-NOETHERIAN DOMAINS AND THE RING $D[X]_{N_}$, II

Gyu Whan Chang

ABSTRACT. Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over D, * be a star operation on D, $N_* = \{f \in D[\mathbf{X}] | c(f)^* = D\}$, $*_w$ be the star operation on D defined by $I^{*_w} = ID[\mathbf{X}]_{N_*} \cap K$, and [*] be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. Let A^g (resp., $A^{*g}, A^{[*]g}$) be the global (resp., *-global, [*]-global) transform of a ring A. We show that D is a $*_w$ -Noetherian domain if and only if $D[\mathbf{X}]$ is a [*]-Noetherian domain. We prove that $D^{*g}[\mathbf{X}]_{N_*} = (D[\mathbf{X}]_{N_*})^g = (D[\mathbf{X}])^{[*]g}$; hence if D is a $*_w$ -Noetherian domain, then each ring between $D[\mathbf{X}]_{N_*}$ and $D^{*g}[\mathbf{X}]_{N_*}$ is a Noetherian domain. Let $\widetilde{D} = \cap \{D_P | P \in *_w$ -Max(D) and ht $P \ge 2\}$. We show that $D \subseteq \widetilde{D} \subseteq D^{*g}$ and study some properties of \widetilde{D} and D^{*g} .

0. Introduction

Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over D, and $D[\mathbf{X}]$ be the polynomial ring over D. The *content* of a polynomial $f \in K[\mathbf{X}]$, denoted by c(f), is the fractional ideal of D generated by the coefficients of f. An *overring* of D means a ring between D and K. Let * be a star operation on D and D^g (resp., D^{*g}) be the global (resp., *-global) transform of D (Relevant definitions and notations are reviewed in Section 1).

Matijevic proved that if D is a Noetherian domain, then each overring R of D with $R \subseteq D^g$ is a Noetherian domain [14, Corollary]. If D is a Noetherian domain with dim(D) = 1, then $D^g = K$, and hence Matijevic's result can be considered as a generalization of the Krull-Akizuki theorem that if D is a Noetherian domain with dim(D) = 1, then each overring R of D is Noetherian and dim $(R) \leq 1$ [13, Theorem 39]. Park generalized Matijevic's result as follows:

Theorem ([17, Theorem 1.5] or [3, Theorem 3.4(1)]). If R is a t-linked overring of an SM domain D such that $R \subseteq D^{wg}$, then R is an SM domain.

 $\bigodot 2011$ The Korean Mathematical Society

Received April 5, 2009.

 $^{2010\} Mathematics\ Subject\ Classification.\ 13A15,\ 13B25,\ 13E99,\ 13G05.$

Key words and phrases. star operation, [*]-operation on $D[\mathbf{X}]$, *-global transform, *_w-Noetherian domain, $D[\mathbf{X}]_{N_*}$, SM domain pair.

This work was supported by the University of Incheon Research Grant in 2010.

Let R be a *-linked overring of D, and let $*_D$ be the star operation on Rinduced by * as in Lemma 1.2. Chang extended Park's result to an arbitrary star operation * on D as follows: If D is a $*_w$ -Noetherian domain and if R is a *-linked overring of D with $R \subseteq D^{*g}$, then R is a $*_D$ -Noetherian domain [4, Theorem 3.6(1)].

Let D be a Noetherian domain and $T = \bigcap \{D_M | M \text{ is a maximal ideal of } D \text{ and } htM \geq 2\}$. Wadsworth proved that each ring between D and T is Noetherian [18, Theorem 8]. However, in [1, Proposition 1], Anderson showed that $T \subseteq D^g$ and if $T = D^g$, then every maximal ideal of D of graded one has height one. Hence Wadsworth's result is a corollary of Matijevic's result and the ring T is a nontrivial example of overrings of D which are contained in D^g .

Let $N_* = \{ f \in D[\mathbf{X}] | c(f)^* = D \}, \Lambda = \{ P \in *_f \operatorname{-Max}(D) | \operatorname{ht} P \ge 2 \},$ and $\widetilde{D} = \bigcap_{P \in \Lambda} D_P$. In this paper, we study a star operation [*] on $D[\mathbf{X}]$ canonically associated to *, the *-global transforms and the ring D. More precisely, in Section 1, we review basic facts and some recent results on star operations, Nagata rings, *-Noetherian domains, and *-global transforms. In Section 2, we introduce a star operation [*] on $D[\mathbf{X}]$ such that $(ID[\mathbf{X}])^{[*]} =$ $I^{*_w}[\mathbf{X}]$ for all nonzero fractional ideals I of D. Then we prove that D is a $*_w$ -Noetherian domain if and only if $D[\mathbf{X}]$ is a [*]-Noetherian domain. We prove that $D^{*g}[\mathbf{X}]_{N_*} = (D[\mathbf{X}]_{N_*})^g = (D[\mathbf{X}])^{[*]g}$. As a corollary, we have that if D is a $*_w$ -Noetherian domain, then each ring between $D[\mathbf{X}]_{N_*}$ and $D^{*g}[\mathbf{X}]_{N_*}$ is a Noetherian domain; in particular, each t-linked overring of $D[\mathbf{X}]$ that is contained in $D^{wg}[\mathbf{X}]_{N_v}$ is an SM-domain. Assume that D is a $*_w$ -Noetherian domain. We show that \widetilde{D} is *-linked over D and $\widetilde{D} \subseteq D^{*g}$. Also, we show that if $*_w = w$, then $\widetilde{D} = D^{wg}$ if and only if $t - \dim(D) = 1$; t- $\operatorname{Max}(\widetilde{D}) = \{PD_P \cap \widetilde{D} | P \in \Lambda\}; \text{ if } \Lambda \neq \emptyset, \text{ then } t\operatorname{-dim}(D) = t\operatorname{-dim}(\widetilde{D}); \text{ and}$ $D[\mathbf{\bar{X}}] = \widetilde{D}[\mathbf{X}]_{N_v} = D[\mathbf{X}]_{N_v}$. Finally, we study an overring R of an SM-domain D such that each t-linked overring T of D with $T \subseteq R$ is an SM-domain.

1. Review of star operations, Nagata rings and related topics

Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over D, and $D[\mathbf{X}]$ be the polynomial ring over D. In this section, we review basic facts on star operations, *-Noetherian domains, Nagata rings and *-global transforms. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. A star operation * on D is a mapping $I \mapsto I^*$ from $\mathbf{F}(D)$ into $\mathbf{F}(D)$ which satisfies the following three conditions for all $0 \neq a \in K$ and all $I, J \in \mathbf{F}(D)$:

- (1) $(aD)^* = aD$ and $(aI)^* = aI^*$,
- (2) $I \subseteq I^*$, and if $I \subseteq J$, then $I^* \subseteq J^*$, and
- (3) $(I^*)^* = I^*$.

Given a star operation * on D, we can use * to construct two new star operations $*_f$ and $*_w$ on D. The $*_f$ -operation is defined by $I^{*_f} = \bigcup \{(a_1, \ldots, a_n)^* | (0) \neq (a_1, \ldots, a_n) \subseteq I\}$ and the $*_w$ -operation is defined by $I^{*_w} = \{x \in K | xJ \subseteq I\}$

for J a nonzero finitely generated ideal of D with $J^* = D$ for all $I \in \mathbf{F}(D)$. Clearly, $(*_f)_f = *_f$, $(*_w)_f = *_w = (*_f)_w$. An $I \in \mathbf{F}(D)$ is called a *-*ideal* if $I^* = I$. A *-ideal I is said to be of finite type if $I = (a_1, \ldots, a_n)^*$ for some $a_i \in I$. A *-ideal is called a maximal *-*ideal* if it is maximal among proper integral *-ideals of D. Let *-Max(D) denote the set of maximal *-*ideal* of D and Max(D) be the set of maximal ideals of D. It is known that $*_f$ -Max $(D) \neq \emptyset$ if D is not a field, each maximal $*_f$ -ideal is a prime ideal, a prime ideal minimal over a $*_f$ -ideal. An $I \in \mathbf{F}(D)$ is said to be *-*invertible* if $(II^{-1})^* = D$, where $I^{-1} = \{x \in K | xI \subseteq D\}$, while D is a Prüfer *-*multiplication domain* (P*MD) if each nonzero finitely generated ideal of D is $*_f$ -invertible. It is well known that $I \in \mathbf{F}(D)$ is $*_f$ -invertible if and only if I^{*_f} is of finite type and ID_P is principal for all $P \in *_f$ -Max(D) [12, Proposition 2.6]. Also, we know that D is a P*MD if and only if D_P is a valuation domain for all $P \in *_f$ -Max(D) [11, Theorem 1.1].

