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SOME PROPERTIES OF STRONG CHAIN TRANSITIVE

MAPS

Ali Barzanouni

Abstract. Let f : X → X be a continuous map on a compact metric

space (X, d) and for an arbitrary x ∈ X,

SCd(x, f) := {y |x can be strong d-chain to y}.
We give an example to show that SCd(x, f) is dependent on the met-
ric d on X but it is a closed and f -invariant set. We prove that if

SCd(x, f) ⊇ Ω(f) or f has the asymptotic-average shadowing property,

then SCd(x, f) = X. Also, we show that if f has the shadowing property,
then lim supn∈N{fn} = SCd(f) where SCd(f) = {(x, y) | y ∈ SCd(x, f)}.
For each n ∈ N, we give an example in which SCRd(fn) 6= SCRd(f). In

spite of it, we prove that if f−1 : (X, d) → (X, d) is an equicontinuous
map, then SCRd(fn) = SCRd(f) for all n ∈ N.

1. Introduction

Strong chains and strong chain recurrent points have been introduced by
Easton [2]. He obtained a relation between strong chain transitivity and Lips-
chitz ergodicity (namely, any Lipschitz function which is constant along orbits
is globally constant). The strong chain recurrent set depends on the metric.
To eliminate the dependence on the metric in SCRd, Fathi and Pageault [4]
have introduced two different sets the Mañe set M(f) =

⋃
d′ SCRd′(f) and

the generalized recurrent set GR(f) =
⋂
d′ SCRd(f), where the union and the

intersection are both over all metrics d′ compatible with the topology of X.
Wiseman [10] has shown that there is a metric for which the strong chain re-
current set equals GR(f). Fakhari, Ghane and Sarizadeh [3] have exhibited
some general properties of the strong chain recurrent set, and studied strong
chain transitivity for a map having a shadowing property. Some properties
of strong chain recurrent set have been discussed by Yokoi [11] where he has
given a necessary and sufficient condition for the coincidence of SCR(f) and
CR(f). Motivated by the results above, we continue the study of strong chain
recurrence.
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In this paper, we assume that f : (X, d) → (X, d) is a continuous map on
compact metric space (X, d). The paper is organized as follows. In Section 2,
we consider the set

SCd(x, f) = {y | x can be strong d-chain to y}.

This section consists of three subsections. In Subsection 2.1, we give some
properties of SCd(x, f). Proposition 2.3 shows that SCd(x, f) is a closed f -
invariant set. We give Example 2.2 to show that SCd(x, f) is dependent on
the metric. Also, in Proposition 2.4, we show that if SCd(x, f) ⊇ Ω(f), then
SCd(x, f) = X. Since SCd(x, f) is a closed set, the map SCd(·, f) : X → 2X

which maps x to SCd(x, f) is well-defined. In Subsection 2.2, we give some
properties of SCd(·, f) : X → 2X . Indeed in Proposition 2.6 we show that

∞⋃
n=1

SCnd (x, f) = SCd(x, f) and
⋂
ε>0

SCd(Bε(x), f) = SCd(x, f),

where

SCnd (x, f) =
⋃

y∈SCn−1
d (x,f)

SCd(y, f) and SCd(Bε(x), f) =
⋃

y∈Bε(x)

SCd(y, f).

This means that SCd(·, f) : X → 2X is a transitive and cluster map. In
Subsection 2.3, we consider the relation

SCd(f) = {(x, y) : y ∈ SCd(x, f)}.

In Proposition 2.7, we show that SCd(f) ⊆ X ×X is a transitive relation and
it is a closed set in X ×X, also we show that if Ω(f) × Ω(f) ⊆ SCd(f), then
SCd(f) = X ×X. Supposing C(f) = {(x, y) |x can be chain to y}, we can see
that C(f) is a transitive relation and a closed set in X × X. Example 2.10
shows that reverse of the following inclusions does not hold in general

lim sup{fn} ⊆ SCd(f) ⊆ C(f).

If f has the shadowing property, then the reverse of the above inclusions
holds (see Proposition 2.11). Since Shadowing property is a generic property
on compact manifolds, we can say that for a generic homeomorphism f on
a compact manifold X, lim sup{fn} = SCd(f) = C(f) (see Corollary 2.12).
Recall that f has the shadowing property if for every ε > 0; there is δ > 0 such
that for any δ-pseudo orbit {xi}∞i=0 there is y ∈ X such that d(fn(y), xn) < ε
for all n ∈ N.

In Section 3, we state some properties of strong chain transitive maps. In
Proposition 3.1, we show that for an f -invariant set Y ⊂ X with Y = X, the
system (X, f) is strong chain transitive if and only if subsystem (Y, f |Y ) is
strong chain transitive. It is known that if f : X → X is chain transitive map,
then for every δ > 0, there is k(δ) ∈ N such that for every x ∈ X, k(δ) is
the greatest common denominator of the lengths of δ-chain from x to x, see [9,
Lemma 6]. In Proposition 3.2, we show that this property holds for strong chain
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transitive maps. In Subsection 3.1, we recall the notion of asymptotic-average
shadowing property and in Proposition 3.3, we show that every system with
asymptotic-average shadowing property is strong chain transitive map. Let
T2 = R2/Z2 and Homeo0(T2) denote the set of homeomorphisms homotopic
to the identity. We shall say that f ∈ Homeo0(T2) is non-resonant if the
rotation set of f is a unique vector (α, β) and the values 1, α, β are irrationally
independent (i.e., α, β and α

β are not rational), for further information see [8].

