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∗-NOETHERIAN DOMAINS AND THE RING D[X]N∗ , II

Gyu Whan Chang

Abstract. Let D be an integral domain with quotient field K, X be
a nonempty set of indeterminates over D, ∗ be a star operation on D,

N∗ = {f ∈ D[X]|c(f)∗ = D}, ∗w be the star operation on D defined by
I∗w = ID[X]N∗ ∩ K, and [∗] be the star operation on D[X] canonically

associated to ∗ as in Theorem 2.1. Let Ag (resp., A∗g , A[∗]g) be the global
(resp., ∗-global, [∗]-global) transform of a ring A. We show that D is a
∗w-Noetherian domain if and only if D[X] is a [∗]-Noetherian domain.

We prove that D∗g [X]N∗ = (D[X]N∗ )
g = (D[X])[∗]g ; hence if D is a

∗w-Noetherian domain, then each ring between D[X]N∗ and D∗g [X]N∗

is a Noetherian domain. Let D̃ = ∩{DP |P ∈ ∗w-Max(D) and htP ≥ 2}.
We show that D ⊆ D̃ ⊆ D∗g and study some properties of D̃ and D∗g .

0. Introduction

Let D be an integral domain with quotient field K, X be a nonempty set of
indeterminates overD, andD[X] be the polynomial ring overD. The content of
a polynomial f ∈ K[X], denoted by c(f), is the fractional ideal of D generated
by the coefficients of f . An overring of D means a ring between D and K. Let
∗ be a star operation on D and Dg (resp., D∗g) be the global (resp., ∗-global)
transform of D (Relevant definitions and notations are reviewed in Section 1).

Matijevic proved that if D is a Noetherian domain, then each overring R of
D with R ⊆ Dg is a Noetherian domain [14, Corollary]. If D is a Noetherian
domain with dim(D) = 1, then Dg = K, and hence Matijevic’s result can
be considered as a generalization of the Krull-Akizuki theorem that if D is a
Noetherian domain with dim(D) = 1, then each overring R of D is Noetherian
and dim(R) ≤ 1 [13, Theorem 39]. Park generalized Matijevic’s result as
follows:

Theorem ([17, Theorem 1.5] or [3, Theorem 3.4(1)]). If R is a t-linked overring
of an SM domain D such that R ⊆ Dwg, then R is an SM domain.
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Let R be a ∗-linked overring of D, and let ∗D be the star operation on R
induced by ∗ as in Lemma 1.2. Chang extended Park’s result to an arbitrary
star operation ∗ on D as follows: If D is a ∗w-Noetherian domain and if R is
a ∗-linked overring of D with R ⊆ D∗g, then R is a ∗D-Noetherian domain [4,
Theorem 3.6(1)].

Let D be a Noetherian domain and T = ∩{DM |M is a maximal ideal of
D and htM ≥ 2}. Wadsworth proved that each ring between D and T is
Noetherian [18, Theorem 8]. However, in [1, Proposition 1], Anderson showed
that T ⊆ Dg and if T = Dg, then every maximal ideal of D of graded one has
height one. Hence Wadsworth’s result is a corollary of Matijevic’s result and
the ring T is a nontrivial example of overrings of D which are contained in Dg.

Let N∗ = {f ∈ D[X]|c(f)∗ = D}, Λ = {P ∈ ∗f -Max(D)| htP ≥ 2},
and D̃ = ∩P∈ΛDP . In this paper, we study a star operation [∗] on D[X]

canonically associated to ∗, the ∗-global transforms and the ring D̃. More
precisely, in Section 1, we review basic facts and some recent results on star
operations, Nagata rings, ∗-Noetherian domains, and ∗-global transforms. In
Section 2, we introduce a star operation [∗] on D[X] such that (ID[X])[∗] =
I∗w [X] for all nonzero fractional ideals I of D. Then we prove that D is a
∗w-Noetherian domain if and only if D[X] is a [∗]-Noetherian domain. We
prove that D∗g[X]N∗ = (D[X]N∗)

g = (D[X])[∗]g. As a corollary, we have
that if D is a ∗w-Noetherian domain, then each ring between D[X]N∗ and
D∗g[X]N∗ is a Noetherian domain; in particular, each t-linked overring of D[X]
that is contained in Dwg[X]Nv is an SM-domain. Assume that D is a ∗w-
Noetherian domain. We show that D̃ is ∗-linked over D and D̃ ⊆ D∗g. Also,

we show that if ∗w = w, then D̃ = Dwg if and only if t-dim(D) = 1; t-

Max(D̃) = {PDP ∩ D̃|P ∈ Λ}; if Λ ̸= ∅, then t-dim(D) = t-dim(D̃); and

D̃[X] = D̃[X]Nv = D̃[X]Nv . Finally, we study an overring R of an SM-domain
D such that each t-linked overring T of D with T ⊆ R is an SM-domain.

1. Review of star operations, Nagata rings and related topics

Let D be an integral domain with quotient field K, X be a nonempty set
of indeterminates over D, and D[X] be the polynomial ring over D. In this
section, we review basic facts on star operations, ∗-Noetherian domains, Nagata
rings and ∗-global transforms. Let F(D) be the set of nonzero fractional ideals
of D. A star operation ∗ on D is a mapping I 7→ I∗ from F(D) into F(D) which
satisfies the following three conditions for all 0 ̸= a ∈ K and all I, J ∈ F(D):

(1) (aD)∗ = aD and (aI)∗ = aI∗,
(2) I ⊆ I∗, and if I ⊆ J , then I∗ ⊆ J∗, and
(3) (I∗)∗ = I∗.