The simplest example of star operations is the *d*-operation. Other wellknown examples of star operations are the *v*-, *t*-, and *w*-operations. The *d*operation is just the identity function on $\mathbf{F}(D)$, i.e., $I^d = I$ for all $I \in \mathbf{F}(D)$; so $d = d_f = d_w$. The *v*-operation is defined by $I^v = (I^{-1})^{-1}$, whereas $t = v_f$ and $w = v_w$, i.e., $I^t = I^{v_f}$ and $I^w = I^{v_w}$ for all $I \in \mathbf{F}(D)$. If $*_1$ and $*_2$ are star operations on *D*, then we mean by $*_1 \leq *_2$ that $I^{*_1} \subseteq I^{*_2}$ for all $I \in \mathbf{F}(D)$. It is clear that $*_w \leq *_f \leq *$ and $d \leq * \leq v$ for any star operation *. Also, if $*_1 \leq *_2$, then $(*_1)_w \leq (*_2)_w$ and $(*_1)_f \leq (*_2)_f$; hence $d \leq *_w \leq w$ and $d \leq *_f \leq t$.

Let * be a star operation on *D*. Put $N_* = \{f \in D[\mathbf{X}] | c(f)^* = D\}$; then $N_* = N_{*_f} = N_{*_w}$ and $N_* = D[\mathbf{X}] - \bigcup_{P \in *_f \cdot Max(D)} P[\mathbf{X}]$. Hence $D[\mathbf{X}]_{N_*} = \{\frac{f}{g} | f \in D[\mathbf{X}] \text{ and } g \in N_*\}$, called the (*-)Nagata ring of *D*, is an overring of $D[\mathbf{X}]$. The ring $D[\mathbf{X}]_{N_*}$ has many interesting ring-theoretic properties. For example, each invertible ideal of $D[\mathbf{X}]_{N_*}$ is principal [12, Theorem 2.14]; *D* is a P*MD if and only if $D[\mathbf{X}]_{N_*}$ is a Prüfer domain, if and only if $D[\mathbf{X}]_{N_*}$ is a Bezout domain [5, Theorem 2.2]; and *D* is a Krull domain if and only if $D[\mathbf{X}]_{N_v}$ is a Dedekind domain, if and only if $D[\mathbf{X}]_{N_v}$ is a principal ideal domain [15].

Lemma 1.1. (1) $\operatorname{Max}(D[\mathbf{X}]_{N_*}) = \{P[\mathbf{X}]_{N_*} | P \in *_f \operatorname{-Max}(D)\}.$ (2) $*_w \operatorname{-Max}(D) = *_f \operatorname{-Max}(D).$ (3) $I^{*_w} = \bigcap_{P \in *_f \operatorname{-Max}(D)} ID_P = ID[\mathbf{X}]_{N_*} \cap K \text{ for all } I \in \mathbf{F}(D).$

Proof. (1) [12, Proposition 2.1]. (2) [2, Theorem 2.16]. (3) [4, Lemma 2.3]. \Box

As in [4], we say that an overring R of D is *-linked over D if $R[\mathbf{X}]_{N_*} \cap K = R$. It is known that R is *-linked over D if and only if $(Q \cap D)^{*_f} \subsetneq D$ for each prime t-ideal Q of R, if and only if $I^* = D$ implies $(IR)^v = R$ for each nonzero finitely generated ideal I of D [4, Proposition 3.2]. Next, we use the star operation * on D to construct a new star operation $*_D$ on a *-linked overring R of D. **Lemma 1.2** ([4, Lemma 3.1]). Let R be a *-linked overring of D, X be an indeterminate over D, and put $I^{*_D} = IR[X]_{N_*} \cap K$ for $I \in \mathbf{F}(R)$. Then the map $*_D : \mathbf{F}(R) \to \mathbf{F}(R)$, given by $I \mapsto I^{*_D}$, is a star operation on R and $(*_D)_w = *_D$.

We say that D is a *-Noetherian domain if D satisfies the ascending chain condition on integral *-ideals of D; equivalently, if each *-ideal of D is of finite type. Hence Noetherian domains are just the d-Noetherian domains. A v-Noetherian domain is a Mori domain, while a w-Noetherian domain is a strong Mori domain (SM-domain). It is clear that if $*_1 \leq *_2$ are star operations, then $*_1$ -Noetherian domains are $*_2$ -Noetherian domains; hence Noetherian domains \Rightarrow SM-domains \Rightarrow Mori domains. Also, since $*_w \leq w$, a $*_w$ -Noetherian domain is an SM-domain. Note that $I^{*w}D_P = ID_P$ by Lemma 1.1(3); hence if D is a $*_w$ -Noetherian domain, then D_P is Noetherian for all $P \in *_f$ -Max(D). The global transform of D is defined by $D^g = \{a \in K | aM_1 \cdots M_k \subseteq D$ where each M_i is a maximal ideal of $D\}$. As in [4], the *-global transform of D is the ring $D^{*g} = \{x \in K | xP_1 \cdots P_k \subseteq D$ for some $P_i \in *_f$ -Max $(D)\}$. Clearly, $D^{*g} = D^{(*_w)g} = D^{(*_w)g}$ and the global transform D^g of D is just the d-global transform.

Lemma 1.3. Let D be a *-Noetherian domain.

- (1) $(D[\mathbf{X}]_{N_*})^g \cap K = D^{*g}.$
- (2) D^{*g} is *-linked over D.
- (3) $D = D^{*_g}$ if and only if each maximal $*_f$ -ideal of D is not a t-ideal. In particular, $D \subseteq D^{wg}$.
- (4) Let R be a *-linked overring of a $*_w$ -Noetherian domain D, and let $*_D$ be the star operation on R as in Lemma 1.2. If $R \subseteq D^{*g}$, then R is a $*_D$ -Noetherian domain, and hence R is an SM-domain.
- (5) If $*_1 \leq *_2$ are star operations on D, then $D^{(*_1)g} \subseteq D^{(*_2)g}$. In particular, $D^g \subseteq D^{*g} \subseteq D^{wg}$.