We show that if f ∈ Homeo0(T2) is a non-resonant torus homeomorphism, then
f is strong chain transitive map, see Corollary 3.5.

In Section 4, we recall the notion of strong chain recurrent point SCRd(f) of
(X, f). The strong chain recurrent set depends on the metric, see [11, Example
3.1] but similar to Corollary 2.12, we can say that for generic homeomorphism f
on a generalized homogeneous compact metric space, the strong chain recurrent
set does not depend on the metric. In Example 4.3 we show that SCR(fn) 6=
SCR(f) for all n ∈ N, but if f−1 : (X, d) → (X, d) is equicontinuous on a
compact metric space (X, d), then SCRd(fn) = SCRd(f) for all n ∈ N, see
Proposition 4.4.

2. Structure of SCd(x, f)

A finite sequence of points {x0, x1, . . . , xn} of X is a strong (ε, d)-chain from

x to y with length n if x0 = x, xn = y and
∑n−1
i=0 d(f(xi), xi+1) < ε.

For ε > 0, let us define

(2.1) SCεd(x, f) = {y |x can be strong (ε, d)-chain to y},
and

(2.2) SCε
+

d (x, f) =
⋂
δ>0

SCε+δd (x, f).

In the following lemma, we give some properties of the sets SCεd(x, f) and

SCε
+

d (x, f).

Lemma 2.1. Let (X, d) be a compact metric space. The sets SCεd(x, f) and

SCε
+

d (x, f) have the following properties:

(1) SCεd(x, f) is an open set,

(2) SCε
+

d (x, f) is a closed set,

(3) {z| d(z,SCε
+

d (x, f)) < η} ⊆ SCε+ηd (x, f),

(4) f(SCε
+

d (x, f)) ⊆ SCε
+

d (x, f),

(5) ωf (SCε
+

d (x, f)) ⊆ SCε
+

d (x, f),

(6) ωf (x) ⊆ SCε
+

d (x, f),

(7) if y ∈ SCε1d (x, f), z ∈ SCε2d (y, f), then z ∈ SCε1+ε2
d (x, f).

Proof. (1) Let y ∈ SCεd(x, f), there is {xn}kn=0 with x0 = x, xk = y and∑k−1
n=0 d(f(xn), xn+1) < ε. Let 0 < ε1 < ε −

∑k−1
n=0 d(f(xn), xn+1). Then



954 A. BARZANOUNI

replacing y by every point z ∈ Bε1(y), we obtain a strong (ε, d)-chain from x
to z.

(2) Let z ∈ SCεd(x, f) and η > 0 be given. Choose y ∈ SCε
+

d (x, f) with
d(z, y) < η

2 . There is a strong (ε + η
2 , d)-chain from x to y. We can replace y

by z and obtain a strong (ε, η, d)-chain from x to z.

(3) Let y ∈ SCε
+

d (x, f) with d(z, y) < η. Consider λ = η − d(z, y), since

y ∈ SCε
+

d (x, f), there is a strong (ε + λ, d)-chain from x to y, replace y by z
and obtain a strong (ε+ η, d)-chain from x to z.

(4) It is clear.

(5) Since ωf (SCε
+

d (x, f)) =
⋂
n

⋃
m>n f

m(SCε+d (x, f)) by item (4) and item
(2) we have

ωf (SCε
+

d (x, f)) ⊆ SCε
+

d (x, f).

(6) Since ωf (x) =
⋂
n

⋃
m>n f

m(x) and f(x) ∈ SCε
+

d (x, f), by item (4) and

item (2) we have ωf (x) ⊆ SCε
+

d (x, f).
(7) It is clear. �

2.1. Some properties of SCd(x, f)

Let us define

(2.3) SCd(x, f) =
⋂
ε>0

SCεd(x, f).

It is easy to see that SCd(x, f)=
⋂
ε>0 SC

ε+

d (x, f). This implies that SCd(x, f)
is a closed set and by Lemma 2.1, ω(x, f) ⊆ SCd(x, f) which shows SCd(x, f) 6=
∅ for all x ∈ X.

Since SCd(x, f) is a closed set, for ε > 0 there is a finite set {xi}ni=0 ⊆
SCd(x, f) such that {B(xi,

ε
2 )} is a finite open cover for SC(x, f). For every xi,

there is a strong ( ε2 , d)-chain from x to xi with length li, thus if l = max{li}ni=0,
then for every y ∈ SCd(x, f), we can find a strong (ε, d)-chain from x to y with
length at most l. Hence for every ε > 0 and x ∈ X, there is n(x, ε) > 0 such
that for every y ∈ SCd(x, f) there is a strong (ε, d)-chain from x to y with
length ≤ n(x, ε).

