P and

(2) N ∩M is a w-module.

Proof. (1) This follows directly from Lemma 1.1(1) because M is a torsion-free
D-module.

(2) Let x ∈ (N ∩M)w. Let J ∈ GV (D) such that Jx ⊆ N ∩M ; then J * P .
Choose a ∈ J \P . Then ax ∈ Jx ⊆ N∩M , and hence x = ax

a
∈ (N∩M)P = N .

So (N ∩M)w ⊆ N ∩M , and thus (N ∩M)w = N ∩M . �

Proposition 2.3. If M is a strong Mori D-module, then MP is a Noetherian

DP -module for all P ∈ t-Max(D).

Proof. Let N1 ⊆ N2 ⊆ · · · be an ascending chain of DP -submodules of MP .
Then N1 ∩ M ⊆ N2 ∩ M ⊆ · · · is an ascending chain of w-submodules of
M over D by Lemma 2.2(2). So there exists a positive integer k such that
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Nk ∩ M = Nk+i ∩ M for i = 1, 2, 3, . . . . Thus by Lemma 2.2(1), we have
Nk = (Nk ∩M)P = (Nk+i ∩M)P = Nk+i for i = 1, 2, 3, . . . . �

It is known that Iw = ID[X ]Nv
∩ K = ∩P∈t-Max(D)IDP for all nonzero

fractional ideals I of D. Our next result is a torsion-free module analog.

Lemma 2.4. (1) MP = (MwD
)P for all P ∈ t-Max(D).

(2) MwD
= M [X ]Nv

∩ q(M) = ∩P∈t-Max(D)MP .

(3) M [X ]Nv
= MwD

[X ]Nv
.

(4) (M [X ])wD[X]
∩ q(M)[X ] = MwD

[X ].

(5) MwD
[X ] = M [X ]Nv

∩ q(M)[X ].

Proof. (1) [10, page 1297].
(2) It is known that Mw = ∩P∈t-Max(D)MP [1, p. 2463]; so it suffices to

show that Mw = M [X ]Nv
∩ q(M):

(⊆) Let 0 6= x ∈ Mw. Then there exists an I ∈ GV (D) such that xI ⊆ M .

So if we choose an f ∈ D[X ] with c(f) = I, then f ∈ Nv, and thus x = xf
f

∈

M [X ]Nv
∩ q(M).

(⊇) Let m ∈ M [X ]Nv
∩ q(M). Then m = g

f
for some g ∈ M [X ] and f ∈ Nv,

so fm = g. Hence (c(f))m = c(fm) = c(g) ⊆ M , and thus m ∈ Mw because
c(f) ∈ GV (D).

(3) This follows directly from (2).
(4) Put R = D[X ]. Let t be an indeterminate over R, N = {f ∈ R[t] |

c(f)v = R}, and Nv(t) = {g ∈ D[t] | c(g)v = D}. Recall that (ID[X ])v =
IvD[X ] for a nonzero ideal I of D [5, Proposition 4.3]; so Nv(t) ⊆ N , and
hence Mw = M [t]Nv(t) ∩ q(M) ⊆ (M [X ])[t]N ∩ q(M [X ]) = (M [X ])w by (2).
Thus Mw[X ] ⊆ (M [X ])w ∩ q(M)[X ].

Conversely, let g ∈ (M [X ])w∩q(M)[X ], and let J = (f1, . . . , fs) be a finitely
generated ideal of D[X ] such that Jv = D[X ] and Jg ⊆ M [X ]. Let m be
a positive integer such that c(fi)

m+1c(g) = c(fi)
mc(fig) for i = 1, . . . , s by

Proposition 1.3. Then (c(f1)
m+1 + · · ·+ c(fs)

m+1)c(g) = c(f1)
mc(f1g) + · · ·+

c(fs)
mc(fsg) ⊆ M . Since (

∑
c(fi))v = D [5, Lemma 4.2], (c(f1)