Given a star operation ∗ onD, we can use ∗ to construct two new star operations
∗f and ∗w on D. The ∗f -operation is defined by I∗f = ∪{(a1, . . . , an)∗|(0) ̸=
(a1, . . . , an) ⊆ I} and the ∗w-operation is defined by I∗w = {x ∈ K|xJ ⊆ I
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for J a nonzero finitely generated ideal of D with J∗ = D} for all I ∈ F(D).
Clearly, (∗f )f = ∗f , (∗w)f = ∗w = (∗f )w. An I ∈ F(D) is called a ∗-ideal
if I∗ = I. A ∗-ideal I is said to be of finite type if I = (a1, . . . , an)

∗ for
some ai ∈ I. A ∗-ideal is called a maximal ∗-ideal if it is maximal among
proper integral ∗-ideals of D. Let ∗-Max(D) denote the set of maximal ∗-
ideals of D and Max(D) be the set of maximal ideals of D. It is known that
∗f -Max(D) ̸= ∅ if D is not a field, each maximal ∗f -ideal is a prime ideal, a
prime ideal minimal over a ∗f -ideal is a ∗f -ideal, and each integral ∗f -ideal
is contained in a maximal ∗f -ideal. An I ∈ F(D) is said to be ∗-invertible
if (II−1)∗ = D, where I−1 = {x ∈ K|xI ⊆ D}, while D is a Prüfer ∗-
multiplication domain (P∗MD) if each nonzero finitely generated ideal of D is
∗f -invertible. It is well known that I ∈ F(D) is ∗f -invertible if and only if I∗f

is of finite type and IDP is principal for all P ∈ ∗f -Max(D) [12, Proposition
2.6]. Also, we know that D is a P∗MD if and only if DP is a valuation domain
for all P ∈ ∗f -Max(D) [11, Theorem 1.1].

The simplest example of star operations is the d-operation. Other well-
known examples of star operations are the v-, t-, and w-operations. The d-
operation is just the identity function on F(D), i.e., Id = I for all I ∈ F(D);
so d = df = dw. The v-operation is defined by Iv = (I−1)−1, whereas t = vf
and w = vw, i.e., I

t = Ivf and Iw = Ivw for all I ∈ F(D). If ∗1 and ∗2 are star
operations on D, then we mean by ∗1 ≤ ∗2 that I∗1 ⊆ I∗2 for all I ∈ F(D).
It is clear that ∗w ≤ ∗f ≤ ∗ and d ≤ ∗ ≤ v for any star operation ∗. Also,
if ∗1 ≤ ∗2, then (∗1)w ≤ (∗2)w and (∗1)f ≤ (∗2)f ; hence d ≤ ∗w ≤ w and
d ≤ ∗f ≤ t.

Let ∗ be a star operation on D. Put N∗ = {f ∈ D[X]|c(f)∗ = D}; then
N∗ = N∗f

= N∗w and N∗ = D[X] − ∪P∈∗f -Max(D)P [X]. Hence D[X]N∗ =

{ f
g |f ∈ D[X] and g ∈ N∗}, called the (∗−)Nagata ring of D, is an overring

of D[X]. The ring D[X]N∗ has many interesting ring-theoretic properties. For
example, each invertible ideal of D[X]N∗ is principal [12, Theorem 2.14]; D is
a P∗MD if and only if D[X]N∗ is a Prüfer domain, if and only if D[X]N∗ is a
Bezout domain [5, Theorem 2.2]; and D is a Krull domain if and only if D[X]Nv

is a Dedekind domain, if and only if D[X]Nv is a principal ideal domain [15].

Lemma 1.1. (1) Max(D[X]N∗) = {P [X]N∗ |P ∈ ∗f -Max(D)}.
(2) ∗w-Max(D) = ∗f -Max(D).
(3) I∗w = ∩P∈∗f -Max(D)IDP = ID[X]N∗ ∩K for all I ∈ F(D).

Proof. (1) [12, Proposition 2.1]. (2) [2, Theorem 2.16]. (3) [4, Lemma 2.3]. □

As in [4], we say that an overring R ofD is ∗-linked overD if R[X]N∗∩K = R.
It is known that R is ∗-linked overD if and only if (Q∩D)∗f ⊊ D for each prime
t-ideal Q of R, if and only if I∗ = D implies (IR)v = R for each nonzero finitely
generated ideal I of D [4, Proposition 3.2]. Next, we use the star operation ∗
on D to construct a new star operation ∗D on a ∗-linked overring R of D.



52 GYU WHAN CHANG

Lemma 1.2 ([4, Lemma 3.1]). Let R be a ∗-linked overring of D, X be an
indeterminate over D, and put I∗D = IR[X]N∗ ∩ K for I ∈ F(R). Then the
map ∗D : F(R) → F(R), given by I 7→ I∗D , is a star operation on R and
(∗D)w = ∗D.

We say that D is a ∗-Noetherian domain if D satisfies the ascending chain
condition on integral ∗-ideals of D; equivalently, if each ∗-ideal of D is of finite
type. Hence Noetherian domains are just the d-Noetherian domains. A v-
Noetherian domain is a Mori domain, while a w-Noetherian domain is a strong
Mori domain (SM-domain). It is clear that if ∗1 ≤ ∗2 are star operations, then
∗1-Noetherian domains are ∗2-Noetherian domains; hence Noetherian domains
⇒ SM-domains ⇒ Mori domains. Also, since ∗w ≤ w, a ∗w-Noetherian domain
is an SM-domain. Note that I∗wDP = IDP by Lemma 1.1(3); hence if D is
a ∗w-Noetherian domain, then DP is Noetherian for all P ∈ ∗f -Max(D). The
global transform of D is defined by Dg = {a ∈ K|aM1 · · ·Mk ⊆ D where
each Mi is a maximal ideal of D}. As in [4], the ∗-global transform of D is
the ring D∗g = {x ∈ K|xP1 · · ·Pk ⊆ D for some Pi ∈ ∗f -Max(D)}. Clearly,

D∗g = D(∗f )g = D(∗w)g and the global transform Dg of D is just the d-global
transform.

Lemma 1.3. Let D be a ∗-Noetherian domain.