Proof. (1) [4, Lemma 3.5]. (2) By (1), $D^{*g}[\mathbf{X}]_{N_*} \subseteq (D[\mathbf{X}]_{N_*})^g$. Hence $D^{*g} \subseteq D^{*g}[\mathbf{X}]_{N_*} \cap K \subseteq (D[\mathbf{X}]_{N_*})^g \cap K = D^{*g}$, and thus $D^{*g}[\mathbf{X}]_{N_*} \cap K = D^{*g}$. Thus D^{*g} is *-linked over D. (3) Assume to the contrary that there is a maximal $*_{f}$ -ideal P of D with $P^t = P$; so $D \subsetneq P^{-1}$ because P is of finite type. But, since $P^{-1}P \subseteq D$, we have $P^{-1} \subseteq D^{*g}$. Thus $D \subsetneq D^{*g}$. Conversely, assume that each maximal $*_f$ -ideal of D is not a t-ideal, and let $x \in D^{*g}$. Then there exist some maximal $*_f$ -ideals P_1, \ldots, P_n of D (not necessarily distinct) such that $xP_1 \cdots P_n \subseteq D$; so $x \in xD = x(P_1 \ldots P_n)^t = (xP_1 \cdots P_n)^t \subseteq D^t = D$. Hence $D^{*g} \subseteq D$, and thus $D = D^{*g}$. (4) [4, Theorem 3.6(1)]. (5) This follows because if $P \in (*_1)_f$ -Max(D), then either $P^{(*_2)_f} = D$ or $P \in (*_2)_f$ -Max(D). □

Let X be an indetermainate over D and $N_v = \{f \in D[X] | c(f)^v = D\}$. Let $D^{[w]} = \{x \in K | xI^w \subseteq I^w \text{ for some nonzero finitely generated ideal } I \text{ of } D\}$. Then $D^{[w]}$, called the *w*-integral closure of D, is an integrally closed overring of D. It is known that $D^{[w]}$ is t-linked over D [8, Lemma 1.2]; if \overline{D} is the integral closure of D, then $D^{[w]} = \overline{D}[X]_{N_v} \cap K = \bigcap_{P \in t\text{-Max}(D)} \overline{D}_{D \setminus P}$ [8, Theorem 1.3]; and $D^{[w]}$ is the smallest integrally closed *t*-linked overring of D [9, Proposition 2.13(b)].

A prime ideal P of D is said to be strongly prime if $xy \in P$ and $x, y \in K$ imply $x \in P$ or $y \in P$. The D is called a pseudo valuation domain (PVD) if each prime ideal of D is strongly prime; equivalently, if D is a quasi-local domain whose maximal ideal is strongly prime. Also, D is called a *locally PVD* (LPVD) if D_M is a PVD for each $M \in Max(D)$, while D is a *t*-locally PVD (*t*-LPVD) if D_P is a PVD for all $P \in t$ -Max(D). Clearly, the notion of PVDs is a generalization of valuation domains. Hence the notions of LPVDs and *t*-LPVDs can be considered as generalizations of Prüfer domains and PvMDs. Chang proved that $D[X]_{N_v}$ is an LPVD if and only if D is a *t*-LPVD and $D^{[w]}$ is a PvMD, if and only D[X] is a *t*-LPVD [6, Theorem 3.8] and that $D[X]_{N_d}$ is an LPVD if and only if D is an LPVD and \overline{D} is a Prüfer domain [6, Corollary 3.9].

2. *-Noetherian domains and *-global transforms

Throughout D denotes an integral domain with quotient field K, * is a star operation on D, \mathbf{X} is a nonempty set of indeterminates over D, and $N_* = \{f \in D[\mathbf{X}] | c(f)^* = D\}$.

Our first result gives a star operation [*] on $D[\mathbf{X}]$, which is an extension of the $*_w$ to $D[\mathbf{X}]$ in the sense that $(I[\mathbf{X}])^{[*]} \cap K = I^{*_w}$ for each $I \in \mathbf{F}(D)$. This extension was first studied for $|\mathbf{X}| = 1$ by Chang and Fontana [7] in a more general setting of semistar operations. The proof of Theorem 2.1 is basically the same as that of [7, Theorem 2.3], and hence we omit the proof.

Theorem 2.1. Let $\mathbf{X} \cup \{Y\}$ be a nonempty set of indeterminates over D, and let

$$\boldsymbol{\Delta} = \{ Q \in Spec(D[\mathbf{X}]) \mid Q \cap D = (0) \text{ with } htQ = 1 \\ or \ Q = (Q \cap D)[\mathbf{X}] \text{ and } (Q \cap D)^{*_f} \subsetneq D \} .$$

Set $S = D[\mathbf{X}][Y] \setminus (\bigcup \{Q[Y] \mid Q \in \mathbf{\Delta}\})$ and define

$$A^{[*]} = A[Y]_{\mathcal{S}} \cap K(\mathbf{X}) \quad for \ all \ A \in F(D[\mathbf{X}]).$$

- (1) The mapping $[*] : \mathbf{F}(D[\mathbf{X}]) \to \mathbf{F}(D[\mathbf{X}])$, given by $A \mapsto A^{[*]}$, is a star operation on $D[\mathbf{X}]$ such that $[*] = [*]_f = [*]_w$.
- (2) $[*] = [*_f] = [*_w].$
- (3) $(ID[\mathbf{X}])^{[*]} \cap K = I^{*_w} \text{ for all } I \in \mathbf{F}(D).$
- (4) $(ID[\mathbf{X}])^{[*]} = I^{*_w}D[\mathbf{X}] \text{ for all } I \in \mathbf{F}(D).$
- (5) [*]-Max(D[**X**]) = { $Q \mid Q \in Spec(D[$ **X**]) such that $Q \cap D = (0)$, htQ = 1, and $(\sum_{q \in Q} c(g))^{*_f} = D$ } \cup {P[**X**] $\mid P \in *_f$ -Max(D)}.
- (6) [v] is the w-operation on $D[\mathbf{X}]$.

Corollary 2.2. Let [*] be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. If Q is a prime ideal of $D[\mathbf{X}]$ such that $Q = fK[\mathbf{X}] \cap D[\mathbf{X}]$ for some $0 \neq f \in K[\mathbf{X}]$, then Q is a maximal [*]-ideal if and only if there exists a polynomial $f \in Q$ such that $c(f)^{*_f} = D$.

Proof. Suppose that Q is a maximal [*]-ideal of $D[\mathbf{X}]$. Then $(\sum_{g \in Q} c(g))^{*_f} = D$ by Theorem 2.1(5), and hence there are some $g_1, \ldots, g_n \in Q$ such that $(c(g_1) + \cdots + c(g_n))^{*_f} = D$. Let

 $f = g_1 + g_2 X^{\deg(g_1)+1} + \dots + g_n X^{\deg(g_1)+\dots+\deg(g_{n-1})+n-1},$

where $X \in \mathbf{X}$. Then $f \in Q$ and $c(f)^{*_f} = D$. For the converse, note that $Q \cap D = (0)$, htQ = 1, and $D = c(f)^{*_f} \subseteq (\sum_{g \in Q} c(g))^{*_f} \subseteq D$ or $(\sum_{g \in Q} c(g))^{*_f} = D$. Thus Q is a maximal [*]-ideal by Theorem 2.1(5).

Let Q be a prime ideal of $D[\mathbf{X}]$. It is clear that $(\sum_{g \in Q} c(g))^{*_f} = D$ if and only if $Q \notin P[\mathbf{X}]$ for all $P \in *_f$ -Max(D). Also, if \mathbf{X}_1 is a nonempty subset of \mathbf{X} , then $AD[\mathbf{X}] = A[\mathbf{X} - \mathbf{X}_1]$ for all ideals A of $D[\mathbf{X}_1]$. In the proof of Corollary 2.3, we use these facts without comments.

Corollary 2.3. Let \mathbf{X}_1 be a nonempty subset of \mathbf{X} , \star_1 and \star be the extensions of * to $D[\mathbf{X}_1]$ and $D[\mathbf{X}]$, respectively, as in Theorem 2.1. If $[\star_1]$ is the star operation on $D[\mathbf{X}]$ canonically associated to \star_1 as in Theorem 2.1, then $\star = [\star_1]$.

