-NOETHERIAN DOMAINS AND THE RING $D[\mathrm{X}]_{N_{}}$, II

Gyu Whan Chang

Abstract

Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over $D, *$ be a star operation on D, $N_{*}=\left\{f \in D[\mathbf{X}] \mid c(f)^{*}=D\right\}, *_{w}$ be the star operation on D defined by $I^{*} w=I D[\mathbf{X}]_{N_{*}} \cap K$, and $[*]$ be the star operation on $D[\mathbf{X}]$ canonically associated to $*$ as in Theorem 2.1. Let A^{g} (resp., $A^{* g}, A^{[*] g}$) be the global (resp., *-global, [*]-global) transform of a ring A. We show that D is a $*_{w}$-Noetherian domain if and only if $D[\mathbf{X}]$ is a $[*]$-Noetherian domain. We prove that $D^{* g}[\mathbf{X}]_{N_{*}}=\left(D[\mathbf{X}]_{N_{*}}\right)^{g}=(D[\mathbf{X}])^{[*] g}$; hence if D is a $*_{w}$-Noetherian domain, then each ring between $D[\mathbf{X}]_{N_{*}}$ and $D^{* g}[\mathbf{X}]_{N_{*}}$ is a Noetherian domain. Let $\widetilde{D}=\cap\left\{D_{P} \mid P \in *_{w}-\operatorname{Max}(D)\right.$ and ht $\left.P \geq 2\right\}$. We show that $D \subseteq \widetilde{D} \subseteq D^{* g}$ and study some properties of \widetilde{D} and $D^{* g}$.

0. Introduction

Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over D, and $D[\mathbf{X}]$ be the polynomial ring over D. The content of a polynomial $f \in K[\mathbf{X}]$, denoted by $c(f)$, is the fractional ideal of D generated by the coefficients of f. An overring of D means a ring between D and K. Let * be a star operation on D and D^{g} (resp., $D^{* g}$) be the global (resp., *-global) transform of D (Relevant definitions and notations are reviewed in Section 1).

Matijevic proved that if D is a Noetherian domain, then each overring R of D with $R \subseteq D^{g}$ is a Noetherian domain [14, Corollary]. If D is a Noetherian domain with $\operatorname{dim}(D)=1$, then $D^{g}=K$, and hence Matijevic's result can be considered as a generalization of the Krull-Akizuki theorem that if D is a Noetherian domain with $\operatorname{dim}(D)=1$, then each overring R of D is Noetherian and $\operatorname{dim}(R) \leq 1$ [13, Theorem 39]. Park generalized Matijevic's result as follows:

Theorem ([17, Theorem 1.5] or [3, Theorem 3.4(1)]). If R is a t-linked overring of an $S M$ domain D such that $R \subseteq D^{w g}$, then R is an $S M$ domain.

Received April 5, 2009.
2010 Mathematics Subject Classification. 13A15, 13B25, 13E99, 13G05.
Key words and phrases. star operation, [*]-operation on $D[\mathbf{X}]$, *-global transform, $*_{w^{-}}$ Noetherian domain, $D[\mathbf{X}]_{N_{*}}$, SM domain pair.

This work was supported by the University of Incheon Research Grant in 2010.

Let R be a $*$-linked overring of D, and let $*_{D}$ be the star operation on R induced by $*$ as in Lemma 1.2. Chang extended Park's result to an arbitrary star operation $*$ on D as follows: If D is $a *_{w}$-Noetherian domain and if R is $a *$-linked overring of D with $R \subseteq D^{* g}$, then R is $a *_{D}$-Noetherian domain [4, Theorem 3.6(1)].

Let D be a Noetherian domain and $T=\cap\left\{D_{M} \mid M\right.$ is a maximal ideal of D and $\operatorname{ht} M \geq 2\}$. Wadsworth proved that each ring between D and T is Noetherian [18, Theorem 8]. However, in [1, Proposition 1], Anderson showed that $T \subseteq D^{g}$ and if $T=D^{g}$, then every maximal ideal of D of graded one has height one. Hence Wadsworth's result is a corollary of Matijevic's result and the ring T is a nontrivial example of overrings of D which are contained in D^{g}.

Let $N_{*}=\left\{f \in D[\mathbf{X}] \mid c(f)^{*}=D\right\}, \Lambda=\left\{P \in *_{f}-\operatorname{Max}(D) \mid \operatorname{ht} P \geq 2\right\}$, and $\widetilde{D}=\cap_{P \in \Lambda} D_{P}$. In this paper, we study a star operation [*] on $D[\mathbf{X}]$ canonically associated to $*$, the $*$-global transforms and the ring \widetilde{D}. More precisely, in Section 1, we review basic facts and some recent results on star operations, Nagata rings, $*$-Noetherian domains, and $*$-global transforms. In Section 2, we introduce a star operation $[*]$ on $D[\mathbf{X}]$ such that $(I D[\mathbf{X}])^{[*]}=$ $I^{*} w[\mathbf{X}]$ for all nonzero fractional ideals I of D. Then we prove that D is a $*_{w}$-Noetherian domain if and only if $D[\mathbf{X}]$ is a [*]-Noetherian domain. We prove that $D^{* g}[\mathbf{X}]_{N_{*}}=\left(D[\mathbf{X}]_{N_{*}}\right)^{g}=(D[\mathbf{X}])^{[*] g}$. As a corollary, we have that if D is a $*_{w}$-Noetherian domain, then each ring between $D[\mathbf{X}]_{N_{*}}$ and $D^{* g}[\mathbf{X}]_{N_{*}}$ is a Noetherian domain; in particular, each t-linked overring of $D[\mathbf{X}]$ that is contained in $D^{w g}[\mathbf{X}]_{N_{v}}$ is an SM-domain. Assume that D is a $*_{w^{-}}$ Noetherian domain. We show that \widetilde{D} is $*$-linked over D and $\widetilde{D} \subseteq D^{* g}$. Also, we show that if $*_{w}=w$, then $\widetilde{D}=D^{w g}$ if and only if t - $\operatorname{dim}(D)=1 ; t$ $\operatorname{Max}(\widetilde{D})=\left\{P D_{P} \cap \widetilde{D} \mid P \in \Lambda\right\} ;$ if $\Lambda \neq \emptyset$, then t - $\operatorname{dim}(D)=t$ - $\operatorname{dim}(\widetilde{D})$; and $\widetilde{D[\mathbf{X}]}=\widetilde{D}[\mathbf{X}]_{N_{v}}=\widetilde{D[\mathbf{X}]_{N_{v}}}$. Finally, we study an overring R of an SM-domain D such that each t-linked overring T of D with $T \subseteq R$ is an SM-domain.

1. Review of star operations, Nagata rings and related topics

Let D be an integral domain with quotient field K, \mathbf{X} be a nonempty set of indeterminates over D, and $D[\mathbf{X}]$ be the polynomial ring over D. In this section, we review basic facts on star operations, *-Noetherian domains, Nagata rings and $*$-global transforms. Let $\mathbf{F}(D)$ be the set of nonzero fractional ideals of D. A star operation $*$ on D is a mapping $I \mapsto I^{*}$ from $\mathbf{F}(D)$ into $\mathbf{F}(D)$ which satisfies the following three conditions for all $0 \neq a \in K$ and all $I, J \in \mathbf{F}(D)$:
(1) $(a D)^{*}=a D$ and $(a I)^{*}=a I^{*}$,
(2) $I \subseteq I^{*}$, and if $I \subseteq J$, then $I^{*} \subseteq J^{*}$, and
(3) $\left(I^{*}\right)^{*}=I^{*}$.