(1) (D[X]N∗)
g ∩K = D∗g.

(2) D∗g is ∗-linked over D.
(3) D = D∗g if and only if each maximal ∗f -ideal of D is not a t-ideal. In

particular, D ⊊ Dwg.
(4) Let R be a ∗-linked overring of a ∗w-Noetherian domain D, and let ∗D

be the star operation on R as in Lemma 1.2. If R ⊆ D∗g, then R is a
∗D-Noetherian domain, and hence R is an SM-domain.

(5) If ∗1 ≤ ∗2 are star operations on D, then D(∗1)g ⊆ D(∗2)g. In particu-
lar, Dg ⊆ D∗g ⊆ Dwg.

Proof. (1) [4, Lemma 3.5]. (2) By (1), D∗g[X]N∗ ⊆ (D[X]N∗)
g. Hence D∗g ⊆

D∗g[X]N∗ ∩K ⊆ (D[X]N∗)
g ∩K = D∗g, and thus D∗g[X]N∗ ∩K = D∗g. Thus

D∗g is ∗-linked over D. (3) Assume to the contrary that there is a maximal ∗f -
ideal P of D with P t = P ; so D ⊊ P−1 because P is of finite type. But, since
P−1P ⊆ D, we have P−1 ⊆ D∗g. Thus D ⊊ D∗g. Conversely, assume that
each maximal ∗f -ideal of D is not a t-ideal, and let x ∈ D∗g. Then there exist
some maximal ∗f -ideals P1, . . . , Pn of D (not necessarily distinct) such that
xP1 · · ·Pn ⊆ D; so x ∈ xD = x(P1 . . . Pn)

t = (xP1 · · ·Pn)
t ⊆ Dt = D. Hence

D∗g ⊆ D, and thus D = D∗g. (4) [4, Theorem 3.6(1)]. (5) This follows because
if P ∈ (∗1)f -Max(D), then either P (∗2)f = D or P ∈ (∗2)f -Max(D). □

Let X be an indetermainate over D and Nv = {f ∈ D[X]|c(f)v = D}. Let
D[w] = {x ∈ K|xIw ⊆ Iw for some nonzero finitely generated ideal I of D}.
Then D[w], called the w-integral closure of D, is an integrally closed overring of
D. It is known that D[w] is t-linked over D [8, Lemma 1.2]; if D̄ is the integral
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closure of D, then D[w] = D̄[X]Nv ∩K = ∩P∈t-Max(D)D̄D\P [8, Theorem 1.3];

and D[w] is the smallest integrally closed t-linked overring of D [9, Proposition
2.13(b)].

A prime ideal P of D is said to be strongly prime if xy ∈ P and x, y ∈ K
imply x ∈ P or y ∈ P . The D is called a pseudo valuation domain (PVD)
if each prime ideal of D is strongly prime; equivalently, if D is a quasi-local
domain whose maximal ideal is strongly prime. Also, D is called a locally PVD
(LPVD) if DM is a PVD for each M ∈ Max(D), while D is a t-locally PVD
(t-LPVD) if DP is a PVD for all P ∈ t-Max(D). Clearly, the notion of PVDs
is a generalization of valuation domains. Hence the notions of LPVDs and
t-LPVDs can be considered as generalizations of Prüfer domains and PvMDs.
Chang proved that D[X]Nv is an LPVD if and only if D is a t-LPVD and D[w]

is a PvMD, if and only D[X] is a t-LPVD [6, Theorem 3.8] and that D[X]Nd
is

an LPVD if and only if D is an LPVD and D̄ is a Prüfer domain [6, Corollary
3.9].

2. ∗-Noetherian domains and ∗-global transforms

Throughout D denotes an integral domain with quotient field K, ∗ is a star
operation on D, X is a nonempty set of indeterminates over D, and N∗ = {f ∈
D[X]|c(f)∗ = D}.

Our first result gives a star operation [∗] on D[X], which is an extension of
the ∗w to D[X] in the sense that (I[X])[∗] ∩K = I∗w for each I ∈ F(D). This
extension was first studied for |X| = 1 by Chang and Fontana [7] in a more
general setting of semistar operations. The proof of Theorem 2.1 is basically
the same as that of [7, Theorem 2.3], and hence we omit the proof.

Theorem 2.1. Let X∪{Y } be a nonempty set of indeterminates over D, and
let

∆ = {Q ∈ Spec(D[X]) | Q ∩D = (0) with htQ = 1

or Q = (Q ∩D)[X] and (Q ∩D)∗f ⊊ D} .

Set S = D[X][Y ] \ (
∪
{Q[Y ] | Q ∈ ∆}) and define

A[∗] = A[Y ]S ∩K(X) for all A ∈ F (D[X]).

(1) The mapping [∗] : F(D[X]) → F(D[X]), given by A 7→ A[∗], is a star
operation on D[X] such that [∗] = [∗]f = [∗]w.

(2) [∗] = [∗f ] = [∗w].
(3) (ID[X])[∗] ∩K = I∗w for all I ∈ F(D).
(4) (ID[X])[∗] = I∗wD[X] for all I ∈ F(D).
(5) [∗]-Max(D[X]) = {Q | Q ∈ Spec(D[X]) such that Q∩D = (0), htQ = 1,

and (
∑

g∈Q c(g))∗f = D} ∪ {P [X] | P ∈ ∗f -Max(D)}.
(6) [v] is the w-operation on D[X].
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Corollary 2.2. Let [∗] be the star operation on D[X] canonically associated to
∗ as in Theorem 2.1. If Q is a prime ideal of D[X] such that Q = fK[X]∩D[X]
for some 0 ̸= f ∈ K[X], then Q is a maximal [∗]-ideal if and only if there exists
a polynomial f ∈ Q such that c(f)∗f = D.