Proof. By Theorem 2.1(1) and Lemma 1.1(3), it suffices to show that

 $\star \operatorname{-Max}(D[\mathbf{X}]) = [\star_1] \operatorname{-Max}(D[\mathbf{X}]).$

 $\begin{array}{l} (\subseteq) \mbox{ Let } Q \in \star - \mbox{Max}(D[\mathbf{X}]); \mbox{ so either } Q \cap D = (0), \mbox{ ht} Q = 1 \mbox{ and } (\sum_{g \in Q} c(g))^{*_f} = \\ D \mbox{ or } Q = P[\mathbf{X}] \mbox{ for some } P \in *_f - \mbox{Max}(D). \mbox{ If } Q = P[\mathbf{X}], \mbox{ then } P[\mathbf{X}_1] \in \star_1 - \\ \mbox{Max}(D[\mathbf{X}_1]) \mbox{ and } P[\mathbf{X}] = P[\mathbf{X}_1][\mathbf{X} - \mathbf{X}_1]. \mbox{ Thus } Q \in [\star_1] - \mbox{Max}(D[\mathbf{X}]). \end{array}$

Next, assume that $Q \cap D = (0)$. If $Q \cap D[\mathbf{X}_1] \neq (0)$, then, since $\operatorname{ht} Q = 1$, we have $Q = (Q \cap D[\mathbf{X}_1])D[\mathbf{X}]$ and $\operatorname{ht}(Q \cap D[\mathbf{X}_1]) = 1$. Also, since $Q \notin P[\mathbf{X}]$ for all $P \in *_f\operatorname{-Max}(D)$, $Q \cap D[\mathbf{X}_1] \notin P[\mathbf{X}_1]$. Hence $Q \cap D[\mathbf{X}_1] \in \star_1\operatorname{-Max}(D[\mathbf{X}_1])$, and thus $Q \in [\star_1]\operatorname{-Max}(D[\mathbf{X}])$. If $Q \cap D[\mathbf{X}_1] = (0)$, then, clearly, $Q \notin Q_0[\mathbf{X}]$ for all $Q_0 \in \star_1\operatorname{-Max}(D[\mathbf{X}_1])$. Thus $Q \in [\star_1]\operatorname{-Max}(D[\mathbf{X}])$.

 $(\supseteq) \text{ Let } M \in [\star_1]\text{-Max}(D[\mathbf{X}]). \text{ If } M \cap D[\mathbf{X}_1] \neq (0), \text{ then } M = (M \cap D[\mathbf{X}_1])D[\mathbf{X}] \text{ and } M \cap D[\mathbf{X}_1] \in [\star_1]\text{-Max}(D[\mathbf{X}]); \text{ so either } (M \cap D[\mathbf{X}_1]) \cap D \in \star_f\text{-}Max(D) \text{ or } (M \cap D[\mathbf{X}_1]) \cap D = (0), \text{ ht}(M \cap D[\mathbf{X}_1]) = 1 \text{ and } (\sum_{g \in M \cap D[\mathbf{X}_1]} c(g))^{\star_f} = D. \text{ Hence } M = (M \cap D)D[\mathbf{X}] \text{ and } M \cap D \in \star_f\text{-Max}(D) \text{ or } M \cap D = (0), \text{ ht} M = 1 \text{ and } (\sum_{g \in M} c(g))^{\star_f} = D. \text{ Thus } M \in \star\text{-Max}(D[\mathbf{X}]).$

Next, assume that $M \cap D[\mathbf{X}_1] = (0)$. Then $M \cap D = (0)$, htM = 1, and $M \notin P[\mathbf{X}]$ for all $P \in *_f$ -Max(D); so $(\sum_{f \in M} c(f))^{*_f} = D$. Thus $M \in *_{-}$ Max $(D[\mathbf{X}])$.

We next prove that D is a $*_w$ -Noetherian domain if and only if $D[\mathbf{X}]$ is a [*]-Noetherian domain, which was proved for $|\mathbf{X}| = 1$ by Chang and Fontana [7, Corollary 2.5] in a more general setting of semistar operations. This also

recovers Park's result that D is an SM-domain (if and) only if $D[\mathbf{X}]$ is an SM-domain [16, Theorem 4.7] by Theorem 2.1(2) and (6).

Corollary 2.4. Let [*] be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. Then the following statements are equivalent.

- (1) D is a $*_w$ -Noetherian domain.
- (2) Each prime $*_w$ -ideal of D is of finite type.
- (3) $D[\mathbf{X}]_{N_*}$ is a Noetherian domain.
- (4) $D[\mathbf{X}]$ is a [*]-Noetherian domain.

Proof. (1) \Leftrightarrow (2) \Leftrightarrow (3) [4, Theorem 2.6].

(3) \Rightarrow (4) Note that $[*]_w = [*]$ by Theorem 2.1(1); so by the equivalence of (1) and (2), it suffices to show that each prime [*]-ideal of $D[\mathbf{X}]$ is of finite type. Let Q be a prime [*]-ideal of $D[\mathbf{X}]$.

Case 1. $(\sum_{g \in Q} c(g))^{*_f} = D$. Then Q is a maximal [*]-ideal and htQ = 1 by Theorem 2.1(5) and there exists an $f \in Q$ such that $c(f)^{*_f} = D$ by Corollary 2.2. Also, note that $QK[\mathbf{X}] = hK[\mathbf{X}]$ for some $h \in Q$. Hence if we set $A = (f, h)D[\mathbf{X}]$, then $Q_M = A_M$ for all $M \in [*]$ -Max $(D[\mathbf{X}])$. Thus $Q = A^{[*]}$ by Lemma 1.1(3).

Case 2. $(\sum_{g \in Q} c(g))^{*_f} \subseteq D$. Then $QD[\mathbf{X}]_{N_*} \subseteq D[\mathbf{X}]_{N_*}$, and hence by (3), there exists a finitely generated ideal B of $D[\mathbf{X}]$ such that $QD[\mathbf{X}]_{N_*} = BD[\mathbf{X}]_{N_*}$. Let $\Omega = \{M \in [*]$ -Max $(D[\mathbf{X}])|M \cap D = (0)\}$, and note that if $M \in \Omega$, then htM = 1; so the intersection $\cap_{M \in \Omega} D[\mathbf{X}]_M$ has finite character (note that $K[\mathbf{X}]$ is a UFD). Also, since $Q \not\subseteq M$ for all $M \in \Omega$, we can choose some $a, b \in Q$ such that $(a, b) \not\subseteq M$ for all $M \in \Omega$. Replacing B with (B, a, b), we may assume that $B \not\subseteq M$ or $QD[\mathbf{X}]_M = D[\mathbf{X}]_M = BD[\mathbf{X}]_M$ for all $M \in \Omega$. Thus Q = $\cap_{P \in *_f \text{-Max}(D)} QD[\mathbf{X}]_{P[\mathbf{X}]} \cap (\cap_{M \in \Omega} QD[\mathbf{X}]_M) = QD[\mathbf{X}]_{N_*} \cap (\cap_{M \in \Omega} BD[\mathbf{X}]_M) =$ $BD[\mathbf{X}]_{N_*} \cap (\cap_{M \in \Omega} BD[\mathbf{X}]_M) = \cap_{P \in *_f \text{-Max}(D)} BD[\mathbf{X}]_{P[\mathbf{X}]} \cap (\cap_{M \in \Omega} BD[\mathbf{X}]_M) =$ $B^{[*]}$ by Lemma 1.1(1) and (3).

 $\begin{array}{l} (4) \Rightarrow (1) \text{ Let } I \text{ be a } *_w \text{-ideal of } D; \text{ then } (I[\mathbf{X}])^{[*]} = I[\mathbf{X}] \text{ by Theorem 2.1(4).} \\ \text{Hence there are some } f_1, \ldots, f_n \in I[\mathbf{X}] \text{ such that } I[\mathbf{X}] = ((f_1, \ldots, f_n)D[\mathbf{X}])^{[*]}. \\ \text{Put } J = c(f_1) + \cdots c(f_n); \text{ then } J \subseteq I \text{ is finitely generated and } I[\mathbf{X}] = (J[\mathbf{X}])^{[*]} = J^{*_w}[\mathbf{X}]. \\ \text{Thus } I = I[\mathbf{X}] \cap K = J^{*_w}[\mathbf{X}] \cap K = J^{*_w}. \end{array}$

Recall that if $f, g \in K[\mathbf{X}]$, then there exists a positive integer m = m(f, g)such that $c(f)^{m+1}c(g) = c(f)^m c(fg)$ [10, Corollary 28.3]; so if $c(f)^* = D$, then $c(g)^* = c(fg)^*$. In particular, if $f_1, \ldots, f_n \in D[\mathbf{X}]$, then $c(f_i)^* = D$ for $i = 1, \ldots, n$ if and only if $c(f_1 \cdots f_n)^* = D$.