Given a star operation $*$ on D, we can use $*$ to construct two new star operations $*_{f}$ and $*_{w}$ on D. The $*_{f}$-operation is defined by $I^{*_{f}}=\cup\left\{\left(a_{1}, \ldots, a_{n}\right)^{*} \mid(0) \neq\right.$ $\left.\left(a_{1}, \ldots, a_{n}\right) \subseteq I\right\}$ and the $*_{w}$-operation is defined by $I^{*} w=\{x \in K \mid x J \subseteq I$
for J a nonzero finitely generated ideal of D with $\left.J^{*}=D\right\}$ for all $I \in \mathbf{F}(D)$. Clearly, $\left(*_{f}\right)_{f}=*_{f},\left(*_{w}\right)_{f}=*_{w}=\left(*_{f}\right)_{w}$. An $I \in \mathbf{F}(D)$ is called a $*$-ideal if $I^{*}=I$. A $*$-ideal I is said to be of finite type if $I=\left(a_{1}, \ldots, a_{n}\right)^{*}$ for some $a_{i} \in I . \quad$ A $*$-ideal is called a maximal $*$-ideal if it is maximal among proper integral $*$-ideals of D. Let $*-\operatorname{Max}(D)$ denote the set of maximal $*-$ ideals of D and $\operatorname{Max}(D)$ be the set of maximal ideals of D. It is known that $*_{f}-\operatorname{Max}(D) \neq \emptyset$ if D is not a field, each maximal $*_{f}$-ideal is a prime ideal, a prime ideal minimal over a $*_{f}$-ideal is a $*_{f}$-ideal, and each integral $*_{f}$-ideal is contained in a maximal $*_{f}$-ideal. An $I \in \mathbf{F}(D)$ is said to be $*$-invertible if $\left(I I^{-1}\right)^{*}=D$, where $I^{-1}=\{x \in K \mid x I \subseteq D\}$, while D is a Prüfer $*$ multiplication domain $(\mathrm{P} * \mathrm{MD})$ if each nonzero finitely generated ideal of D is $*_{f}$-invertible. It is well known that $I \in \mathbf{F}(D)$ is $*_{f}$-invertible if and only if $I^{*_{f}}$ is of finite type and $I D_{P}$ is principal for all $P \in *_{f}-\operatorname{Max}(D)$ [12, Proposition 2.6]. Also, we know that D is a $\mathrm{P} * \mathrm{MD}$ if and only if D_{P} is a valuation domain for all $P \in *_{f}-\operatorname{Max}(D)$ [11, Theorem 1.1].

The simplest example of star operations is the d-operation. Other wellknown examples of star operations are the $v-, t-$, and w-operations. The d operation is just the identity function on $\mathbf{F}(D)$, i.e., $I^{d}=I$ for all $I \in \mathbf{F}(D)$; so $d=d_{f}=d_{w}$. The v-operation is defined by $I^{v}=\left(I^{-1}\right)^{-1}$, whereas $t=v_{f}$ and $w=v_{w}$, i.e., $I^{t}=I^{v_{f}}$ and $I^{w}=I^{v_{w}}$ for all $I \in \mathbf{F}(D)$. If $*_{1}$ and $*_{2}$ are star operations on D, then we mean by $*_{1} \leq *_{2}$ that $I^{*_{1}} \subseteq I^{*_{2}}$ for all $I \in \mathbf{F}(D)$. It is clear that $*_{w} \leq *_{f} \leq *$ and $d \leq * \leq v$ for any star operation $*$. Also, if $*_{1} \leq *_{2}$, then $\left(*_{1}\right)_{w} \leq\left(*_{2}\right)_{w}$ and $\left(*_{1}\right)_{f} \leq\left(*_{2}\right)_{f}$; hence $d \leq *_{w} \leq w$ and $d \leq *_{f} \leq t$.

Let $*$ be a star operation on D. Put $N_{*}=\left\{f \in D[\mathbf{X}] \mid c(f)^{*}=D\right\}$; then $N_{*}=N_{*_{f}}=N_{*_{w}}$ and $N_{*}=D[\mathbf{X}]-\cup_{P \in *_{f}-\operatorname{Max}(D)} P[\mathbf{X}]$. Hence $D[\mathbf{X}]_{N_{*}}=$ $\left\{\left.\frac{f}{g} \right\rvert\, f \in D[\mathbf{X}]\right.$ and $\left.g \in N_{*}\right\}$, called the (*-)Nagata ring of D, is an overring of $D[\mathbf{X}]$. The ring $D[\mathbf{X}]_{N_{*}}$ has many interesting ring-theoretic properties. For example, each invertible ideal of $D[\mathbf{X}]_{N_{*}}$ is principal [12, Theorem 2.14]; D is a $\mathrm{P} * \mathrm{MD}$ if and only if $D[\mathbf{X}]_{N_{*}}$ is a Prüfer domain, if and only if $D[\mathbf{X}]_{N_{*}}$ is a Bezout domain [5, Theorem 2.2]; and D is a Krull domain if and only if $D[\mathbf{X}]_{N_{v}}$ is a Dedekind domain, if and only if $D[\mathbf{X}]_{N_{v}}$ is a principal ideal domain [15].

Lemma 1.1. (1) $\operatorname{Max}\left(D[\mathbf{X}]_{N_{*}}\right)=\left\{P[\mathbf{X}]_{N_{*}} \mid P \in *_{f}-\operatorname{Max}(D)\right\}$.

(2) $*_{w}-\operatorname{Max}(D)=*_{f}-\operatorname{Max}(D)$.
(3) $I^{*_{w}}=\cap_{P \in *_{f}-\operatorname{Max}(D)} I D_{P}=I D[\mathbf{X}]_{N_{*}} \cap K$ for all $I \in \mathbf{F}(D)$.

Proof. (1) [12, Proposition 2.1]. (2) [2, Theorem 2.16]. (3) [4, Lemma 2.3].
As in [4], we say that an overring R of D is $*$-linked over D if $R[\mathbf{X}]_{N_{*}} \cap K=R$. It is known that R is $*$-linked over D if and only if $(Q \cap D)^{*_{f}} \subsetneq D$ for each prime t-ideal Q of R, if and only if $I^{*}=D$ implies $(I R)^{v}=R$ for each nonzero finitely generated ideal I of D [4, Proposition 3.2]. Next, we use the star operation * on D to construct a new star operation $*_{D}$ on a $*$-linked overring R of D.

Lemma 1.2 ([4, Lemma 3.1]). Let R be $a *$-linked overring of D, X be an indeterminate over D, and put $I^{* D}=I R[X]_{N_{*}} \cap K$ for $I \in \mathbf{F}(R)$. Then the map $*_{D}: \mathbf{F}(R) \rightarrow \mathbf{F}(R)$, given by $I \mapsto I^{*_{D}}$, is a star operation on R and $\left(*_{D}\right)_{w}=*_{D}$.

We say that D is a $*$-Noetherian domain if D satisfies the ascending chain condition on integral $*$-ideals of D; equivalently, if each $*$-ideal of D is of finite type. Hence Noetherian domains are just the d-Noetherian domains. A v Noetherian domain is a Mori domain, while a w-Noetherian domain is a strong Mori domain (SM-domain). It is clear that if $*_{1} \leq *_{2}$ are star operations, then $*_{1}$-Noetherian domains are $*_{2}$-Noetherian domains; hence Noetherian domains \Rightarrow SM-domains \Rightarrow Mori domains. Also, since $*_{w} \leq w, \mathrm{a} *_{w}$-Noetherian domain is an SM-domain. Note that $I^{* w} D_{P}=I D_{P}$ by Lemma $1.1(3)$; hence if D is a $*_{w}$-Noetherian domain, then D_{P} is Noetherian for all $P \in *_{f}-\operatorname{Max}(D)$. The global transform of D is defined by $D^{g}=\left\{a \in K \mid a M_{1} \cdots M_{k} \subseteq D\right.$ where each M_{i} is a maximal ideal of $\left.D\right\}$. As in [4], the $*$-global transform of D is the ring $D^{* g}=\left\{x \in K \mid x P_{1} \cdots P_{k} \subseteq D\right.$ for some $\left.P_{i} \in *_{f}-\operatorname{Max}(D)\right\}$. Clearly, $D^{* g}=D^{\left(*_{f}\right) g}=D^{\left(*_{w}\right) g}$ and the global transform D^{g} of D is just the d-global transform.

Lemma 1.3. Let D be $a *$-Noetherian domain.
(1) $\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \cap K=D^{* g}$.
(2) $D^{* g}$ is *-linked over D.
(3) $D=D^{*_{g}}$ if and only if each maximal $*_{f}$-ideal of D is not a t-ideal. In particular, $D \subsetneq D^{w g}$.
(4) Let R be $a *$-linked overring of $a *_{w}$-Noetherian domain D, and let $*_{D}$ be the star operation on R as in Lemma 1.2. If $R \subseteq D^{* g}$, then R is a $*_{D}$-Noetherian domain, and hence R is an SM-domain.
(5) If $*_{1} \leq *_{2}$ are star operations on D, then $D^{\left(*_{1}\right) g} \subseteq D^{\left(*_{2}\right) g}$. In particular, $D^{g} \subseteq D^{* g} \subseteq D^{w g}$.
Proof. (1) [4, Lemma 3.5]. (2) By (1), $D^{* g}[\mathbf{X}]_{N_{*}} \subseteq\left(D[\mathbf{X}]_{N_{*}}\right)^{g}$. Hence $D^{* g} \subseteq$ $D^{* g}[\mathbf{X}]_{N_{*}} \cap K \subseteq\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \cap K=D^{* g}$, and thus $D^{* g}[\mathbf{X}]_{N_{*}} \cap K=D^{* g}$. Thus $D^{* g}$ is $*$-linked over D. (3) Assume to the contrary that there is a maximal $*_{f^{-}}$ ideal P of D with $P^{t}=P$; so $D \subsetneq P^{-1}$ because P is of finite type. But, since $P^{-1} P \subseteq D$, we have $P^{-1} \subseteq D^{* g}$. Thus $D \subsetneq D^{* g}$. Conversely, assume that each maximal $*_{f}$-ideal of D is not a t-ideal, and let $x \in D^{* g}$. Then there exist some maximal $*_{f}$-ideals P_{1}, \ldots, P_{n} of D (not necessarily distinct) such that $x P_{1} \cdots P_{n} \subseteq D$; so $x \in x D=x\left(P_{1} \ldots P_{n}\right)^{t}=\left(x P_{1} \cdots P_{n}\right)^{t} \subseteq D^{t}=D$. Hence $D^{* g} \subseteq D$, and thus $D=D^{* g}$. (4) [4, Theorem 3.6(1)]. (5) This follows because if $P \in\left(*_{1}\right)_{f}-\operatorname{Max}(D)$, then either $P^{\left(*_{2}\right)_{f}}=D$ or $P \in\left(*_{2}\right)_{f}-\operatorname{Max}(D)$.