Proof. Suppose that Q is a maximal [∗]-ideal of D[X]. Then (
∑

g∈Q c(g))∗f =

D by Theorem 2.1(5), and hence there are some g1, . . . , gn ∈ Q such that
(c(g1) + · · ·+ c(gn))

∗f = D. Let

f = g1 + g2X
deg(g1)+1 + · · ·+ gnX

deg(g1)+···+deg(gn−1)+n−1,

where X ∈ X. Then f ∈ Q and c(f)∗f = D. For the converse, note that Q ∩
D = (0), htQ = 1, and D = c(f)∗f ⊆ (

∑
g∈Q c(g))∗f ⊆ D or (

∑
g∈Q c(g))∗f =

D. Thus Q is a maximal [∗]-ideal by Theorem 2.1(5). □

Let Q be a prime ideal of D[X]. It is clear that (
∑

g∈Q c(g))∗f = D if and

only if Q ⊈ P [X] for all P ∈ ∗f -Max(D). Also, if X1 is a nonempty subset
of X, then AD[X] = A[X−X1] for all ideals A of D[X1]. In the proof of
Corollary 2.3, we use these facts without comments.

Corollary 2.3. Let X1 be a nonempty subset of X, ⋆1 and ⋆ be the extensions
of ∗ to D[X1] and D[X], respectively, as in Theorem 2.1. If [⋆1] is the star
operation on D[X] canonically associated to ⋆1 as in Theorem 2.1, then ⋆ = [⋆1].

Proof. By Theorem 2.1(1) and Lemma 1.1(3), it suffices to show that

⋆-Max(D[X]) = [⋆1]-Max(D[X]).

(⊆) LetQ ∈ ⋆-Max(D[X]); so eitherQ∩D = (0), htQ = 1 and (
∑

g∈Q c(g))∗f =

D or Q = P [X] for some P ∈ ∗f -Max(D). If Q = P [X], then P [X1] ∈ ⋆1-
Max(D[X1]) and P [X] = P [X1][X−X1]. Thus Q ∈ [⋆1]-Max(D[X]).

Next, assume that Q∩D = (0). If Q∩D[X1] ̸= (0), then, since htQ = 1, we
have Q = (Q ∩D[X1])D[X] and ht(Q ∩D[X1]) = 1. Also, since Q ⊈ P [X] for
all P ∈ ∗f -Max(D), Q ∩D[X1] ⊈ P [X1]. Hence Q ∩D[X1] ∈ ⋆1-Max(D[X1]),
and thus Q ∈ [⋆1]-Max(D[X]). If Q ∩D[X1] = (0), then, clearly, Q ⊈ Q0[X]
for all Q0 ∈ ⋆1-Max(D[X1]). Thus Q ∈ [⋆1]-Max(D[X]).

(⊇) Let M ∈ [⋆1]-Max(D[X]). If M ∩ D[X1] ̸= (0), then M = (M ∩
D[X1])D[X] andM∩D[X1] ∈ [⋆1]-Max(D[X]); so either (M∩D[X1])∩D ∈ ∗f -
Max(D) or (M∩D[X1])∩D = (0), ht(M∩D[X1]) = 1 and (

∑
g∈M∩D[X1]

c(g))∗f

= D. Hence M = (M ∩ D)D[X] and M ∩ D ∈ ∗f -Max(D) or M ∩ D = (0),
htM = 1 and (

∑
g∈M c(g))∗f = D. Thus M ∈ ⋆-Max(D[X]).

Next, assume that M ∩ D[X1] = (0). Then M ∩ D = (0), htM = 1, and
M ⊈ P [X] for all P ∈ ∗f -Max(D); so (

∑
f∈M c(f))∗f = D. Thus M ∈ ⋆-

Max(D[X]). □

We next prove that D is a ∗w-Noetherian domain if and only if D[X] is a
[∗]-Noetherian domain, which was proved for |X| = 1 by Chang and Fontana
[7, Corollary 2.5] in a more general setting of semistar operations. This also
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recovers Park’s result that D is an SM-domain (if and) only if D[X] is an
SM-domain [16, Theorem 4.7] by Theorem 2.1(2) and (6).

Corollary 2.4. Let [∗] be the star operation on D[X] canonically associated to
∗ as in Theorem 2.1. Then the following statements are equivalent.

(1) D is a ∗w-Noetherian domain.
(2) Each prime ∗w-ideal of D is of finite type.
(3) D[X]N∗ is a Noetherian domain.
(4) D[X] is a [∗]-Noetherian domain.

Proof. (1) ⇔ (2) ⇔ (3) [4, Theorem 2.6].
(3) ⇒ (4) Note that [∗]w = [∗] by Theorem 2.1(1); so by the equivalence

of (1) and (2), it suffices to show that each prime [∗]-ideal of D[X] is of finite
type. Let Q be a prime [∗]-ideal of D[X].

Case 1. (
∑

g∈Q c(g))∗f = D. Then Q is a maximal [∗]-ideal and htQ = 1 by

Theorem 2.1(5) and there exists an f ∈ Q such that c(f)∗f = D by Corollary
2.2. Also, note that QK[X] = hK[X] for some h ∈ Q. Hence if we set
A = (f, h)D[X], then QM = AM for all M ∈ [∗]-Max(D[X]). Thus Q = A[∗]

by Lemma 1.1(3).
Case 2. (

∑
g∈Q c(g))∗f ⊊ D. Then QD[X]N∗ ⊊ D[X]N∗ , and hence by (3),

there exists a finitely generated idealB ofD[X] such thatQD[X]N∗ =BD[X]N∗ .
Let Ω = {M ∈ [∗]-Max(D[X])|M ∩ D = (0)}, and note that if M ∈ Ω, then
htM = 1; so the intersection ∩M∈ΩD[X]M has finite character (note that K[X]
is a UFD). Also, since Q ⊈ M for all M ∈ Ω, we can choose some a, b ∈ Q such
that (a, b) ⊈ M for all M ∈ Ω. Replacing B with (B, a, b), we may assume
that B ⊈ M or QD[X]M = D[X]M = BD[X]M for all M ∈ Ω. Thus Q =
∩P∈∗f -Max(D)QD[X]P [X] ∩ (∩M∈ΩQD[X]M ) = QD[X]N∗ ∩ (∩M∈ΩQD[X]M ) =
BD[X]N∗ ∩ (∩M∈ΩBD[X]M ) = ∩P∈∗f -Max(D)BD[X]P [X] ∩ (∩M∈ΩBD[X]M ) =

B[∗] by Lemma 1.1(1) and (3).
(4) ⇒ (1) Let I be a ∗w-ideal of D; then (I[X])[∗] = I[X] by Theorem 2.1(4).