Theorem 2.5. Let [*] be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. Then $(D[\mathbf{X}]_{N_*})^g = D^{*g}[\mathbf{X}]_{N_*} = (D[\mathbf{X}])^{[*]g}$.

Proof. Proof of $(D[\mathbf{X}]_{N_*})^g \subseteq D^{*g}[\mathbf{X}]_{N_*}$.

We first show that $(D[\mathbf{X}]_{N_*})^g \cap K[\mathbf{X}] \subseteq D^{*g}[\mathbf{X}]_{N_*}$. Let $g \in (D[\mathbf{X}]_{N_*})^g \cap K[\mathbf{X}]$. Then there are maximal $*_f$ -ideals P_1, \ldots, P_n of D such that $gP_1 \cdots P_n \subseteq$

 $gP_1[\mathbf{X}]_{N_*} \cdots P_n[\mathbf{X}]_{N_*} \subseteq D[\mathbf{X}]_{N_*}$ by Lemma 1.1(1). So if $0 \neq a \in P_1 \cdots P_n$, then $ag = \frac{h}{f}$ or afg = h for some $h \in D[\mathbf{X}]$ and $f \in N_*$; hence $a(c(g)) \subseteq a(c(g)^*) = a(c(f)c(g))^* = a(c(fg)^*) = c(h)^* \subseteq D$. Since a is an arbitrary element of $P_1 \cdots P_n$, we have $c(g)P_1 \cdots P_n \subseteq D$, and hence $c(g) \subseteq D^{*g}$. Thus $g \in D^{*g}[\mathbf{X}] \subseteq D^{*g}[\mathbf{X}]_{N_*}$.

Next, let $u \in (D[\mathbf{X}]_{N_*})^g$. Then there are maximal $*_f$ -ideals P'_1, \ldots, P'_k of D such that $uP'_1[\mathbf{X}] \cdots P'_k[\mathbf{X}] \subseteq uP'_1[\mathbf{X}]_{N_*} \cdots P'_k[\mathbf{X}]_{N_*} \subseteq D[\mathbf{X}]_{N_*}$ by Lemma 1.1(1). So for any $0 \neq b \in P'_1 \cdots P'_k$, we have $ub = \frac{h_1}{f_1} \in D[\mathbf{X}]_{N_*}$, where $h_1 \in D[\mathbf{X}]$ and $f_1 \in N_*$. Hence $u = \frac{b^{-1}h_1}{f_1} \in K[\mathbf{X}]_{N_*}$ and $f_1u = f_1\frac{b^{-1}h_1}{f_1} = b^{-1}h_1 \in K[\mathbf{X}] \cap (D[\mathbf{X}]_{N_*})^g$. By the above paragraph, $f_1u \in D^{*g}[\mathbf{X}]_{N_*}$, and since $f_1 \in N_*$, we have $u \in D^{*g}[\mathbf{X}]_{N_*}$. Thus $(D[\mathbf{X}]_{N_*})^g \subseteq D^{*g}[\mathbf{X}]_{N_*}$.

Proof of $D^{*g}[\mathbf{X}]_{N_*} \subseteq (D[\mathbf{X}])^{[*]g}$.

Note that if P is a maximal $*_f$ -ideal of D, then $P[\mathbf{X}]$ is a maximal [*]-ideal of $D[\mathbf{X}]$ by Theorem 2.1(5). So $D^{*g} \subseteq (D[\mathbf{X}])^{[*]g}$, and hence $D^{*g}[\mathbf{X}] \subseteq (D[\mathbf{X}])^{[*]g}$. Hence it suffices to show that if $f \in N_*$, then $\frac{1}{f} \in (D[\mathbf{X}])^{[*]g}$.

Since $K[\mathbf{X}]$ is a UFD, we can write $f = f_1^{e_1} \cdots f_k^{e_k}$, where each $f_i \in K[\mathbf{X}]$, each e_i is a positive integer and $f_i K[\mathbf{X}]$ is a prime ideal of $K[\mathbf{X}]$ such that $f_i K[\mathbf{X}] \neq f_j K[\mathbf{X}]$ for $i \neq j$. If $g \in K[\mathbf{X}]$ such that $fg \in D[\mathbf{X}]$, then $c(g) \subseteq c(g)^* = (c(f)c(g))^* = c(fg)^* \subseteq D[\mathbf{X}]$; so $g \in D[\mathbf{X}]$. Hence $fK[\mathbf{X}] \cap D[\mathbf{X}] \subseteq fD[\mathbf{X}]$, and thus $fK[\mathbf{X}] \cap D[\mathbf{X}] = fD[\mathbf{X}]$. Also, $fD[\mathbf{X}] = fK[\mathbf{X}] \cap D[\mathbf{X}] = (f_1^{e_1}K[\mathbf{X}] \cap D[\mathbf{X}]) \cap \cdots \cap (f_k^{e_k}K[\mathbf{X}] \cap D[\mathbf{X}]) \subseteq f_iK[\mathbf{X}] \cap D[\mathbf{X}]$ for $i = 1, \ldots, k$. Since $c(f)^* = D$, each $f_iK[\mathbf{X}] \cap D[\mathbf{X}]$ is a maximal [*]-ideal of $D[\mathbf{X}]$ by Corollary 2.2. Also, since $(f_iK[\mathbf{X}] \cap D[\mathbf{X}])^{e_i} \subseteq (f_iK[\mathbf{X}] \cap D[\mathbf{X}])^{e_i}K[\mathbf{X}] \cap D[\mathbf{X}] \cap D[\mathbf{X}] = f_i^{e_i}K[\mathbf{X}] \cap D[\mathbf{X}]$, we have $(f_1K[\mathbf{X}] \cap D[\mathbf{X}])^{e_1} \cdots (f_kK[\mathbf{X}] \cap D[\mathbf{X}])^{e_k} \subseteq (f_1K[\mathbf{X}] \cap D[\mathbf{X}])^{e_i} \subseteq fD[\mathbf{X}]$. Hence $\frac{1}{f}(f_1K[\mathbf{X}] \cap D[\mathbf{X}])^{e_i}$.

Proof of $(D[\mathbf{X}])^{[*]g} \subseteq (D[\mathbf{X}]_{N_*})^g$.

Let $u \in (D[\mathbf{X}])^{[*]g}$. Recall that if Q is a maximal [*]-ideal of $D[\mathbf{X}]$ with $Q \cap D \neq (0)$, then $Q \cap D$ is a maximal $*_f$ -ideal of D and $Q = (Q \cap D)[\mathbf{X}]$ by Theorem 2.1(5). Hence $uQ_1 \cdots Q_k P_1[\mathbf{X}] \cdots P_m[\mathbf{X}] \subseteq D[\mathbf{X}]$ for some maximal [*]-ideals Q_1, \ldots, Q_k of $D[\mathbf{X}]$ with $Q_i \cap D = (0)$ and maximal $*_f$ -ideals P_1, \ldots, P_m of D. Also, by Corollary 2.2, there exists a polynomial $h_i \in Q_i$ such that $c(h_i)^* = D$. Let $h = h_1 \cdots h_k$; then $c(h)^* = D$, and hence $h \in N_*$. So $uhP_1[\mathbf{X}] \cdots P_m[\mathbf{X}] \subseteq D[\mathbf{X}]$ or $uP_1[\mathbf{X}] \cdots P_m[\mathbf{X}] \subseteq D[\mathbf{X}]_{N_*}$. Hence $uP_1[\mathbf{X}]_{N_*} \cdots P_m[\mathbf{X}]_{N_*} \subseteq D[\mathbf{X}]_{N_*}$, and since each $P_i[\mathbf{X}]_{N_*}$ is a maximal ideal of $D[\mathbf{X}]_{N_*}$ by Lemma 1.1(1), we have $u \in (D[\mathbf{X}]_{N_*})^g$.