Let X be an indetermainate over D and $N_{v}=\left\{f \in D[X] \mid c(f)^{v}=D\right\}$. Let $D^{[w]}=\left\{x \in K \mid x I^{w} \subseteq I^{w}\right.$ for some nonzero finitely generated ideal I of $\left.D\right\}$. Then $D^{[w]}$, called the w-integral closure of D, is an integrally closed overring of D. It is known that $D^{[w]}$ is t-linked over $D[8$, Lemma 1.2]; if \bar{D} is the integral
closure of D, then $D^{[w]}=\bar{D}[X]_{N_{v}} \cap K=\cap_{P \in t-\operatorname{Max}(\mathrm{D})} \bar{D}_{D \backslash P}$ [8, Theorem 1.3]; and $D^{[w]}$ is the smallest integrally closed t-linked overring of $D[9$, Proposition 2.13(b)].

A prime ideal P of D is said to be strongly prime if $x y \in P$ and $x, y \in K$ imply $x \in P$ or $y \in P$. The D is called a pseudo valuation domain (PVD) if each prime ideal of D is strongly prime; equivalently, if D is a quasi-local domain whose maximal ideal is strongly prime. Also, D is called a locally $P V D$ (LPVD) if D_{M} is a PVD for each $M \in \operatorname{Max}(D)$, while D is a t-locally $P V D$ (t-LPVD) if D_{P} is a PVD for all $P \in t-\operatorname{Max}(D)$. Clearly, the notion of PVDs is a generalization of valuation domains. Hence the notions of LPVDs and t-LPVDs can be considered as generalizations of Prüfer domains and PvMDs. Chang proved that $D[X]_{N_{v}}$ is an LPVD if and only if D is a t-LPVD and $D^{[w]}$ is a $\mathrm{P} v \mathrm{MD}$, if and only $D[X]$ is a t-LPVD [6, Theorem 3.8] and that $D[X]_{N_{d}}$ is an LPVD if and only if D is an LPVD and \bar{D} is a Prüfer domain [6, Corollary 3.9].

2. *-Noetherian domains and *-global transforms

Throughout D denotes an integral domain with quotient field $K, *$ is a star operation on D, \mathbf{X} is a nonempty set of indeterminates over D, and $N_{*}=\{f \in$ $\left.D[\mathbf{X}] \mid c(f)^{*}=D\right\}$.

Our first result gives a star operation $[*]$ on $D[\mathbf{X}]$, which is an extension of the $*_{w}$ to $D[\mathbf{X}]$ in the sense that $(I[\mathbf{X}])^{[*]} \cap K=I^{*} w$ for each $I \in \mathbf{F}(D)$. This extension was first studied for $|\mathbf{X}|=1$ by Chang and Fontana [7] in a more general setting of semistar operations. The proof of Theorem 2.1 is basically the same as that of [7, Theorem 2.3], and hence we omit the proof.

Theorem 2.1. Let $\mathbf{X} \cup\{Y\}$ be a nonempty set of indeterminates over D, and let

$$
\begin{array}{ll}
\boldsymbol{\Delta}=\{Q \in \operatorname{Spec}(D[\mathbf{X}]) \quad \mid \quad & Q \cap D=(0) \text { with } h t Q=1 \\
& \text { or } \left.Q=(Q \cap D)[\mathbf{X}] \text { and }(Q \cap D)^{*_{f}} \subsetneq D\right\} .
\end{array}
$$

Set $\mathcal{S}=D[\mathbf{X}][Y] \backslash(\bigcup\{Q[Y] \mid Q \in \boldsymbol{\Delta}\})$ and define

$$
A^{[*]}=A[Y]_{\mathcal{S}} \cap K(\mathbf{X}) \quad \text { for all } A \in F(D[\mathbf{X}])
$$

(1) The mapping $[*]: \mathbf{F}(D[\mathbf{X}]) \rightarrow \mathbf{F}(D[\mathbf{X}])$, given by $A \mapsto A^{[*]}$, is a star operation on $D[\mathbf{X}]$ such that $[*]=[*]_{f}=[*]_{w}$.
(2) $[*]=\left[*_{f}\right]=\left[*_{w}\right]$.
(3) $(I D[\mathbf{X}])^{[*]} \cap K=I^{* w}$ for all $I \in \mathbf{F}(D)$.
(4) $(I D[\mathbf{X}])^{[*]}=I^{* w} D[\mathbf{X}]$ for all $I \in \mathbf{F}(D)$.
(5) $[*]-\operatorname{Max}(D[\mathbf{X}])=\{Q \mid Q \in \operatorname{Spec}(D[\mathbf{X}])$ such that $Q \cap D=(0)$, ht $Q=1$, and $\left.\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=D\right\} \cup\left\{P[\mathbf{X}] \mid P \in *_{f}-\operatorname{Max}(D)\right\}$.
(6) $[v]$ is the w-operation on $D[\mathbf{X}]$.

Corollary 2.2. Let $[*]$ be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. If Q is a prime ideal of $D[\mathbf{X}]$ such that $Q=f K[\mathbf{X}] \cap D[\mathbf{X}]$ for some $0 \neq f \in K[\mathbf{X}]$, then Q is a maximal $[*]$-ideal if and only if there exists a polynomial $f \in Q$ such that $c(f)^{*_{f}}=D$.

Proof. Suppose that Q is a maximal [*]-ideal of $D[\mathbf{X}]$. Then $\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=$ D by Theorem 2.1(5), and hence there are some $g_{1}, \ldots, g_{n} \in Q$ such that $\left(c\left(g_{1}\right)+\cdots+c\left(g_{n}\right)\right)^{*_{f}}=D$. Let

$$
f=g_{1}+g_{2} X^{\operatorname{deg}\left(g_{1}\right)+1}+\cdots+g_{n} X^{\operatorname{deg}\left(g_{1}\right)+\cdots+\operatorname{deg}\left(g_{n-1}\right)+n-1}
$$

where $X \in \mathbf{X}$. Then $f \in Q$ and $c(f)^{*_{f}}=D$. For the converse, note that $Q \cap$ $D=(0)$, ht $Q=1$, and $D=c(f)^{*_{f}} \subseteq\left(\sum_{g \in Q} c(g)\right)^{*_{f}} \subseteq D$ or $\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=$ D. Thus Q is a maximal [*]-ideal by Theorem 2.1(5).

Let Q be a prime ideal of $D[\mathbf{X}]$. It is clear that $\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=D$ if and only if $Q \nsubseteq P[\mathbf{X}]$ for all $P \in *_{f}-\operatorname{Max}(D)$. Also, if \mathbf{X}_{1} is a nonempty subset of \mathbf{X}, then $A D[\mathbf{X}]=A\left[\mathbf{X}-\mathbf{X}_{1}\right]$ for all ideals A of $D\left[\mathbf{X}_{1}\right]$. In the proof of Corollary 2.3, we use these facts without comments.

Corollary 2.3. Let \mathbf{X}_{1} be a nonempty subset of \mathbf{X}, \star_{1} and \star be the extensions of $*$ to $D\left[\mathbf{X}_{1}\right]$ and $D[\mathbf{X}]$, respectively, as in Theorem 2.1. If $\left[\star_{1}\right]$ is the star operation on $D[\mathbf{X}]$ canonically associated to \star_{1} as in Theorem 2.1, then $\star=\left[\star_{1}\right]$.

Proof. By Theorem 2.1(1) and Lemma 1.1(3), it suffices to show that

$$
\star-\operatorname{Max}(D[\mathbf{X}])=\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}]) .
$$

(\subseteq) Let $Q \in \star-\operatorname{Max}(D[\mathbf{X}])$; so either $Q \cap D=(0)$, ht $Q=1$ and $\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=$ D or $Q=P[\mathbf{X}]$ for some $P \in *_{f}-\operatorname{Max}(D)$. If $Q=P[\mathbf{X}]$, then $P\left[\mathbf{X}_{1}\right] \in \star_{1^{-}}$ $\operatorname{Max}\left(D\left[\mathbf{X}_{1}\right]\right)$ and $P[\mathbf{X}]=P\left[\mathbf{X}_{1}\right]\left[\mathbf{X}-\mathbf{X}_{1}\right]$. Thus $Q \in\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}])$.