Hence there are some f1, . . . , fn ∈ I[X] such that I[X] = ((f1, . . . , fn)D[X])[∗].
Put J = c(f1) + · · · c(fn); then J ⊆ I is finitely generated and I[X] =
(J [X])[∗] = J∗w [X]. Thus I = I[X] ∩K = J∗w [X] ∩K = J∗w . □

Recall that if f, g ∈ K[X], then there exists a positive integer m = m(f, g)
such that c(f)m+1c(g) = c(f)mc(fg) [10, Corollary 28.3]; so if c(f)∗ = D,
then c(g)∗ = c(fg)∗. In particular, if f1, . . . , fn ∈ D[X], then c(fi)

∗ = D for
i = 1, . . . , n if and only if c(f1 · · · fn)∗ = D.

Theorem 2.5. Let [∗] be the star operation on D[X] canonically associated to
∗ as in Theorem 2.1. Then (D[X]N∗)

g = D∗g[X]N∗ = (D[X])[∗]g.

Proof. Proof of (D[X]N∗)
g ⊆ D∗g[X]N∗ .

We first show that (D[X]N∗)
g ∩ K[X] ⊆ D∗g[X]N∗ . Let g ∈ (D[X]N∗)

g ∩
K[X]. Then there are maximal ∗f -ideals P1, . . . , Pn ofD such that gP1 · · ·Pn ⊆
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gP1[X]N∗ · · ·Pn[X]N∗ ⊆ D[X]N∗ by Lemma 1.1(1). So if 0 ̸= a ∈ P1 · · ·Pn,
then ag = h

f or afg = h for some h ∈ D[X] and f ∈ N∗; hence a(c(g)) ⊆
a(c(g)∗) = a(c(f)c(g))∗ = a(c(fg)∗) = c(h)∗ ⊆ D. Since a is an arbitrary
element of P1 · · ·Pn, we have c(g)P1 · · ·Pn ⊆ D, and hence c(g) ⊆ D∗g. Thus
g ∈ D∗g[X] ⊆ D∗g[X]N∗ .

Next, let u ∈ (D[X]N∗)
g. Then there are maximal ∗f -ideals P ′

1, . . . , P
′
k of

D such that uP ′
1[X] · · ·P ′

k[X] ⊆ uP ′
1[X]N∗ · · ·P ′

k[X]N∗ ⊆ D[X]N∗ by Lemma

1.1(1). So for any 0 ̸= b ∈ P ′
1 · · ·P ′

k, we have ub = h1

f1
∈ D[X]N∗ , where

h1 ∈ D[X] and f1 ∈ N∗. Hence u = b−1h1

f1
∈ K[X]N∗ and f1u = f1

b−1h1

f1
=

b−1h1 ∈ K[X] ∩ (D[X]N∗)
g. By the above paragraph, f1u ∈ D∗g[X]N∗ , and

since f1 ∈ N∗, we have u ∈ D∗g[X]N∗ . Thus (D[X]N∗)
g ⊆ D∗g[X]N∗ .

Proof of D∗g[X]N∗ ⊆ (D[X])[∗]g.

Note that if P is a maximal ∗f -ideal of D, then P [X] is a maximal [∗]-ideal of
D[X] by Theorem 2.1(5). SoD∗g ⊆ (D[X])[∗]g, and henceD∗g[X] ⊆ (D[X])[∗]g.
Hence it suffices to show that if f ∈ N∗, then

1
f ∈ (D[X])[∗]g.

Since K[X] is a UFD, we can write f = fe1
1 · · · fek

k , where each fi ∈ K[X],
each ei is a positive integer and fiK[X] is a prime ideal of K[X] such that
fiK[X] ̸= fjK[X] for i ̸= j. If g ∈ K[X] such that fg ∈ D[X], then c(g) ⊆
c(g)∗ = (c(f)c(g))∗ = c(fg)∗ ⊆ D[X]; so g ∈ D[X]. Hence fK[X] ∩ D[X] ⊆
fD[X], and thus fK[X] ∩ D[X] = fD[X]. Also, fD[X] = fK[X] ∩ D[X] =
(fe1

1 K[X] ∩D[X]) ∩ · · · ∩ (fek
k K[X] ∩D[X]) ⊆ fiK[X] ∩D[X] for i = 1, . . . , k.

Since c(f)∗ = D, each fiK[X] ∩ D[X] is a maximal [∗]-ideal of D[X] by
Corollary 2.2. Also, since (fiK[X] ∩ D[X])ei ⊆ (fiK[X] ∩ D[X])eiK[X] ∩
D[X] = fei

i K[X] ∩D[X], we have (f1K[X] ∩D[X])e1 · · · (fkK[X] ∩D[X])ek ⊆
(f1K[X] ∩ D[X])e1 ∩ · · · ∩ (fkK[X] ∩ D[X])ek ⊆ fD[X]. Hence 1

f (f1K[X] ∩
D[X])e1 · · · (fkK[X] ∩D[X])ek ⊆ 1

f fD[X] = D[X], and thus 1
f ∈ (D[X])[∗]g.

Proof of (D[X])[∗]g ⊆ (D[X]N∗)
g.