Recall that each maximal ideal of $D[\mathbf{X}]_{N_v}$ is a *t*-ideal [12, Corollary 2.3]; hence $(D[\mathbf{X}]_{N_v})^{wg} = (D[\mathbf{X}]_{N_v})^g$. Also, [w] = w on $D[\mathbf{X}]$ by Theorem 2.1(2) and (6). Thus the next result is the *d*- and *w*-operation versions of Theorem 2.5.

Corollary 2.6. (1)
$$D^{g}[\mathbf{X}]_{N_{d}} = (D[\mathbf{X}])^{[d]g} = (D[\mathbf{X}]_{N_{d}})^{g}$$
.
(2) $D^{wg}[\mathbf{X}]_{N_{v}} = (D[\mathbf{X}])^{wg} = (D[\mathbf{X}]_{N_{v}})^{g} = (D[\mathbf{X}]_{N_{v}})^{wg}$.

It is well known that if D is a Noetherian domain, then each ring between D and D^g is a Noetherian domain [14, Corollary]. Thus by Corollary 2.4 and Theorem 2.5, we have:

Corollary 2.7. If D is a $*_w$ -Noetherian domain, then each ring between $D[\mathbf{X}]_{N_*}$ and $D^{*g}[\mathbf{X}]_{N_*}$ is a Noetherian domain.

The *-dimension of D, denoted by *-dim(D), is the number of prime *-ideals in a longest chain of prime *-ideals of D, or infinity if there is no such longest chain. If D is a rank one non-discrete valuation domain, then v-dim(D) = 0. However, if D is not a field, then $*_f$ -dim $(D) \ge 1$; in particular, $*_f$ -dim(D) = 1if and only if each prime $*_f$ -ideal of D is a maximal $*_f$ -ideal.

Let $\Lambda = \{P \in *_f \operatorname{-Max}(D) | \operatorname{ht} P \geq 2\}$, and let $\tilde{D} = \bigcap_{P \in \Lambda} D_P$. Hence $\Lambda = \emptyset$ if and only if $*_f \operatorname{-dim}(D) = 1$ (in this case, $\tilde{D} = K$). It is known that if Dis a Noetherian domain, then $R := \bigcap \{D_M | M \in \operatorname{Max}(D) \text{ and } \operatorname{ht} M \geq 2\}$ is a ring such that $D \subseteq R \subseteq D^g$ [1, Proposition 1]. We next study the relationship between D, \tilde{D} , and D^{*g} .

Proposition 2.8. Let D be a $*_w$ -Noetherian domain, $\Lambda = \{P \in *_f \operatorname{-Max}(D) |$ ht $P \geq 2\}$, and $\widetilde{D} = \bigcap_{P \in \Lambda} D_P$.

- (1) \widetilde{D} is *-linked over D.
- (2) $\widetilde{D} \subseteq D^{*g}$. Hence if $*_D$ is the star operation on \widetilde{D} as in Lemma 1.2, then \widetilde{D} is a $*_D$ -Noetherian domain.
- (3) $\widetilde{D} \subsetneq D^{*g}$ if and only if there is $P \in \Lambda$ such that P is a t-ideal.
- (4) $D \subsetneq D$ if and only if there is a maximal $*_f$ -ideal P of D with ht P = 1.
- (5) $D \subsetneq \widetilde{D} = D^{*g}$ if and only if there is a maximal $*_f$ -ideal P of D with $\operatorname{ht} P = 1$ and each $Q \in \Lambda$ is not a t-ideal.
- (6) If $*_f$ -dim(D) = 1, then $\widetilde{D} = D^{*g} = K$.
- (7) If $*_w = w$, then $\widetilde{D} = D^{wg}$ if and only if $t \operatorname{-dim}(D) = 1$.
- (8) If $*_w = w$ and $\Lambda \neq \emptyset$, then $t \operatorname{-Max}(\widetilde{D}) = \{PD_P \cap \widetilde{D} | P \in \Lambda\}$ and $t \operatorname{-dim}(D) = t \operatorname{-dim}(\widetilde{D}).$

Proof. (1) Clearly, if $P \in \Lambda$, then D_P is *-linked over D; so $D_P[X]_{N_*} \cap K = D_P$. Hence $\widetilde{D} \subseteq \widetilde{D}[X]_{N_*} \cap K \subseteq \cap_{P \in \Lambda} (D_P[X]_{N_*} \cap K) = \cap_{P \in \Lambda} D_P = \widetilde{D}$ or $\widetilde{D}[X]_{N_*} \cap K = \widetilde{D}$. Thus \widetilde{D} is *-linked over D.

(2) Let $x \in \widetilde{D}$. Since $D \subseteq D^{*g}$, we may assume $x \notin D$, and so $(D:x) = \{a \in D | ax \in D\} \subsetneq D$. Note that $x(D:x)^v = (x(D:x))^v \subseteq D^v = D$; hence $(D:x)^v \subseteq (D:x)$, and thus $(D:x)^v = (D:x)$. Note also that, since D is a $*_w$ -Noetherian domain, (D:x) has a primary decomposition [4, Corollary 2.7].

Let $(D:x) = Q_1 \cap \cdots \cap Q_k$ be a primary decomposition of (D:x) such that $\sqrt{Q_i} \neq \sqrt{Q_j}$ for $i \neq j$. Since (D:x) is a $*_w$ -ideal, we may assume

that each Q_i is a $*_w$ -ideal. Then, since $x \in D \subseteq D_P$ for all $P \in \Lambda$, we have $D_P = (D_P : xD_P) = (D : x)D_P = Q_1D_P \cap \cdots \cap Q_kD_P$. Hence each $\sqrt{Q_i}$ is a maximal $*_f$ -ideal and $\operatorname{ht}(\sqrt{Q_i}) = 1$. Put $\sqrt{Q_i} = P_i$. Since D is a $*_w$ -Noetherian domain, P_i is of finite type, i.e., $P_i = (c_1, \ldots, c_n)^{*_w}$ for some $c_i \in D$. Also, since $\sqrt{Q_i} = P_i$, there exists a positive integer e_i such that $P_i^{e_i} \subseteq (P_i^{e_i})^{*_w} \subseteq Q_i$. So $P_1^{e_1} \cdots P_k^{e_k} \subseteq Q_1 \cap \cdots \cap Q_k = (D : x)$, and hence $xP_1^{e_1} \cdots P_k^{e_k} \subseteq D$. Thus $x \in D^{*_g}$.

Moreover, since \widetilde{D} is *-linked over D by (1), \widetilde{D} is a *_D-Noetherian domain by Lemma 1.3(4).

(3) Suppose that $\widetilde{D} \subseteq D^{*g}$, and choose $x \in D^{*g} - \widetilde{D}$. Then there exist some maximal $*_f$ -ideals P_1, \ldots, P_n of D (not necessarily distinct) such that $xP_1 \cdots P_n \subseteq D$. Since $x \notin D$ and $(xP_1 \cdots P_n)^t \subseteq D$, we may assume that each P_i is a t-ideal. If $\operatorname{ht} P_i = 1$ for $i = 1, \ldots, n$, then $(P_1 \cdots P_n)D_P = D_P$, and hence $x \in xD_P = (xP_1 \cdots P_n)D_P \subseteq D_P$ for all $P \in \Lambda$; so $x \in \bigcap_{P \in \Lambda} D_P = \widetilde{D}$, a contradiction. Thus at least one of the P_i 's is a t-ideal of height ≥ 2 .

For the converse, let P be a maximal $*_f$ -ideal of D such that $\operatorname{ht} P \geq 2$ and $P^t = P$. Then, since D is a $*_w$ -Noetherian domain, we have $P^v = P$ or $D \subsetneq P^{-1}$. Choose an $x \in P^{-1} - D$, and note that $xP \subseteq D$ and P is a maximal t-ideal; so $x \in D^{*g}$ and P = (D : x). Hence $(D_P : xD_P) = (D : x)D_P =$ $PD_P \subsetneq D_P$, and thus $x \notin D_P$. Note that $\widetilde{D} \subseteq D_P$; so $x \notin \widetilde{D}$. Thus $\widetilde{D} \subsetneq D^{*g}$ by (2).