Next, assume that $Q \cap D=(0)$. If $Q \cap D\left[\mathbf{X}_{1}\right] \neq(0)$, then, since ht $Q=1$, we have $Q=\left(Q \cap D\left[\mathbf{X}_{1}\right]\right) D[\mathbf{X}]$ and $\operatorname{ht}\left(Q \cap D\left[\mathbf{X}_{1}\right]\right)=1$. Also, since $Q \nsubseteq P[\mathbf{X}]$ for all $P \in *_{f}-\operatorname{Max}(D), Q \cap D\left[\mathbf{X}_{1}\right] \nsubseteq P\left[\mathbf{X}_{1}\right]$. Hence $Q \cap D\left[\mathbf{X}_{1}\right] \in \star_{1}-\operatorname{Max}\left(D\left[\mathbf{X}_{1}\right]\right)$, and thus $Q \in\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}])$. If $Q \cap D\left[\mathbf{X}_{1}\right]=(0)$, then, clearly, $Q \nsubseteq Q_{0}[\mathbf{X}]$ for all $Q_{0} \in \star_{1}-\operatorname{Max}\left(D\left[\mathbf{X}_{1}\right]\right)$. Thus $Q \in\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}])$.
(ِ) Let $M \in\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}])$. If $M \cap D\left[\mathbf{X}_{1}\right] \neq(0)$, then $M=(M \cap$ $\left.D\left[\mathbf{X}_{1}\right]\right) D[\mathbf{X}]$ and $M \cap D\left[\mathbf{X}_{1}\right] \in\left[\star_{1}\right]-\operatorname{Max}(D[\mathbf{X}])$; so either $\left(M \cap D\left[\mathbf{X}_{1}\right]\right) \cap D \in *_{f}-$ $\operatorname{Max}(D)$ or $\left(M \cap D\left[\mathbf{X}_{1}\right]\right) \cap D=(0), \operatorname{ht}\left(M \cap D\left[\mathbf{X}_{1}\right]\right)=1$ and $\left(\sum_{g \in M \cap D\left[\mathbf{X}_{1}\right]} c(g)\right)^{*_{f}}$ $=D$. Hence $M=(M \cap D) D[\mathbf{X}]$ and $M \cap D \in *_{f}-\operatorname{Max}(D)$ or $M \cap D=(0)$, ht $M=1$ and $\left(\sum_{g \in M} c(g)\right)^{*_{f}}=D$. Thus $M \in \star-\operatorname{Max}(D[\mathbf{X}])$.

Next, assume that $M \cap D\left[\mathbf{X}_{1}\right]=(0)$. Then $M \cap D=(0)$, ht $M=1$, and $M \nsubseteq P[\mathbf{X}]$ for all $P \in *_{f}-\operatorname{Max}(D)$; so $\left(\sum_{f \in M} c(f)\right)^{*_{f}}=D$. Thus $M \in \star-$ $\operatorname{Max}(D[\mathbf{X}])$.

We next prove that D is a $*_{w}$-Noetherian domain if and only if $D[\mathbf{X}]$ is a [$*$]-Noetherian domain, which was proved for $|\mathbf{X}|=1$ by Chang and Fontana [7, Corollary 2.5] in a more general setting of semistar operations. This also
recovers Park's result that D is an SM-domain (if and) only if $D[\mathbf{X}]$ is an SM-domain [16, Theorem 4.7] by Theorem 2.1(2) and (6).
Corollary 2.4. Let $[*]$ be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. Then the following statements are equivalent.
(1) D is $a *_{w}$-Noetherian domain.
(2) Each prime $*_{w}$-ideal of D is of finite type.
(3) $D[\mathbf{X}]_{N_{*}}$ is a Noetherian domain.
(4) $D[\mathbf{X}]$ is a $[*]$-Noetherian domain.

Proof. (1) $\Leftrightarrow(2) \Leftrightarrow(3)[4$, Theorem 2.6].
$(3) \Rightarrow(4)$ Note that $[*]_{w}=[*]$ by Theorem $2.1(1)$; so by the equivalence of (1) and (2), it suffices to show that each prime $[*]$-ideal of $D[\mathbf{X}]$ is of finite type. Let Q be a prime $[*]$-ideal of $D[\mathbf{X}]$.

Case 1. $\left(\sum_{g \in Q} c(g)\right)^{*_{f}}=D$. Then Q is a maximal [$*$]-ideal and $\operatorname{ht} Q=1$ by Theorem 2.1(5) and there exists an $f \in Q$ such that $c(f)^{*_{f}}=D$ by Corollary 2.2. Also, note that $Q K[\mathbf{X}]=h K[\mathbf{X}]$ for some $h \in Q$. Hence if we set $A=(f, h) D[\mathbf{X}]$, then $Q_{M}=A_{M}$ for all $M \in[*]-\operatorname{Max}(D[\mathbf{X}])$. Thus $Q=A^{[*]}$ by Lemma 1.1(3).

Case 2. $\left(\sum_{g \in Q} c(g)\right)^{*_{f}} \subsetneq D$. Then $Q D[\mathbf{X}]_{N_{*}} \subsetneq D[\mathbf{X}]_{N_{*}}$, and hence by (3), there exists a finitely generated ideal B of $D[\mathbf{X}]$ such that $Q D[\mathbf{X}]_{N_{*}}=B D[\mathbf{X}]_{N_{*}}$. Let $\Omega=\{M \in[*]-\operatorname{Max}(D[\mathbf{X}]) \mid M \cap D=(0)\}$, and note that if $M \in \Omega$, then ht $M=1$; so the intersection $\cap_{M \in \Omega} D[\mathbf{X}]_{M}$ has finite character (note that $K[\mathbf{X}]$ is a UFD). Also, since $Q \nsubseteq M$ for all $M \in \Omega$, we can choose some $a, b \in Q$ such that $(a, b) \nsubseteq M$ for all $M \in \Omega$. Replacing B with (B, a, b), we may assume that $B \nsubseteq M$ or $Q D[\mathbf{X}]_{M}=D[\mathbf{X}]_{M}=B D[\mathbf{X}]_{M}$ for all $M \in \Omega$. Thus $Q=$ $\cap_{P \in *_{f}-\operatorname{Max}(D)} Q D[\mathbf{X}]_{P[\mathbf{X}]} \cap\left(\cap_{M \in \Omega} Q D[\mathbf{X}]_{M}\right)=Q D[\mathbf{X}]_{N_{*}} \cap\left(\cap_{M \in \Omega} Q D[\mathbf{X}]_{M}\right)=$ $B D[\mathbf{X}]_{N_{*}} \cap\left(\cap_{M \in \Omega} B D[\mathbf{X}]_{M}\right)=\cap_{P \in *_{f}-\operatorname{Max}(D)} B D[\mathbf{X}]_{P[\mathbf{X}]} \cap\left(\cap_{M \in \Omega} B D[\mathbf{X}]_{M}\right)=$ $B^{[*]}$ by Lemma 1.1(1) and (3).
$(4) \Rightarrow(1)$ Let I be a $* w^{\text {-ideal of }} D$; then $(I[\mathbf{X}])^{[*]}=I[\mathbf{X}]$ by Theorem 2.1(4). Hence there are some $f_{1}, \ldots, f_{n} \in I[\mathbf{X}]$ such that $I[\mathbf{X}]=\left(\left(f_{1}, \ldots, f_{n}\right) D[\mathbf{X}]\right)^{[* *]}$. Put $J=c\left(f_{1}\right)+\cdots c\left(f_{n}\right)$; then $J \subseteq I$ is finitely generated and $I[\mathbf{X}]=$ $(J[\mathbf{X}])^{[*]}=J^{* w}[\mathbf{X}]$. Thus $I=I[\mathbf{X}] \cap K=J^{* w}[\mathbf{X}] \cap K=J^{* w}$.

Recall that if $f, g \in K[\mathbf{X}]$, then there exists a positive integer $m=m(f, g)$ such that $c(f)^{m+1} c(g)=c(f)^{m} c(f g)$ [10, Corollary 28.3]; so if $c(f)^{*}=D$, then $c(g)^{*}=c(f g)^{*}$. In particular, if $f_{1}, \ldots, f_{n} \in D[\mathbf{X}]$, then $c\left(f_{i}\right)^{*}=D$ for $i=1, \ldots, n$ if and only if $c\left(f_{1} \cdots f_{n}\right)^{*}=D$.