m+1 + · · · +
c(fs)

m+1)v = D, and hence c(g) ⊆ Mw. Thus g ∈ Mw[X ].
(5) Since Mw ⊆ M [X ]Nv

∩ q(M) by (2), Mw[X ] ⊆ M [X ]Nv
∩ q(M)[X ]. For

the reverse containment, let f = h
g
∈ M [X ]Nv

∩ q(M)[X ], where g ∈ Nv and

h ∈ M [X ]. Then fg = h, and hence c(g)m+1c(f) = c(g)mc(fg) = c(g)mc(h) ⊆
M for some m ≥ 1 by Proposition 1.3. Note that c(g)m+1 is finitely generated
and (c(g)m+1)v = ((c(g)v)

m+1)v = D; hence c(g)m+1 ∈ GV (D), and thus
c(f) ∈ Mw or f ∈ Mw[X ]. Thus M [X ]Nv

∩ q(M)[X ] ⊆ Mw[X ]. �

We next give the main result of this paper, which generalizes the fact that
D is a strong Mori domain if and only if D[X ] is a strong Mori domain if and
only if D[X ]Nv

is a Noetherian domain [3, Theorem 2.2] (Note that an integral
domain R is a strong Mori (resp., Noetherian) domain if and only if R is a
strong Mori (resp., Noetherian) R-module).
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Theorem 2.5. The following statements are equivalent for a w-module M .

(1) M is a strong Mori D-module.

(2) M [X ] is a strong Mori D[X ]-module.

(3) M [X ]Nv
is a Noetherian D[X ]Nv

-module.

Proof. (1) ⇒ (3) Suppose that M is a strong Mori D-module, and let B′ be
a D[X ]Nv

-submodule of M [X ]Nv
. Then B′ = BNv

, where B = B′ ∩ M [X ],
by Lemma 1.1, so it suffices to show that BNv

is a finitely generated D[X ]Nv
-

module. Let Nk be the set of the leading coefficients of polynomials in B of
degree ≤ k; then Nk is a D-submodule of M by Lemma 1.2 and N0 ⊆ N1 ⊆
N2 ⊆ · · · . Set N = ∪k≥0(Nk)w. Since M is a strong Mori module, all the
(Nk)w are finite type w-submodules of M and N = (Ns)w for some s.

Let f1, . . . , fk∈B such that fi=miX
ri+(lower terms) andN=(

∑k

i=1Dmi)w .
Let r = max{r1, . . . , rk}. For each j from 1 to r − 1, choose gj1, . . . , gjkj

∈ B

such that gji = bjiX
rji+(lower terms) and (Nj)w = (

∑kj

i=1 Dbji)w. We claim
that BNv

=
∑

i D[X ]Nv
fi +

∑
j,m D[X ]Nv

gjm.

Let A =
∑

iD[X ]Nv
fi +

∑
j,m D[X ]Nv

gjm, and let Q be a maximal ideal of

D[X ]Nv
. Then A = ANv

and Q = P [X ]Nv
for some P ∈ t-Max(D). Note that

MP is a Noetherian DP -module by Proposition 2.3; so MP [X ] is a Noetherian

DP [X ]-module by Theorem 1.4. Also, since NP =
∑k

i=1 DPmi and (Nj)P =∑kj

i=1 DP bji by Lemma 2.4(1), the proof of (1) ⇒ (2) of Theorem 1.4 shows
that BD\P = AD\P . Thus by Lemma 2.1(5),

(BNv
)Q = (BNv

)P [X]Nv
= BP [X] = (BD\P )PDP [X]

= (AD\P )PDP [X] = AP [X] = (ANv
)P [X]Nv

= (ANv
)Q.