(4) Assume that $D \subseteq \widetilde{D}$, and choose $x \in \widetilde{D} - D$. Then $x \in D_P$, and hence $(D:x) \notin P$ for all $P \in \Lambda$. But, since $x \notin D$ and $(D:x)^{*_f} = (D:x)^v = (D:x)$, there is a maximal $*_f$ -ideal Q of D such that $(D:x) \subseteq Q$. Then, clearly, htQ = 1. Conversely, assume that there is a maximal $*_f$ -ideal Q of D with htQ = 1. Then, since D is a $*_w$ -Noetherian domain, $Q^v = Q$. So $D \subseteq Q^{-1}$, and we can choose $x \in Q^{-1} - D$. Then $xQ \subseteq D$, and hence $x \in xD_P = xQD_P \subseteq D_P$ for all $P \in \Lambda$. Thus $x \in \cap_{P \in \Lambda} D_P = \widetilde{D}$.

(5) This is an immediate consequence of (3) and (4).

(6) This follows directly from (5) and the definition of \tilde{D} .

(7) This is an immediate consequence of (5) and (6) and Lemma 1.3(3).

(8) For each $P \in \Lambda$, let $\tilde{P} = PD_P \cap \tilde{D}$. Then $\tilde{D}_{\tilde{P}} = D_P$, $\tilde{P}\tilde{D}_{\tilde{P}} = PD_P$ and ht $\tilde{P} = \text{ht}P \geq 2$. Next, note that $D \subsetneq P^{-1}$, and hence if $x \in P^{-1} - D$, then $P = x^{-1}D \cap D$; so $PD_P = x^{-1}D_P \cap D_P$, and thus PD_P is a t-ideal. Hence $\tilde{P}\tilde{D}_{\tilde{P}} \cap \tilde{D}$ is a t-ideal of \tilde{D} [12, Lemma 3.17]. Note also that, since D is an SM domain, the intersection $\tilde{D} = \bigcap_{P \in \Lambda} D_P$ has finite character [3, Theorem 2.2(3)]. Let \star be the star operation on \tilde{D} defined by $I^{\star} = \bigcap_{P \in \Lambda} ID_P$ [10, Theorem 32.5]. Let $Q \in t$ -Max (\tilde{D}) . If $Q \notin PD_P \cap \tilde{D}$ for all $P \in \Lambda$, then, since the intersection $\tilde{D} = \bigcap_{P \in \Lambda} D_P$ has finite character, there are some $a, b \in Q$ such that $(a,b) \notin PD_P \cap \tilde{D}$ for all $P \in \Lambda$. Hence $\tilde{D} = (a,b)^{\star} \subseteq (a,b)^v \subseteq Q^t \subsetneq \tilde{D}$, a contradiction. Hence $Q = PD_P \cap \tilde{D}$ for some $P \in \Lambda$. Thus t-Max $(\tilde{D}) = \{\tilde{P}|P \in \Lambda\}$ (or see [20, Theorem 1]). Moreover, note that if D_1 is an SM-domain, then

58

 $t\operatorname{-dim}(D_1) = \sup\{t\operatorname{-dim}((D_1)_Q) \mid Q \in t\operatorname{-Max}(D_1)\}.$ Thus $t\operatorname{-dim}(D) = \sup\{t\operatorname{-dim}(D_1) \in U_1\}$ $\dim(D_P)|P \in \Lambda\} = \sup\{t \operatorname{-dim}(D_{\widetilde{p}})|P \in \Lambda\} = t \operatorname{-dim}(D).$

Let A be an integral domain, and let \star be a star operation on A. In the next proposition, we denote by $\Gamma^{\star_f}(A)$ the ring $\cap \{A_P | P \in \star_f \operatorname{-Max}(A) \text{ and }$ ht $P \geq 2$. The proof of Proposition 2.8(1) shows that $\Gamma^{\star_f}(A)$ is \star -linked over Α.

Proposition 2.9. Let D be a $*_w$ -Noetherian domain, [*] be the star operation on $D[\mathbf{X}]$ as in Theorem 2.1, $R = \Gamma^{*_f}(D)$, $*_D$ be the star operation on R as in Lemma 1.2, and $N_{*D}(R) = \{f \in R[\mathbf{X}] | (c(f)R)^{*_D} = R\}.$

- (1) $R[\mathbf{X}]_{N_*} = R[\mathbf{X}]_{N_{*D}(R)} \subseteq \Gamma^d(D[\mathbf{X}]_{N_*}) = \Gamma^{[*]}(D[\mathbf{X}]).$ (2) $If_{*w} = w$ and $N_v(R) = \{f \in R[\mathbf{X}] | (c(f)R)^v = R\}, then R[\mathbf{X}]_{N_v} =$ $R[\mathbf{X}]_{N_v(R)} = \Gamma^d(D[\mathbf{X}]_{N_v}) = \Gamma^{[v]}(D[\mathbf{X}]).$

Proof. Let $\Lambda = \{P \in *_f \operatorname{-Max}(D) | \operatorname{ht} P \geq 2\}$; so $R = \bigcap_{P \in \Lambda} D_P$, $D_P = R_{PD_P \cap R}$ and $D[\mathbf{X}]_{P[\mathbf{X}]} = R[\mathbf{X}]_{(PD_P \cap R)[\mathbf{X}]}$ for each $P \in \Lambda$.

(1) Let P be a maximal $*_f$ -ideal of D. Then D_P is Noetherian, and hence $\operatorname{ht}(P[\mathbf{X}]) = \operatorname{ht}(PD_P[\mathbf{X}]) = \operatorname{ht}(PD_P) = \operatorname{ht}P < \infty \ [3, \text{Lemma 1.2}].$

Claim 1. $R[\mathbf{X}]_{N_{*_D}(R)} \subseteq \Gamma^d(D[\mathbf{X}]_{N_*}).$ (Proof. Note that $\Gamma^d(D[\mathbf{X}]_{N_*}) = \bigcap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]}$ by Lemma 1.1(1). So $R \subseteq$ $\Gamma^d(D[\mathbf{X}]_{N_*}) \cap K$. Thus $R[\mathbf{X}] \subseteq \Gamma^d(D[\mathbf{X}]_{N_*})$. Next, let $f \in N_{*_D}(R)$. Then $(c(f)R)^{*_D} = R$, and hence $c(f)R[\mathbf{X}] \cap N_* \neq \emptyset$. But, since $PD_P[\mathbf{X}] \cap N_* = \emptyset$, we have $f \notin PD_P[\mathbf{X}]$ for all $P \in \Lambda$. Thus $\frac{1}{f} \in \bigcap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]} = \Gamma^d(D[\mathbf{X}]_{N_*}).$ Claim 2. $R[\mathbf{X}]_{N_*} = R[\mathbf{X}]_{N_*_D(R)}$.

(Proof. Clearly, $N_* \subseteq N_{*_D}(R)$, and thus $R[\mathbf{X}]_{N_*} \subseteq R[\mathbf{X}]_{N_{*_D}(R)}$. For the reverse containment, it suffices to show that if $f \in N_{*_D}(R)$, then $\frac{1}{f} \in R[\mathbf{X}]_{N_*}$. First, note that $R[\mathbf{X}]_{N_{*_D}(R)} \subseteq \Gamma^d(D[\mathbf{X}]_{N_*}) \subseteq (D[\mathbf{X}]_{N_*})^g = D^{*g}[\mathbf{X}]_{N_*}$ by Claim 1, Proposition 2.8(2) and Theorem 2.5. Hence $\frac{1}{f} \in D^{*g}[\mathbf{X}]_{N_*}$, and so $\frac{1}{f} = \frac{h}{g}$ for some $h \in D^{*g}[\mathbf{X}]$ and $g \in N_*$. So g = fh, and since R is *-linked over D by Proposition 2.8(1) and $(c(f)R)^{*_D} = R$, we have $c(h) \subseteq (c(h)R)^v =$ $(c(fh)R)^v = (c(g)R)^v = R$. Hence $h \in R[\mathbf{X}]$, and thus $\frac{1}{f} \in R[\mathbf{X}]_{N_*}$.)