Theorem 2.5. Let $[*]$ be the star operation on $D[\mathbf{X}]$ canonically associated to * as in Theorem 2.1. Then $\left(D[\mathbf{X}]_{N_{*}}\right)^{g}=D^{* g}[\mathbf{X}]_{N_{*}}=(D[\mathbf{X}])^{[*] g}$.

Proof. Proof of $\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \subseteq D^{* g}[\mathbf{X}]_{N_{*}}$.
We first show that $\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \cap K[\mathbf{X}] \subseteq D^{* g}[\mathbf{X}]_{N_{*}}$. Let $g \in\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \cap$ $K[\mathbf{X}]$. Then there are maximal $*_{f}$-ideals P_{1}, \ldots, P_{n} of D such that $g P_{1} \cdots P_{n} \subseteq$
$g P_{1}[\mathbf{X}]_{N_{*}} \cdots P_{n}[\mathbf{X}]_{N_{*}} \subseteq D[\mathbf{X}]_{N_{*}}$ by Lemma 1.1(1). So if $0 \neq a \in P_{1} \cdots P_{n}$, then $a g=\frac{h}{f}$ or $a f g=h$ for some $h \in D[\mathbf{X}]$ and $f \in N_{*}$; hence $a(c(g)) \subseteq$ $a\left(c(g)^{*}\right)=a(c(f) c(g))^{*}=a\left(c(f g)^{*}\right)=c(h)^{*} \subseteq D$. Since a is an arbitrary element of $P_{1} \cdots P_{n}$, we have $c(g) P_{1} \cdots P_{n} \subseteq D$, and hence $c(g) \subseteq D^{* g}$. Thus $g \in D^{* g}[\mathbf{X}] \subseteq D^{* g}[\mathbf{X}]_{N_{*}}$.

Next, let $u \in\left(D[\mathbf{X}]_{N_{*}}\right)^{g}$. Then there are maximal $*_{f}$-ideals $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ of D such that $u P_{1}^{\prime}[\mathbf{X}] \cdots P_{k}^{\prime}[\mathbf{X}] \subseteq u P_{1}^{\prime}[\mathbf{X}]_{N_{*}} \cdots P_{k}^{\prime}[\mathbf{X}]_{N_{*}} \subseteq D[\mathbf{X}]_{N_{*}}$ by Lemma 1.1(1). So for any $0 \neq b \in P_{1}^{\prime} \cdots P_{k}^{\prime}$, we have $u b=\frac{h_{1}}{f_{1}} \in D[\mathbf{X}]_{N_{*}}$, where $h_{1} \in D[\mathbf{X}]$ and $f_{1} \in N_{*}$. Hence $u=\frac{b^{-1} h_{1}}{f_{1}} \in K[\mathbf{X}]_{N_{*}}$ and $f_{1} u=f_{1} \frac{b^{-1} h_{1}}{f_{1}}=$ $b^{-1} h_{1} \in K[\mathbf{X}] \cap\left(D[\mathbf{X}]_{N_{*}}\right)^{g}$. By the above paragraph, $f_{1} u \in D^{* g}[\mathbf{X}]_{N_{*}}$, and since $f_{1} \in N_{*}$, we have $u \in D^{* g}[\mathbf{X}]_{N_{*}}$. Thus $\left(D[\mathbf{X}]_{N_{*}}\right)^{g} \subseteq D^{* g}[\mathbf{X}]_{N_{*}}$.
$\underline{\text { Proof of } D^{* g}[\mathbf{X}]_{N_{*}} \subseteq(D[\mathbf{X}])^{[*] g}}$.
Note that if P is a maximal $*_{f}$-ideal of D, then $P[\mathbf{X}]$ is a maximal [*]-ideal of $D[\mathbf{X}]$ by Theorem 2.1(5). So $D^{* g} \subseteq(D[\mathbf{X}])^{[*] g}$, and hence $D^{* g}[\mathbf{X}] \subseteq(D[\mathbf{X}])^{[*] g}$. Hence it suffices to show that if $f \in N_{*}$, then $\frac{1}{f} \in(D[\mathbf{X}])^{[*] g}$.

Since $K[\mathbf{X}]$ is a UFD, we can write $f=f_{1}^{e_{1}} \cdots f_{k}^{e_{k}}$, where each $f_{i} \in K[\mathbf{X}]$, each e_{i} is a positive integer and $f_{i} K[\mathbf{X}]$ is a prime ideal of $K[\mathbf{X}]$ such that $f_{i} K[\mathbf{X}] \neq f_{j} K[\mathbf{X}]$ for $i \neq j$. If $g \in K[\mathbf{X}]$ such that $f g \in D[\mathbf{X}]$, then $c(g) \subseteq$ $c(g)^{*}=(c(f) c(g))^{*}=c(f g)^{*} \subseteq D[\mathbf{X}]$; so $g \in D[\mathbf{X}]$. Hence $f K[\mathbf{X}] \cap D[\mathbf{X}] \subseteq$ $f D[\mathbf{X}]$, and thus $f K[\mathbf{X}] \cap D[\mathbf{X}]=f D[\mathbf{X}]$. Also, $f D[\mathbf{X}]=f K[\mathbf{X}] \cap D[\mathbf{X}]=$ $\left(f_{1}^{e_{1}} K[\mathbf{X}] \cap D[\mathbf{X}]\right) \cap \cdots \cap\left(f_{k}^{e_{k}} K[\mathbf{X}] \cap D[\mathbf{X}]\right) \subseteq f_{i} K[\mathbf{X}] \cap D[\mathbf{X}]$ for $i=1, \ldots, k$. Since $c(f)^{*}=D$, each $f_{i} K[\mathbf{X}] \cap D[\mathbf{X}]$ is a maximal $[*]$-ideal of $D[\mathbf{X}]$ by Corollary 2.2. Also, since $\left(f_{i} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{i}} \subseteq\left(f_{i} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{i}} K[\mathbf{X}] \cap$ $D[\mathbf{X}]=f_{i}^{e_{i}} K[\mathbf{X}] \cap D[\mathbf{X}]$, we have $\left(f_{1} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{1}} \cdots\left(f_{k} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{k}} \subseteq$ $\left(f_{1} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{1}} \cap \cdots \cap\left(f_{k} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{k}} \subseteq f D[\mathbf{X}]$. Hence $\frac{1}{f}\left(f_{1} K[\mathbf{X}] \cap\right.$ $D[\mathbf{X}])^{e_{1}} \cdots\left(f_{k} K[\mathbf{X}] \cap D[\mathbf{X}]\right)^{e_{k}} \subseteq \frac{1}{f} f D[\mathbf{X}]=D[\mathbf{X}]$, and thus $\frac{1}{f} \in(D[\mathbf{X}])^{[* * g}$.
Proof of $(D[\mathbf{X}])^{[*] g} \subseteq\left(D[\mathbf{X}]_{N_{*}}\right)^{g}$.
Let $u \in(D[\mathbf{X}])^{[*] g}$. Recall that if Q is a maximal $[*]$-ideal of $D[\mathbf{X}]$ with $Q \cap D \neq(0)$, then $Q \cap D$ is a maximal $*_{f}$-ideal of D and $Q=(Q \cap D)[\mathbf{X}]$ by Theorem 2.1(5). Hence $u Q_{1} \cdots Q_{k} P_{1}[\mathbf{X}] \cdots P_{m}[\mathbf{X}] \subseteq D[\mathbf{X}]$ for some maximal [*]-ideals Q_{1}, \ldots, Q_{k} of $D[\mathbf{X}]$ with $Q_{i} \cap D=(0)$ and maximal $*_{f}$-ideals P_{1}, \ldots, P_{m} of D. Also, by Corollary 2.2, there exists a polynomial $h_{i} \in Q_{i}$ such that $c\left(h_{i}\right)^{*}=D$. Let $h=h_{1} \cdots h_{k}$; then $c(h)^{*}=D$, and hence $h \in N_{*}$. So $u h P_{1}[\mathbf{X}] \cdots P_{m}[\mathbf{X}] \subseteq D[\mathbf{X}]$ or $u P_{1}[\mathbf{X}] \cdots P_{m}[\mathbf{X}] \subseteq \frac{1}{h} D[\mathbf{X}] \subseteq D[\mathbf{X}]_{N_{*}}$. Hence $u P_{1}[\mathbf{X}]_{N_{*}} \cdots P_{m}[\mathbf{X}]_{N_{*}} \subseteq D[\mathbf{X}]_{N_{*}}$, and since each $P_{i}[\mathbf{X}]_{N_{*}}$ is a maximal ideal of $D[\mathbf{X}]_{N_{*}}$ by Lemma 1.1(1), we have $u \in\left(D[\mathbf{X}]_{N_{*}}\right)^{g}$.