Let u ∈ (D[X])[∗]g. Recall that if Q is a maximal [∗]-ideal of D[X] with
Q ∩ D ̸= (0), then Q ∩ D is a maximal ∗f -ideal of D and Q = (Q ∩ D)[X]
by Theorem 2.1(5). Hence uQ1 · · ·QkP1[X] · · ·Pm[X] ⊆ D[X] for some max-
imal [∗]-ideals Q1, . . . , Qk of D[X] with Qi ∩ D = (0) and maximal ∗f -ideals
P1, . . . , Pm of D. Also, by Corollary 2.2, there exists a polynomial hi ∈ Qi such
that c(hi)

∗ = D. Let h = h1 · · ·hk; then c(h)∗ = D, and hence h ∈ N∗. So
uhP1[X] · · ·Pm[X] ⊆ D[X] or uP1[X] · · ·Pm[X] ⊆ 1

hD[X] ⊆ D[X]N∗ . Hence
uP1[X]N∗ · · ·Pm[X]N∗ ⊆ D[X]N∗ , and since each Pi[X]N∗ is a maximal ideal
of D[X]N∗ by Lemma 1.1(1), we have u ∈ (D[X]N∗)

g. □

Recall that each maximal ideal of D[X]Nv is a t-ideal [12, Corollary 2.3];
hence (D[X]Nv )

wg = (D[X]Nv )
g. Also, [w] = w on D[X] by Theorem 2.1(2)

and (6). Thus the next result is the d- and w-operation versions of Theorem
2.5.
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Corollary 2.6. (1) Dg[X]Nd
= (D[X])[d]g = (D[X]Nd

)g.
(2) Dwg[X]Nv = (D[X])wg = (D[X]Nv )

g = (D[X]Nv )
wg.

It is well known that if D is a Noetherian domain, then each ring between
D and Dg is a Noetherian domain [14, Corollary]. Thus by Corollary 2.4 and
Theorem 2.5, we have:

Corollary 2.7. If D is a ∗w-Noetherian domain, then each ring between
D[X]N∗ and D∗g[X]N∗ is a Noetherian domain.

The ∗-dimension of D, denoted by ∗-dim(D), is the number of prime ∗-ideals
in a longest chain of prime ∗-ideals of D, or infinity if there is no such longest
chain. If D is a rank one non-discrete valuation domain, then v-dim(D) = 0.
However, if D is not a field, then ∗f -dim(D) ≥ 1; in particular, ∗f -dim(D) = 1
if and only if each prime ∗f -ideal of D is a maximal ∗f -ideal.

Let Λ = {P ∈ ∗f -Max(D)| htP ≥ 2}, and let D̃ = ∩P∈ΛDP . Hence Λ = ∅
if and only if ∗f -dim(D) = 1 (in this case, D̃ = K). It is known that if D
is a Noetherian domain, then R := ∩{DM |M ∈ Max(D) and htM ≥ 2} is a
ring such that D ⊆ R ⊆ Dg [1, Proposition 1]. We next study the relationship

between D, D̃, and D∗g.

Proposition 2.8. Let D be a ∗w-Noetherian domain, Λ = {P ∈ ∗f -Max(D)|
htP ≥ 2}, and D̃ = ∩P∈ΛDP .

(1) D̃ is ∗-linked over D.

(2) D̃ ⊆ D∗g. Hence if ∗D is the star operation on D̃ as in Lemma 1.2,

then D̃ is a ∗D-Noetherian domain.
(3) D̃ ⊊ D∗g if and only if there is P ∈ Λ such that P is a t-ideal.

(4) D ⊊ D̃ if and only if there is a maximal ∗f -ideal P of D with htP = 1.

(5) D ⊊ D̃ = D∗g if and only if there is a maximal ∗f -ideal P of D with
htP = 1 and each Q ∈ Λ is not a t-ideal.

(6) If ∗f -dim(D) = 1, then D̃ = D∗g = K.

(7) If ∗w = w, then D̃ = Dwg if and only if t-dim(D) = 1.

(8) If ∗w = w and Λ ̸= ∅, then t-Max(D̃) = {PDP ∩ D̃|P ∈ Λ} and

t-dim(D) = t-dim(D̃).

Proof. (1) Clearly, if P ∈ Λ, then DP is ∗-linked over D; so DP [X]N∗ ∩K =

DP . Hence D̃ ⊆ D̃[X]N∗ ∩ K ⊆ ∩P∈Λ(DP [X]N∗ ∩ K) = ∩P∈ΛDP = D̃ or

D̃[X]N∗ ∩K = D̃. Thus D̃ is ∗-linked over D.

(2) Let x ∈ D̃. Since D ⊆ D∗g, we may assume x ̸∈ D, and so (D : x) =
{a ∈ D|ax ∈ D} ⊊ D. Note that x(D : x)v = (x(D : x))v ⊆ Dv = D; hence
(D : x)v ⊆ (D : x), and thus (D : x)v = (D : x). Note also that, since D is a
∗w-Noetherian domain, (D : x) has a primary decomposition [4, Corollary 2.7].

Let (D : x) = Q1 ∩ · · · ∩ Qk be a primary decomposition of (D : x) such
that

√
Qi ̸=

√
Qj for i ̸= j. Since (D : x) is a ∗w-ideal, we may assume
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that each Qi is a ∗w-ideal. Then, since x ∈ D̃ ⊆ DP for all P ∈ Λ, we have
DP = (DP : xDP ) = (D : x)DP = Q1DP ∩ · · · ∩QkDP . Hence each

√
Qi is a

maximal ∗f -ideal and ht(
√
Qi) = 1. Put

√
Qi = Pi. Since D is a ∗w-Noetherian

domain, Pi is of finite type, i.e., Pi = (c1, . . . , cn)
∗w for some ci ∈ D. Also,

since
√
Qi = Pi, there exists a positive integer ei such that P ei

i ⊆ (P ei
i )∗w ⊆ Qi.