Claim 3. $\Gamma^{d}(D[\mathbf{X}]_{N_{*}}) = \Gamma^{[*]}(R[\mathbf{X}]).$

(Proof. Let Q be a maximal [*]-ideal of $D[\mathbf{X}]$. Then either $Q \cap D = (0)$ with htQ = 1 or $Q \cap D$ is a maximal $*_f$ -ideal of D and $Q = (Q \cap D)[\mathbf{X}]$ by Theorem 2.1(5). Thus the equality follows directly from Lemma 1.1(1).)

(2) By Proposition 2.8(8), t-Max $(R) = \{PD_P \cap R | P \in \Lambda\}$, and thus by Lemma 1.1(1), $Max(R[\mathbf{X}]_{N_v(R)}) = \{(PD_P \cap R)[\mathbf{X}]_{N_v(R)} | P \in \Lambda\}$. Thus

$$R[\mathbf{X}]_{N_v(R)} = \bigcap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]} = \Gamma^d(D[\mathbf{X}]_{N_v}).$$

Also, the proof of Claim 3 of (1) above shows that $R[\mathbf{X}]_{N_v} = R[\mathbf{X}]_{N_v(R)}$. This completes the proof by (1).

GYU WHAN CHANG

Let R be an overring of D. Following Wadsworth [18], we say that (D, R)is a Noetherian pair if every domain A with $D \subseteq A \subseteq R$ is Noetherian. So if D is a Noetherian domain, then (D, D^g) is a Noetherian pair. Also, if Dis a $*_w$ -Noetherian domain, then $(D[\mathbf{X}]_{N_*}, D^{*g}[\mathbf{X}]_{N_*})$ is a Noetherian pair by Corollary 2.7. As a generalization of the concept of an Noetherian pair, we will say that (D, R) is an *SM domain pair* if each *t*-linked overring T of D with $T \subseteq R$ is an SM domain. Clearly, a Noetherian pair is an SM domain pair and if D is an SM domain, then (D, D^{wg}) is an SM domain pair. Also, if each maximal ideal of D is a *t*-ideal, then each overring of D is *t*-linked over D. Hence, in this case, an SM domain pair is a Noetherian pair.

Proposition 2.10. Let R be an overring of D and S a multiplicative subset of D.

- (1) If (D, R) is an SM domain pair, then (D_S, R_S) is an SM domain pair.
- (2) If D is an SM-domain, then $(D[\mathbf{X}], D^{wg}[\mathbf{X}]_{N_v})$ is an SM domain pair.
- (3) If $(D[\mathbf{X}], R[\mathbf{X}])$ is an SM domain pair, then (D, R) is an SM domain pair.
- (4) If $(D[\mathbf{X}]_{N_v}, R[\mathbf{X}]_{N_v})$ is an SM domain pair, then (D, R) is an SM domain pair.

Proof. (1) Let A be a t-linked overring of D_S such that $A \subseteq R_S$. Then A is t-linked over D (for if I is a nonzero finitely generated ideal of D, then $I^{-1} = D \Rightarrow (ID_S)^{-1} = D_S$ (cf. [9, Proposition 2.2(d)]) $\Rightarrow (IA)^{-1} = ((ID_S)A)^{-1} = A)$, and hence $A \cap R$ is t-linked over D [9, Proposition 2.2(b)]. Since $D \subseteq A \cap R \subseteq R$, $A \cap R$ is an SM domain by assumption. Also, note that $(A \cap R)_S \subseteq A_S = A$ and $S \subseteq A \subseteq R_S$; so $(A \cap R)_S = A$. Thus A is an SM domain [19, Proposition 4.7].

(2) Note that $D[\mathbf{X}]$ is an SM domain by Theorem 2.1(2) and (6) and Corollary 2.4 and $(D[\mathbf{X}])^{wg} = D^{wg}[\mathbf{X}]_{N_v}$ by Corollary 2.6. Thus $(D[\mathbf{X}], D^{wg}[\mathbf{X}]_{N_v})$ is an SM domain pair.

(3) Let A be a t-linked overring of D such that $A \subseteq R$. Then $A[\mathbf{X}]$ is t-linked over $D[\mathbf{X}]$ [8, Lemma 1.6] and $A[\mathbf{X}] \subseteq R[\mathbf{X}]$. Hence $A[\mathbf{X}]$ is an SM domain by assumption, and thus A is an SM domain by Theorem 2.1(6) and Corollary 2.4. Thus (D, R) is an SM domain pair.

(4) Let T be a *t*-linked overring of D such that $T \subseteq R$; then $D[\mathbf{X}]_{N_v} \subseteq T[\mathbf{X}]_{N_v} \subseteq R[\mathbf{X}]_{N_v}$. Note that each maximal ideal of $D[\mathbf{X}]_{N_v}$ is a *t*-ideal; so $T[\mathbf{X}]_{N_v}$ is *t*-linked over $D[\mathbf{X}]_{N_v}$, and hence $T[\mathbf{X}]_{N_v}$ is an SM domain by assumption. Let $N_v(T) = \{g \in T[\mathbf{X}] | (c(g)T)^v = T\}$, then $N_v \subseteq N_v(T)$ since T is *t*-linked over D, and so $T[\mathbf{X}]_{N_v(T)} = (T[\mathbf{X}]_{N_v})_{N_v(T)}$. Hence $T[\mathbf{X}]_{N_v(T)}$ is an SM domain [19, Proposition 4.7], and thus T is an SM domain [3, Theorem 2.2].

References

 D. D. Anderson, Global transforms and Noetherian pairs, Hiroshima Math. J. 10 (1980), no. 1, 69–74.

- [2] D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), no. 5, 2461–2475.
- [3] G. W. Chang, Strong Mori domains and the ring $D[X]_{N_v}$, J. Pure Appl. Algebra 197 (2005), no. 1-3, 293–304.
- [4] _____, *-Noetherian domains and the ring $D[X]_{N_*}$, J. Algebra **297** (2006), no. 1, 216–233.
- [5] _____, Prüfer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra **319** (2008), no. 1, 309–319.
- [6] _____, Locally pseudo-valuation domains of the form $D[X]_{N_v}$, J. Korean Math. Soc. **45** (2008), no. 5, 1405–1416.
- [7] G. W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), no. 1, 484–493.
- [8] G. W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra 295 (2006), no. 1, 195–210.
- D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prufer vmultiplication domains, Comm. Algebra 17 (1989), no. 11, 2835–2852.
- [10] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
- [11] E. Houston, S. Malik, and J. Mott, Characterizations of *-multiplication domains, Canad. Math. Bull. 27 (1984), no. 1, 48–52.
- [12] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_v}$, J. Algebra 123 (1989), no. 1, 151–170.
- [13] I. Kaplansky, Commutative rings, Revised Ed., Univ. of Chicago, Chicago, 1974.
- [14] J. R. Matijevic, Maximal ideal transforms of Noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49–52.
- [15] R. Matsuda, On a question posed by Huckaba-Papick, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 1, 21–23.
- [16] M. H. Park, Group rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), no. 3, 301–318.
- [17] _____, On overrings of strong Mori domains, J. Pure Appl. Algebra 172 (2002), no. 1, 79–85.
- [18] A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian, Trans. Amer. Math. Soc. 195 (1974), 201–211.
- [19] F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155–165.
- [20] M. Zafrullah, The v-operation and intersections of quotient rings of integral domains, Comm. Algebra 13 (1985), no. 8, 1699–1712.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF INCHEON INCHEON 406-772, KOREA *E-mail address:* whan@incheon.ac.kr