Recall that each maximal ideal of $D[\mathbf{X}]_{N_{v}}$ is a t-ideal [12, Corollary 2.3]; hence $\left(D[\mathbf{X}]_{N_{v}}\right)^{w g}=\left(D[\mathbf{X}]_{N_{v}}\right)^{g}$. Also, $[w]=w$ on $D[\mathbf{X}]$ by Theorem 2.1(2) and (6). Thus the next result is the d - and w-operation versions of Theorem 2.5.

Corollary 2.6. (1) $D^{g}[\mathbf{X}]_{N_{d}}=(D[\mathbf{X}])^{[d] g}=\left(D[\mathbf{X}]_{N_{d}}\right)^{g}$.
(2) $D^{w g}[\mathbf{X}]_{N_{v}}=(D[\mathbf{X}])^{w g}=\left(D[\mathbf{X}]_{N_{v}}\right)^{g}=\left(D[\mathbf{X}]_{N_{v}}\right)^{w g}$.

It is well known that if D is a Noetherian domain, then each ring between D and D^{g} is a Noetherian domain [14, Corollary]. Thus by Corollary 2.4 and Theorem 2.5, we have:

Corollary 2.7. If D is $a *_{w}$-Noetherian domain, then each ring between $D[\mathbf{X}]_{N_{*}}$ and $D^{* g}[\mathbf{X}]_{N_{*}}$ is a Noetherian domain.

The $*$-dimension of D, denoted by $*$ - $\operatorname{dim}(D)$, is the number of prime $*$-ideals in a longest chain of prime $*$-ideals of D, or infinity if there is no such longest chain. If D is a rank one non-discrete valuation domain, then $v-\operatorname{dim}(D)=0$. However, if D is not a field, then $*_{f}-\operatorname{dim}(D) \geq 1$; in particular, $*_{f}-\operatorname{dim}(D)=1$ if and only if each prime $*_{f}$-ideal of D is a maximal $*_{f}$-ideal.

Let $\Lambda=\left\{P \in *_{f}-\operatorname{Max}(D) \mid \operatorname{ht} P \geq 2\right\}$, and let $\widetilde{D}=\cap_{P \in \Lambda} D_{P}$. Hence $\Lambda=\emptyset$ if and only if $*_{f}-\operatorname{dim}(D)=1$ (in this case, $\widetilde{D}=K$). It is known that if D is a Noetherian domain, then $R:=\cap\left\{D_{M} \mid M \in \operatorname{Max}(D)\right.$ and ht $\left.M \geq 2\right\}$ is a ring such that $D \subseteq R \subseteq D^{g}$ [1, Proposition 1]. We next study the relationship between D, \widetilde{D}, and $D^{* g}$.

Proposition 2.8. Let D be $a *_{w}$-Noetherian domain, $\Lambda=\left\{P \in *_{f}-\operatorname{Max}(D) \mid\right.$ $\mathrm{ht} P \geq 2\}$, and $\widetilde{D}=\cap_{P \in \Lambda} D_{P}$.
(1) \widetilde{D} is *-linked over D.
(2) $\widetilde{D} \subseteq D^{* g}$. Hence if $*_{D}$ is the star operation on \widetilde{D} as in Lemma 1.2, then \widetilde{D} is $a *_{D}$-Noetherian domain.
(3) $\widetilde{D} \subsetneq D^{* g}$ if and only if there is $P \in \Lambda$ such that P is a t-ideal.
(4) $D \subsetneq \widetilde{D}$ if and only if there is a maximal $*_{f}$-ideal P of D with $\mathrm{ht} P=1$.
(5) $D \subsetneq \widetilde{D}=D^{* g}$ if and only if there is a maximal $*_{f}$-ideal P of D with $\mathrm{ht} P=1$ and each $Q \in \Lambda$ is not a t-ideal.
(6) If $*_{f}-\operatorname{dim}(D)=1$, then $\widetilde{D}=D^{* g}=K$.
(7) If $*_{w}=w$, then $\widetilde{D}=D^{w g}$ if and only if $t-\operatorname{dim}(D)=1$.
(8) If $*_{w}=w$ and $\Lambda \neq \emptyset$, then $t-\operatorname{Max}(\widetilde{D})=\left\{P D_{P} \cap \widetilde{D} \mid P \in \Lambda\right\}$ and $t-\operatorname{dim}(D)=t-\operatorname{dim}(\widetilde{D})$.

Proof. (1) Clearly, if $P \in \Lambda$, then D_{P} is *-linked over D; so $D_{P}[X]_{N_{*}} \cap K=$ D_{P}. Hence $\widetilde{D} \subseteq \widetilde{D}[X]_{N_{*}} \cap K \subseteq \cap_{P \in \Lambda}\left(D_{P}[X]_{N_{*}} \cap K\right)=\cap_{P \in \Lambda} D_{P}=\widetilde{D}$ or $\widetilde{D}[X]_{N_{*}} \cap K=\widetilde{D}$. Thus \widetilde{D} is $*-$ linked over D.
(2) Let $x \in \widetilde{D}$. Since $D \subseteq D^{* g}$, we may assume $x \notin D$, and so $(D: x)=$ $\{a \in D \mid a x \in D\} \subsetneq D$. Note that $x(D: x)^{v}=(x(D: x))^{v} \subseteq D^{v}=D$; hence $(D: x)^{v} \subseteq(D: x)$, and thus $(D: x)^{v}=(D: x)$. Note also that, since D is a $*_{w}$-Noetherian domain, $(D: x)$ has a primary decomposition [4, Corollary 2.7].

Let $(D: x)=Q_{1} \cap \cdots \cap Q_{k}$ be a primary decomposition of $(D: x)$ such that $\sqrt{Q_{i}} \neq \sqrt{Q_{j}}$ for $i \neq j$. Since $(D: x)$ is a $*_{w}$-ideal, we may assume
that each Q_{i} is a $*_{w}$-ideal. Then, since $x \in \widetilde{D} \subseteq D_{P}$ for all $P \in \Lambda$, we have $D_{P}=\left(D_{P}: x D_{P}\right)=(D: x) D_{P}=Q_{1} D_{P} \cap \cdots \cap Q_{k} D_{P}$. Hence each $\sqrt{Q_{i}}$ is a maximal $*_{f}$-ideal and $\operatorname{ht}\left(\sqrt{Q_{i}}\right)=1$. Put $\sqrt{Q_{i}}=P_{i}$. Since D is a $*_{w}$-Noetherian domain, P_{i} is of finite type, i.e., $P_{i}=\left(c_{1}, \ldots, c_{n}\right)^{* w}$ for some $c_{i} \in D$. Also, since $\sqrt{Q_{i}}=P_{i}$, there exists a positive integer e_{i} such that $P_{i}^{e_{i}} \subseteq\left(P_{i}^{e_{i}}\right)^{*_{w}} \subseteq Q_{i}$. So $P_{1}^{e_{1}} \cdots P_{k}^{e_{k}} \subseteq Q_{1} \cap \cdots \cap Q_{k}=(D: x)$, and hence $x P_{1}^{e_{1}} \cdots P_{k}^{e_{k}} \subseteq D$. Thus $x \in D^{* g}$.

Moreover, since \widetilde{D} is $*$-linked over D by (1), \widetilde{D} is a $*_{D}$-Noetherian domain by Lemma 1.3(4).
(3) Suppose that $\widetilde{D} \subsetneq D^{* g}$, and choose $x \in D^{* g}-\widetilde{D}$. Then there exist some maximal $*_{f}$-ideals P_{1}, \ldots, P_{n} of D (not necessarily distinct) such that $x P_{1} \cdots P_{n} \subseteq D$. Since $x \notin D$ and $\left(x P_{1} \cdots P_{n}\right)^{t} \subseteq D$, we may assume that each P_{i} is a t-ideal. If $\mathrm{ht} P_{i}=1$ for $i=1, \ldots, n$, then $\left(P_{1} \cdots P_{n}\right) D_{P}=D_{P}$, and hence $x \in x D_{P}=\left(x P_{1} \cdots P_{n}\right) D_{P} \subseteq D_{P}$ for all $P \in \Lambda$; so $x \in \cap_{P \in \Lambda} D_{P}=\widetilde{D}$, a contradiction. Thus at least one of the P_{i} 's is a t-ideal of height ≥ 2.