So P e1
1 · · ·P ek

k ⊆ Q1 ∩ · · · ∩ Qk = (D : x), and hence xP e1
1 · · ·P ek

k ⊆ D. Thus
x ∈ D∗g.

Moreover, since D̃ is ∗-linked over D by (1), D̃ is a ∗D-Noetherian domain
by Lemma 1.3(4).

(3) Suppose that D̃ ⊊ D∗g, and choose x ∈ D∗g − D̃. Then there exist
some maximal ∗f -ideals P1, . . . , Pn of D (not necessarily distinct) such that
xP1 · · ·Pn ⊆ D. Since x ̸∈ D and (xP1 · · ·Pn)

t ⊆ D, we may assume that each
Pi is a t-ideal. If htPi = 1 for i = 1, . . . , n, then (P1 · · ·Pn)DP = DP , and

hence x ∈ xDP = (xP1 · · ·Pn)DP ⊆ DP for all P ∈ Λ; so x ∈ ∩P∈ΛDP = D̃, a
contradiction. Thus at least one of the Pi’s is a t-ideal of height ≥ 2.

For the converse, let P be a maximal ∗f -ideal of D such that htP ≥ 2
and P t = P . Then, since D is a ∗w-Noetherian domain, we have P v = P or
D ⊊ P−1. Choose an x ∈ P−1−D, and note that xP ⊆ D and P is a maximal
t-ideal; so x ∈ D∗g and P = (D : x). Hence (DP : xDP ) = (D : x)DP =

PDP ⊊ DP , and thus x ̸∈ DP . Note that D̃ ⊆ DP ; so x ̸∈ D̃. Thus D̃ ⊊ D∗g

by (2).

(4) Assume that D ⊊ D̃, and choose x ∈ D̃ −D. Then x ∈ DP , and hence
(D : x) ⊈ P for all P ∈ Λ. But, since x ̸∈ D and (D : x)∗f = (D : x)v = (D : x),
there is a maximal ∗f -ideal Q of D such that (D : x) ⊆ Q. Then, clearly,
htQ = 1. Conversely, assume that there is a maximal ∗f -ideal Q of D with
htQ = 1. Then, since D is a ∗w-Noetherian domain, Qv = Q. So D ⊊ Q−1, and
we can choose x ∈ Q−1−D. Then xQ ⊆ D, and hence x ∈ xDP = xQDP ⊆ DP

for all P ∈ Λ. Thus x ∈ ∩P∈ΛDP = D̃.
(5) This is an immediate consequence of (3) and (4).

(6) This follows directly from (5) and the definition of D̃.
(7) This is an immediate consequence of (5) and (6) and Lemma 1.3(3).

(8) For each P ∈ Λ, let P̃ = PDP ∩ D̃. Then D̃P̃ = DP , P̃ D̃P̃ = PDP and

htP̃ = htP ≥ 2. Next, note that D ⊊ P−1, and hence if x ∈ P−1 − D, then
P = x−1D ∩ D; so PDP = x−1DP ∩ DP , and thus PDP is a t-ideal. Hence

P̃ D̃P̃ ∩ D̃ is a t-ideal of D̃ [12, Lemma 3.17]. Note also that, since D is an

SM domain, the intersection D̃ = ∩P∈ΛDP has finite character [3, Theorem

2.2(3)]. Let ⋆ be the star operation on D̃ defined by I⋆ = ∩P∈ΛIDP [10,

Theorem 32.5]. Let Q ∈ t-Max(D̃). If Q ⊈ PDP ∩ D̃ for all P ∈ Λ, then, since

the intersection D̃ = ∩P∈ΛDP has finite character, there are some a, b ∈ Q such

that (a, b) ⊈ PDP ∩ D̃ for all P ∈ Λ. Hence D̃ = (a, b)⋆ ⊆ (a, b)v ⊆ Qt ⊊ D̃, a

contradiction. Hence Q = PDP∩D̃ for some P ∈ Λ. Thus t-Max(D̃) = {P̃ |P ∈
Λ} (or see [20, Theorem 1]). Moreover, note that if D1 is an SM-domain, then
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t-dim(D1) = sup{t-dim((D1)Q)| Q ∈ t-Max(D1)}. Thus t-dim(D) = sup{t-
dim(DP )|P ∈ Λ} = sup{t-dim(D̃P̃ )|P ∈ Λ} = t-dim(D̃). □

Let A be an integral domain, and let ⋆ be a star operation on A. In the
next proposition, we denote by Γ⋆f (A) the ring ∩{AP |P ∈ ⋆f -Max(A) and
htP ≥ 2}. The proof of Proposition 2.8(1) shows that Γ⋆f (A) is ⋆-linked over
A.

Proposition 2.9. Let D be a ∗w-Noetherian domain, [∗] be the star operation
on D[X] as in Theorem 2.1, R = Γ∗f (D), ∗D be the star operation on R as in
Lemma 1.2, and N∗D (R) = {f ∈ R[X]|(c(f)R)∗D = R}.

(1) R[X]N∗ = R[X]N∗D (R) ⊆ Γd(D[X]N∗) = Γ[∗](D[X]).

(2) If ∗w = w and Nv(R) = {f ∈ R[X]|(c(f)R)v = R}, then R[X]Nv =
R[X]Nv(R) = Γd(D[X]Nv ) = Γ[v](D[X]).

Proof. Let Λ = {P ∈ ∗f -Max(D)| htP ≥ 2}; so R = ∩P∈ΛDP , DP = RPDP∩R

and D[X]P [X] = R[X](PDP∩R)[X] for each P ∈ Λ.
(1) Let P be a maximal ∗f -ideal of D. Then DP is Noetherian, and hence

ht(P [X]) = ht(PDP [X]) = ht(PDP ) = htP < ∞ [3, Lemma 1.2].
Claim 1. R[X]N∗D (R) ⊆ Γd(D[X]N∗).