Since Q is an arbitrary maximal ideal of D[X ]Nv
, we conclude BNv

= ANv
=

A.
(3) ⇒ (2) Let t be an indeterminate over D[X ], M = M [t], and R = D[t].

By replacing t with X , it suffices to show that M is a strong Mori R-module.
Note that (M [X ]Nv

)[t] = M[X ]Nv
and (D[X ]Nv

)[t] = R[X ]Nv
; so M[X ]Nv

is a Noetherian R[X ]Nv
-module by (3) and Theorem 1.4. Let N = {g ∈

R[X ]|c(g)v = R}; then Nv ⊆ N (see the proof of Lemma 2.4(4)), and hence
(M[X ]Nv

)N = M[X ]N and (R[X ]Nv
)N = R[X ]N by Lemma 2.1(5). Hence, by

Theorem 1.4, M[X ]N is a Noetherian R[X ]N -module.
Let M1 ⊆ M2 ⊆ · · · be an ascending chain of w-submodules of M over R.

Then M1[X ]N ⊆ M2[X ]N ⊆ · · · is an ascending chain of R[X ]N -submodules of
M[X ]N . So there exists a positive integer k such that Mk[X ]N = Mk+i[X ]N
for i = 1, 2, 3, . . . . Thus by Lemma 2.4(2), we have Mk = Mk[X ]N ∩ q(M) =
Mk+i[X ]N ∩ q(M) = Mk+i for i = 1, 2, 3, . . . . Thus M is a strong Mori R-
module.

(2) ⇒ (1) Let M1 ⊆ M2 ⊆ · · · be an ascending chain of w-submodules of M .
Then (M1[X ])w ⊆ (M2[X ])w ⊆ · · · is an ascending chain of w-submodules of
(M [X ])w over D[X ]. So there exists a positive integer k such that (Mk[X ])w =
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(Mk+i[X ])w for i = 1, 2, 3, . . . . Thus by Lemma 2.4(4), we have

Mk = (Mk[X ])w ∩ q(M) = (Mk+i[X ])w ∩ q(M) = Mk+i for i = 1, 2, 3, . . . .�

Corollary 2.6 ([10, Theorem 4.5]). D is an SM domain if and only if every

finite type w-module M over D is a strong Mori module.

Proof. Suppose that D is an SM domain, and let M = Nw for some finitely gen-
erated D-submodule N of M ; so M [X ]Nv

= N [X ]Nv
by Lemma 2.4(3). Hence

M [X ]Nv
is a finitely generatedD[X ]Nv

-module, and since D[X ]Nv
is Noetheian

[3, Theorem 2.2], M [X ]Nv
is a Noetherian D[X ]Nv

-module [2, Proposition 6.5].
Thus M is a strong Mori module by Theorem 2.5. The converse follows because
D is a finite type w-module over D itself. �

Let R be a commutative ring with identity. It is well known that if M1, . . . ,

Mk are Noetherian R-modules, then
⊕k

i=1 Mi is also a Noetherian R-module.
This follows directly from the fact that if 0 → L → M → N → 0 is an
exact sequence of R-modules, then M is Noetherian if and only if L and N are
Noetherian [2, Proposition 6.3]. We next generalize this result to strong Mori
module, which shows that if D is a strong Mori domain, then Dn =

⊕n

i=1 Di,
where Di = D, is a strong Mori D-module for any positive integer n (see
Corollary 2.8).

Corollary 2.7 (cf. [8, Proposition 3.5(2)]). Let 0 → M ′ α
−→ M

β
−→ M ′′ → 0

be an exact sequence of torsion-free D-modules. If M ′,M, and M ′′ are w-

modules, then M is a strong Mori module if and only if M ′ and M ′′ are strong

Mori modules.

Proof. For each f = m0 +m1X + · · ·+mkX
k ∈ M ′[X ], define

α′(f) =

k∑

i=0

α(mi)X
i.