For the converse, let P be a maximal $*_{f}$-ideal of D such that ht $P \geq 2$ and $P^{t}=P$. Then, since D is a $*_{w}$-Noetherian domain, we have $P^{v}=P$ or $D \subsetneq P^{-1}$. Choose an $x \in P^{-1}-D$, and note that $x P \subseteq D$ and P is a maximal t-ideal; so $x \in D^{* g}$ and $P=(D: x)$. Hence $\left(D_{P}: x D_{P}\right)=(D: x) D_{P}=$ $P D_{P} \subsetneq D_{P}$, and thus $x \notin D_{P}$. Note that $\widetilde{D} \subseteq D_{P}$; so $x \notin \widetilde{D}$. Thus $\widetilde{D} \subsetneq D^{* g}$ by (2).
(4) Assume that $D \subsetneq \widetilde{D}$, and choose $x \in \widetilde{D}-D$. Then $x \in D_{P}$, and hence $(D: x) \nsubseteq P$ for all $P \in \Lambda$. But, since $x \notin D$ and $(D: x)^{*_{f}}=(D: x)^{v}=(D: x)$, there is a maximal $*_{f}$-ideal Q of D such that $(D: x) \subseteq Q$. Then, clearly, $\mathrm{ht} Q=1$. Conversely, assume that there is a maximal $*_{f}$-ideal Q of D with ht $Q=1$. Then, since D is a $*_{w}$-Noetherian domain, $Q^{v}=Q$. So $D \subsetneq Q^{-1}$, and we can choose $x \in Q^{-1}-D$. Then $x Q \subseteq D$, and hence $x \in x D_{P}=x Q D_{P} \subseteq D_{P}$ for all $P \in \Lambda$. Thus $x \in \cap_{P \in \Lambda} D_{P}=\widetilde{D}$.
(5) This is an immediate consequence of (3) and (4).
(6) This follows directly from (5) and the definition of \widetilde{D}.
(7) This is an immediate consequence of (5) and (6) and Lemma 1.3(3).
(8) For each $P \in \Lambda$, let $\widetilde{P}=P D_{P} \cap \widetilde{D}$. Then $\widetilde{D}_{\widetilde{P}}=D_{P}, \widetilde{P} \widetilde{D}_{\widetilde{P}}=P D_{P}$ and $\operatorname{ht} \widetilde{P}=\operatorname{ht} P \geq 2$. Next, note that $D \subsetneq P^{-1}$, and hence if $x \in P^{-1}-D$, then $P=x^{-1} D \cap D$; so $P D_{P}=x^{-1} D_{P} \cap D_{P}$, and thus $P D_{P}$ is a t-ideal. Hence $\widetilde{P} \widetilde{D}_{\widetilde{P}} \cap \widetilde{D}$ is a t-ideal of \widetilde{D} [12, Lemma 3.17]. Note also that, since D is an SM domain, the intersection $\widetilde{D}=\cap_{P \in \Lambda} D_{P}$ has finite character [3, Theorem $2.2(3)]$. Let \star be the star operation on \widetilde{D} defined by $I^{\star}=\cap_{P \in \Lambda} I D_{P}[10$, Theorem 32.5]. Let $Q \in t-\operatorname{Max}(\widetilde{D})$. If $Q \nsubseteq P D_{P} \cap \widetilde{D}$ for all $P \in \Lambda$, then, since the intersection $\widetilde{D}=\cap_{P \in \Lambda} D_{P}$ has finite character, there are some $a, b \in Q$ such that $(a, b) \nsubseteq P D_{P} \cap \widetilde{D}$ for all $P \in \Lambda$. Hence $\widetilde{D}=(a, b)^{\star} \subseteq(a, b)^{v} \subseteq Q^{t} \subsetneq \widetilde{D}$, a contradiction. Hence $Q=P D_{P} \cap \widetilde{D}$ for some $P \in \Lambda$. Thus $t-\operatorname{Max}(\widetilde{D})=\{\widetilde{P} \mid P \in$ $\Lambda\}$ (or see [20, Theorem 1]). Moreover, note that if D_{1} is an SM-domain, then
$t-\operatorname{dim}\left(D_{1}\right)=\sup \left\{t-\operatorname{dim}\left(\left(D_{1}\right)_{Q}\right) \mid Q \in t-\operatorname{Max}\left(D_{1}\right)\right\}$. Thus $t-\operatorname{dim}(D)=\sup \{t-$ $\left.\operatorname{dim}\left(D_{P}\right) \mid P \in \Lambda\right\}=\sup \left\{t-\operatorname{dim}\left(\widetilde{D}_{\widetilde{P}}\right) \mid P \in \Lambda\right\}=t-\operatorname{dim}(\widetilde{D})$.

Let A be an integral domain, and let \star be a star operation on A. In the next proposition, we denote by $\Gamma^{\star_{f}}(A)$ the ring $\cap\left\{A_{P} \mid P \in \star_{f}-\operatorname{Max}(A)\right.$ and ht $P \geq 2\}$. The proof of Proposition 2.8(1) shows that $\Gamma^{\star{ }_{f}}(A)$ is \star-linked over A.

Proposition 2.9. Let D be $a *_{w}$-Noetherian domain, $[*]$ be the star operation on $D[\mathbf{X}]$ as in Theorem 2.1, $R=\Gamma^{*_{f}}(D), *_{D}$ be the star operation on R as in Lemma 1.2, and $N_{*_{D}}(R)=\left\{f \in R[\mathbf{X}] \mid(c(f) R)^{* D}=R\right\}$.
(1) $R[\mathbf{X}]_{N_{*}}=R[\mathbf{X}]_{N_{*_{D}}(R)} \subseteq \Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)=\Gamma^{[*]}(D[\mathbf{X}])$.
(2) If $*_{w}=w$ and $N_{v}(R)=\left\{f \in R[\mathbf{X}] \mid(c(f) R)^{v}=R\right\}$, then $R[\mathbf{X}]_{N_{v}}=$ $R[\mathbf{X}]_{N_{v}(R)}=\Gamma^{d}\left(D[\mathbf{X}]_{N_{v}}\right)=\Gamma^{[v]}(D[\mathbf{X}])$.

Proof. Let $\Lambda=\left\{P \in *_{f}-\operatorname{Max}(D) \mid\right.$ ht $\left.P \geq 2\right\}$; so $R=\cap_{P \in \Lambda} D_{P}, D_{P}=R_{P D_{P} \cap R}$ and $D[\mathbf{X}]_{P[\mathbf{X}]}=R[\mathbf{X}]_{\left(P D_{P} \cap R\right)[\mathbf{X}]}$ for each $P \in \Lambda$.
(1) Let P be a maximal $*_{f}$-ideal of D. Then D_{P} is Noetherian, and hence $\mathrm{ht}(P[\mathbf{X}])=\operatorname{ht}\left(P D_{P}[\mathbf{X}]\right)=\operatorname{ht}\left(P D_{P}\right)=\mathrm{ht} P<\infty[3$, Lemma 1.2].

Claim 1. $R[\mathbf{X}]_{N_{*_{D}}(R)} \subseteq \Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)$.
(Proof. Note that $\Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)=\cap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]}$ by Lemma 1.1(1). So $R \subseteq$ $\Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right) \cap K$. Thus $R[\mathbf{X}] \subseteq \Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)$. Next, let $f \in N_{*_{D}}(R)$. Then $(c(f) R)^{* D}=R$, and hence $c(f) R[\mathbf{X}] \cap N_{*} \neq \emptyset$. But, since $P D_{P}[\mathbf{X}] \cap N_{*}=\emptyset$, we have $f \notin P D_{P}[\mathbf{X}]$ for all $P \in \Lambda$. Thus $\frac{1}{f} \in \cap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]}=\Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)$.)

Claim 2. $R[\mathbf{X}]_{N_{*}}=R[\mathbf{X}]_{N_{*_{D}}(R)}$.
(Proof. Clearly, $N_{*} \subseteq N_{*_{D}}(R)$, and thus $R[\mathbf{X}]_{N_{*}} \subseteq R[\mathbf{X}]_{N_{*_{D}}(R)}$. For the reverse containment, it suffices to show that if $f \in N_{*_{D}}(R)$, then $\frac{1}{f} \in R[\mathbf{X}]_{N_{*}}$. First, note that $R[\mathbf{X}]_{N_{*_{D}}(R)} \subseteq \Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right) \subseteq\left(D[\mathbf{X}]_{N_{*}}\right)^{g}=D^{* g}[\mathbf{X}]_{N_{*}}$ by Claim 1, Proposition 2.8(2) and Theorem 2.5. Hence $\frac{1}{f} \in D^{* g}[\mathbf{X}]_{N_{*}}$, and so $\frac{1}{f}=\frac{h}{g}$ for some $h \in D^{* g}[\mathbf{X}]$ and $g \in N_{*}$. So $g=f h$, and since R is $*$-linked over D by Proposition 2.8(1) and $(c(f) R)^{*_{D}}=R$, we have $c(h) \subseteq(c(h) R)^{v}=$ $(c(f h) R)^{v}=(c(g) R)^{v}=R$. Hence $h \in R[\mathbf{X}]$, and thus $\left.\frac{1}{f} \in R[\mathbf{X}]_{N_{*}}.\right)$

Claim 3. $\Gamma^{d}\left(D[\mathbf{X}]_{N_{*}}\right)=\Gamma^{[*]}(R[\mathbf{X}])$.
(Proof. Let Q be a maximal [*]-ideal of $D[\mathbf{X}]$. Then either $Q \cap D=(0)$ with $\operatorname{ht} Q=1$ or $Q \cap D$ is a maximal $*_{f}$-ideal of D and $Q=(Q \cap D)[\mathbf{X}]$ by Theorem 2.1(5). Thus the equality follows directly from Lemma 1.1(1).)
(2) By Proposition 2.8(8), $t-\operatorname{Max}(R)=\left\{P D_{P} \cap R \mid P \in \Lambda\right\}$, and thus by Lemma 1.1(1), $\operatorname{Max}\left(R[\mathbf{X}]_{N_{v}(R)}\right)=\left\{\left(P D_{P} \cap R\right)[\mathbf{X}]_{N_{v}(R)} \mid P \in \Lambda\right\}$. Thus

$$
R[\mathbf{X}]_{N_{v}(R)}=\cap_{P \in \Lambda} D[\mathbf{X}]_{P[\mathbf{X}]}=\Gamma^{d}\left(D[\mathbf{X}]_{N_{v}}\right) .
$$

Also, the proof of Claim 3 of (1) above shows that $R[\mathbf{X}]_{N_{v}}=R[\mathbf{X}]_{N_{v}(R)}$. This completes the proof by (1).