(Proof. Note that Γd(D[X]N∗) = ∩P∈ΛD[X]P [X] by Lemma 1.1(1). So R ⊆
Γd(D[X]N∗) ∩ K. Thus R[X] ⊆ Γd(D[X]N∗). Next, let f ∈ N∗D

(R). Then
(c(f)R)∗D = R, and hence c(f)R[X] ∩N∗ ̸= ∅. But, since PDP [X] ∩N∗ = ∅,
we have f ̸∈ PDP [X] for all P ∈ Λ. Thus 1

f ∈ ∩P∈ΛD[X]P [X] = Γd(D[X]N∗).)

Claim 2. R[X]N∗ = R[X]N∗D (R).

(Proof. Clearly, N∗ ⊆ N∗D
(R), and thus R[X]N∗ ⊆ R[X]N∗D (R). For the

reverse containment, it suffices to show that if f ∈ N∗D
(R), then 1

f ∈ R[X]N∗ .

First, note that R[X]N∗D (R) ⊆ Γd(D[X]N∗) ⊆ (D[X]N∗)
g = D∗g[X]N∗ by

Claim 1, Proposition 2.8(2) and Theorem 2.5. Hence 1
f ∈ D∗g[X]N∗ , and so

1
f = h

g for some h ∈ D∗g[X] and g ∈ N∗. So g = fh, and since R is ∗-linked
over D by Proposition 2.8(1) and (c(f)R)∗D = R, we have c(h) ⊆ (c(h)R)v =
(c(fh)R)v = (c(g)R)v = R. Hence h ∈ R[X], and thus 1

f ∈ R[X]N∗ .)

Claim 3. Γd(D[X]N∗) = Γ[∗](R[X]).
(Proof. Let Q be a maximal [∗]-ideal of D[X]. Then either Q ∩D = (0) with
htQ = 1 or Q∩D is a maximal ∗f -ideal of D and Q = (Q∩D)[X] by Theorem
2.1(5). Thus the equality follows directly from Lemma 1.1(1).)

(2) By Proposition 2.8(8), t-Max(R) = {PDP ∩ R|P ∈ Λ}, and thus by
Lemma 1.1(1), Max(R[X]Nv(R)) = {(PDP ∩R)[X]Nv(R)|P ∈ Λ}. Thus

R[X]Nv(R) = ∩P∈ΛD[X]P [X] = Γd(D[X]Nv
).

Also, the proof of Claim 3 of (1) above shows that R[X]Nv = R[X]Nv(R). This
completes the proof by (1). □
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Let R be an overring of D. Following Wadsworth [18], we say that (D,R)
is a Noetherian pair if every domain A with D ⊆ A ⊆ R is Noetherian. So
if D is a Noetherian domain, then (D,Dg) is a Noetherian pair. Also, if D
is a ∗w-Noetherian domain, then (D[X]N∗ , D

∗g[X]N∗) is a Noetherian pair by
Corollary 2.7. As a generalization of the concept of an Noetherian pair, we will
say that (D,R) is an SM domain pair if each t-linked overring T of D with
T ⊆ R is an SM domain. Clearly, a Noetherian pair is an SM domain pair
and if D is an SM domain, then (D,Dwg) is an SM domain pair. Also, if each
maximal ideal of D is a t-ideal, then each overring of D is t-linked over D.
Hence, in this case, an SM domain pair is a Noetherian pair.

Proposition 2.10. Let R be an overring of D and S a multiplicative subset
of D.

(1) If (D,R) is an SM domain pair, then (DS , RS) is an SM domain pair.
(2) If D is an SM-domain, then (D[X], Dwg[X]Nv

) is an SM domain pair.
(3) If (D[X], R[X]) is an SM domain pair, then (D,R) is an SM domain

pair.
(4) If (D[X]Nv , R[X]Nv ) is an SM domain pair, then (D,R) is an SM

domain pair.

Proof. (1) Let A be a t-linked overring of DS such that A ⊆ RS . Then A is
t-linked over D (for if I is a nonzero finitely generated ideal of D, then I−1 = D
⇒ (IDS)

−1 = DS (cf. [9, Proposition 2.2(d)]) ⇒ (IA)−1 = ((IDS)A)
−1 = A),

and hence A∩R is t-linked overD [9, Proposition 2.2(b)]. SinceD ⊆ A∩R ⊆ R,
A ∩ R is an SM domain by assumption. Also, note that (A ∩ R)S ⊆ AS = A
and S ⊆ A ⊆ RS ; so (A∩R)S = A. Thus A is an SM domain [19, Proposition
4.7].

(2) Note that D[X] is an SM domain by Theorem 2.1(2) and (6) and Corol-
lary 2.4 and (D[X])wg = Dwg[X]Nv by Corollary 2.6. Thus (D[X], Dwg[X]Nv )
is an SM domain pair.

(3) Let A be a t-linked overring of D such that A ⊆ R. Then A[X] is t-linked
over D[X] [8, Lemma 1.6] and A[X] ⊆ R[X]. Hence A[X] is an SM domain
by assumption, and thus A is an SM domain by Theorem 2.1(6) and Corollary
2.4. Thus (D,R) is an SM domain pair.

(4) Let T be a t-linked overring of D such that T ⊆ R; then D[X]Nv ⊆
T [X]Nv ⊆ R[X]Nv . Note that each maximal ideal of D[X]Nv is a t-ideal;
so T [X]Nv is t-linked over D[X]Nv , and hence T [X]Nv is an SM domain by
assumption. Let Nv(T ) = {g ∈ T [X]|(c(g)T )v = T}, then Nv ⊆ Nv(T ) since
T is t-linked over D, and so T [X]Nv(T ) = (T [X]Nv )Nv(T ). Hence T [X]Nv(T ) is
an SM domain [19, Proposition 4.7], and thus T is an SM domain [3, Theorem
2.2]. □
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