It is obvious that the map α′ : M ′[X ] → M [X ], given by f 7→ α′(f), is an
D[X ]-module homomorphism. Also, the map β′ : M [X ] → M ′′[X ], defined by

β′(
∑k

i=0 miX
i) =

∑k

i=0 β(mi)X
i, is a D[X ]-module homomorphism. More-

over, since the sequence 0 → M ′ α
−→ M

β
−→ M ′′ → 0 is sequence, it follows

that 0 → M ′[X ]
α′

−→ M [X ]
β′

−→ M ′′[X ] → 0 is an exact sequence of D[X ]-

modules; hence 0 → M ′[X ]Nv

(Nv)
−1α′

−→ M [X ]Nv

(Nv)
−1β′

−→ M ′′[X ]Nv
→ 0 is an

exact sequence [2, Proposition 3.3]. Thus by Theorem 2.5 and [2, Proposition
6.3], we have that M is a strong Mori module ⇔ M [X ]Nv

is a Noetherian
module ⇔ M ′[X ]Nv

and M ′′[X ]Nv
are Noetherian ⇔ M ′ and M ′′ are strong

Mori modules. �

Corollary 2.8 ([8, Corollary 3.2] or [11, Proposition 4.5]). If Mi (i = 1, . . . , n)
are strong Mori D-modules, then

⊕n

i=1 Mi is also a strong Mori D-module.
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Proof. This can be proved by induction on n and Corollary 2.7 applying to the
exact sequence 0 → Mn −→

⊕n
i=1 Mi −→

⊕n−1
i=1 Mi → 0. �

The following lemma is a variant of [6, Corollary 2.15].

Lemma 2.9. Let M be a w-module. If ϕ : M → M is a module homomor-

phism, then the kernel of ϕ is a w-module.

Proof. Let N be the kernel of ϕ. If x ∈ Nw, there exists a J ∈ GV (D) such that
Jx ∈ N . Choose 0 6= a ∈ J ; then ax ∈ N , and hence 0 = ϕ(ax) = aϕ(x). Since
M is torsion-free, we have ϕ(x) = 0, and hence x ∈ N . Thus Nw ⊆ N . �

Theorem 2.10. Let M be a strong Mori D-module and ϕ : M → M be a

D-module homomorphism. If ϕ is surjective, then ϕ is an isomorphism.

Proof. It suffices to prove that ϕ is injective. Let ϕ2 = ϕ◦ϕ and ϕn = ϕn−1 ◦ϕ
for all integers n ≥ 2. Clearly, ϕn is a D-module homomorphism from M

onto itself. Hence ker(ϕn), the kernel of ϕn, is a w-module by Lemma 2.9,
and since ker(ϕ) ⊆ ker(ϕ2) ⊆ · · · , there exists a positive integer k such that
ker(ϕk) = ker(ϕk+i) for i = 1, 2, . . . . Let u ∈ ker(ϕ). Then u ∈ ker(ϕk). Since
ϕk is onto, there exists v ∈ M such that u = ϕk(v). Then 0 = ϕk(u) = ϕ2k(v);
so v ∈ ker(ϕ2k) = ker(ϕk), and hence u = ϕk(v) = 0. Thus ϕ is injective. �

Remark 2.11. As in [8], we say that M is of finite type if there is a finitely
generated submodule B of M such that MP = BP for all P ∈ w-Max(D);
M is w-Noetherian if every submodule of M is of finite type; and a sequence
A → B → C of modules is w-exact if the sequence AP → BP → CP is exact
for any maximal w-ideal P of D. Wang proved that if 0 → A → B → C → 0 is
w-exact, then B is w-Noetherian if and only if A and C are w-Noetherian [8,
Proposition 3.5(2)] and that

⊕n
i=1 Mi is w-Noetherian if and only if each Mi

is w-Noetherian [8, Corollary 3.2] (The definitions and results of [8] are given
in a more general setting of commutative rings with zero divisors). By Lemma
2.4(1) and (2), if M is a w-module, then M is w-Noetherian if and only if M
is a strong Mori module. Thus, Corollaries 2.7 and 2.8 follow directly from [8,
Proposition 3.5(2) and Corollary 3.2].
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