Let R be an overring of D. Following Wadsworth [18], we say that (D, R) is a Noetherian pair if every domain A with $D \subseteq A \subseteq R$ is Noetherian. So if D is a Noetherian domain, then $\left(D, D^{g}\right)$ is a Noetherian pair. Also, if D is a $*_{w}$-Noetherian domain, then $\left(D[\mathbf{X}]_{N_{*}}, D^{* g}[\mathbf{X}]_{N_{*}}\right)$ is a Noetherian pair by Corollary 2.7. As a generalization of the concept of an Noetherian pair, we will say that (D, R) is an $S M$ domain pair if each t-linked overring T of D with $T \subseteq R$ is an SM domain. Clearly, a Noetherian pair is an SM domain pair and if D is an SM domain, then $\left(D, D^{w g}\right)$ is an SM domain pair. Also, if each maximal ideal of D is a t-ideal, then each overring of D is t-linked over D. Hence, in this case, an SM domain pair is a Noetherian pair.

Proposition 2.10. Let R be an overring of D and S a multiplicative subset of D.
(1) If (D, R) is an $S M$ domain pair, then $\left(D_{S}, R_{S}\right)$ is an $S M$ domain pair.
(2) If D is an $S M$-domain, then $\left(D[\mathbf{X}], D^{w g}[\mathbf{X}]_{N_{v}}\right)$ is an SM domain pair.
(3) If $(D[\mathbf{X}], R[\mathbf{X}])$ is an SM domain pair, then (D, R) is an $S M$ domain pair.
(4) If $\left(D[\mathbf{X}]_{N_{v}}, R[\mathbf{X}]_{N_{v}}\right)$ is an $S M$ domain pair, then (D, R) is an $S M$ domain pair.

Proof. (1) Let A be a t-linked overring of D_{S} such that $A \subseteq R_{S}$. Then A is t-linked over D (for if I is a nonzero finitely generated ideal of D, then $I^{-1}=D$ $\Rightarrow\left(I D_{S}\right)^{-1}=D_{S}(\mathrm{cf}$. [9, Proposition $\left.\left.2.2(\mathrm{~d})]\right) \Rightarrow(I A)^{-1}=\left(\left(I D_{S}\right) A\right)^{-1}=A\right)$, and hence $A \cap R$ is t-linked over D [9, Proposition 2.2(b)]. Since $D \subseteq A \cap R \subseteq R$, $A \cap R$ is an SM domain by assumption. Also, note that $(A \cap R)_{S} \subseteq A_{S}=A$ and $S \subseteq A \subseteq R_{S}$; so $(A \cap R)_{S}=A$. Thus A is an SM domain [19, Proposition 4.7].
(2) Note that $D[\mathbf{X}]$ is an SM domain by Theorem 2.1(2) and (6) and Corollary 2.4 and $(D[\mathbf{X}])^{w g}=D^{w g}[\mathbf{X}]_{N_{v}}$ by Corollary 2.6. Thus $\left(D[\mathbf{X}], D^{w g}[\mathbf{X}]_{N_{v}}\right)$ is an SM domain pair.
(3) Let A be a t-linked overring of D such that $A \subseteq R$. Then $A[\mathbf{X}]$ is t-linked over $D[\mathbf{X}][8$, Lemma 1.6] and $A[\mathbf{X}] \subseteq R[\mathbf{X}]$. Hence $A[\mathbf{X}]$ is an SM domain by assumption, and thus A is an SM domain by Theorem 2.1(6) and Corollary 2.4. Thus (D, R) is an SM domain pair.
(4) Let T be a t-linked overring of D such that $T \subseteq R$; then $D[\mathbf{X}]_{N_{v}} \subseteq$ $T[\mathbf{X}]_{N_{v}} \subseteq R[\mathbf{X}]_{N_{v}}$. Note that each maximal ideal of $D[\mathbf{X}]_{N_{v}}$ is a t-ideal; so $T[\mathbf{X}]_{N_{v}}$ is t-linked over $D[\mathbf{X}]_{N_{v}}$, and hence $T[\mathbf{X}]_{N_{v}}$ is an SM domain by assumption. Let $N_{v}(T)=\left\{g \in T[\mathbf{X}] \mid(c(g) T)^{v}=T\right\}$, then $N_{v} \subseteq N_{v}(T)$ since T is t-linked over D, and so $T[\mathbf{X}]_{N_{v}(T)}=\left(T[\mathbf{X}]_{N_{v}}\right)_{N_{v}(T)}$. Hence $T[\mathbf{X}]_{N_{v}(T)}$ is an SM domain [19, Proposition 4.7], and thus T is an SM domain [3, Theorem 2.2].

References

[1] D. D. Anderson, Global transforms and Noetherian pairs, Hiroshima Math. J. 10 (1980), no. 1, 69-74.
[2] D. D. Anderson and S. J. Cook, Two star-operations and their induced lattices, Comm. Algebra 28 (2000), no. 5, 2461-2475.
[3] G. W. Chang, Strong Mori domains and the ring $D[X]_{N_{v}}$, J. Pure Appl. Algebra 197 (2005), no. 1-3, 293-304.
[4] 216-233.
[5] , Prüfer *-multiplication domains, Nagata rings, and Kronecker function rings, J. Algebra 319 (2008), no. 1, 309-319.
$[6]$, Locally pseudo-valuation domains of the form $D[X]_{N_{v}}$, J. Korean Math. Soc. 45 (2008), no. 5, 1405-1416.
[7] G. W. Chang and M. Fontana, Uppers to zero and semistar operations in polynomial rings, J. Algebra 318 (2007), no. 1, 484-493.
[8] G. W. Chang and M. Zafrullah, The w-integral closure of integral domains, J. Algebra 295 (2006), no. 1, 195-210.
[9] D. Dobbs, E. Houston, T. Lucas, and M. Zafrullah, t-linked overrings and Prufer vmultiplication domains, Comm. Algebra 17 (1989), no. 11, 2835-2852.
[10] R. Gilmer, Multiplicative Ideal Theory, Dekker, New York, 1972.
[11] E. Houston, S. Malik, and J. Mott, Characterizations of ${ }^{*}$-multiplication domains, Canad. Math. Bull. 27 (1984), no. 1, 48-52.
[12] B. G. Kang, Prüfer v-multiplication domains and the ring $R[X]_{N_{v}}$, J. Algebra 123 (1989), no. 1, 151-170.
[13] I. Kaplansky, Commutative rings, Revised Ed., Univ. of Chicago, Chicago, 1974.
[14] J. R. Matijevic, Maximal ideal transforms of Noetherian rings, Proc. Amer. Math. Soc. 54 (1976), 49-52.
[15] R. Matsuda, On a question posed by Huckaba-Papick, Proc. Japan Acad. Ser. A Math. Sci. 59 (1983), no. 1, 21-23.
[16] M. H. Park, Group rings and semigroup rings over strong Mori domains, J. Pure Appl. Algebra 163 (2001), no. 3, 301-318.
[17] , On overrings of strong Mori domains, J. Pure Appl. Algebra 172 (2002), no. 1, 79-85.
[18] A. R. Wadsworth, Pairs of domains where all intermediate domains are Noetherian, Trans. Amer. Math. Soc. 195 (1974), 201-211.
[19] F. Wang and R. L. McCasland, On strong Mori domains, J. Pure Appl. Algebra 135 (1999), no. 2, 155-165.
[20] M. Zafrullah, The v-operation and intersections of quotient rings of integral domains, Comm. Algebra 13 (1985), no. 8, 1699-1712.

Department of Mathematics
University of Incheon
Incheon 406-772, Korea
E-mail address: whan@incheon.ac.kr