In the next example, we show that SCd(x, f) is dependent on the metric.

Example 2.2. Let

(2.4) X =

∞⋃
p=0

Ip,

where I0 = {(x, 0) |x ∈ [0, 1]} and Ip = {( q2p ,
1

2p−1 ) | q = 0, 1, . . . , 2p} for p ∈ N.

Define a map f on X with the fixed points set Fix(f) = I0, f( q2p ,
1

2p−1 ) =

( q−1
2p , 0) for q = 1, 2, . . . , 2p, f(0, 1

2p−1 ) = (0, 0). Consider the following metrics
on X:

d2((x1, x2), (y1, y2)) = d1((x1, x
2
2), (y1, y

2
2)) and d1(x, y) = ||x− y||.
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Let x0, x1, . . . , xm be any strong d1-chain from x0 = (1, 0) to xm = (0, 0). Let
π : X → [0, 1] be defined by π(x, y) = x. For {xn}mn=0 ⊆ X, we have

(2.5)

1 = |π(f(x0))− π(xm)|

≤
m−1∑
n=0

|π(f(xn))− π(xn+1)|+
m∑
n=1

|π(f(xn))− π(xn)|.

Using the inequalities |π(f(xn))−π(xn)| ≤ 1
2 ||f(xn)−xn+1|| and |π(f(xn))−

π(xn+1)| ≤ ||f(xn)−xn+1|| for 0 ≤ n ≤ m−1, we have
∑m−1
n=0 ||f(xn)−xn+1|| >

2
3 . Thus {xn}mn=0 can not be strong d1-chain transitive from (1, 0) to (0, 0), i.e.,
(0, 0) /∈ SCd1((1, 0), f).

In the following we show that (0, 0) ∈ SCd2((1, 0), f).
Let ε > 0 be given. Choose p ∈ N with 1

2p < ε. Let x0 = (1, 0), x2p+1 = (0, 0)

and for n = 1, . . . , 2p, take xn = ( 2p−n+1
2p , 1

2p−1 ).

Claim.

(2.6) {xn}2
p+1
n=0 = {(1, 0), x1, x2, . . . , x2p , x2p+1 = (0, 0)}

is a strong (ε, d2)-chain from (1, 0) to (0, 0).

Proof of Claim. By definition of {xn}2
p+1
n=0 , for xn = ( q2p ,

1
2p−1 ) we have xn+1 =

( q−1
2p ,

1
2p−1 ), thus d2(f(xn), xn+1) = d2(( q−1

2p , 0), ( q−1
2p ,

1
2p−1 )) = 1

22p−2 for n =

1, 2, . . . , 2p, this means that
∑2p

n=0 d2(f(xn), xn+1) =
∑2p

n=0
1

4p−1 < ε, i.e., (1, 0)

can be strong d2-chain to (0, 0). It implies that {xi}2
p+1
i=0 is a strong (ε, d2)-chain

transitive. �

Note that by Example 2.2, it may be happen that f(y) ∈ SCd(x, f), but
y /∈ SCd(x, f). In the following we show that if z ∈ SCd(x, f), there is y ∈
SCd(x, f) such that z = f(y).

Proposition 2.3. Let f : (X, d)→ (X, d) be a continuous map on the compact
metric space X. Then f(SCd(x, f)) = SCd(x, f).

Proof. The inclusion f(SCd(x, f)) ⊆ SCd(x, f) is clear. We show that SCd(x, f)
⊆ f(SCd(x, f)). Let y ∈ SCd(x, f) and ε > 0 be given. For every n ∈ N, there
is a strong ( 1

n , d)-chain {xni }
mn
i=0 from x to y, i.e.,

mn−2∑
i=0

d(f(xni ), xni+1) + d(f(xnmn−2), xnmn−1) + d(f(xmn−1), y) <
1

n
.

The compactness of X implies that {xnmn−1}∞n=1 has a convergence subse-

quence. We can assume that xnmn−1 → z as n→∞. Since d(f(xmn−1), y) < 1
n ,

hence from the continuity of f , we have y = f(z). For ε > 0 choose n0 ∈ N
with 1

n0
< ε

2 and d(xn0
mn0
−1, z) <

ε
2 . Take

{zi}
mn0−1
i=0 = {xn0

0 = x, xn0
1 , xn0

2 , . . . , xn0
mn0
−2, z}.
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One can check that
mn0
−2∑

i=0

d(f(zi), zi+1) ≤
mn0
−1∑

i=0

d(f(xn0
i ), xn0

i+1) + d(xn0
mn0
−1, z) <

ε

2
+

1

n0
< ε.

This implies that y = f(z) ∈ f(SCd(x, f)). �

By Lemma 2.1, ω(x, f) ⊆ SCd(x, f). This implies that SCd(x, f) 6= ∅, but it
may be happen that SCd(x, f) 6= X. In the following we show that if SCd(x, f)
contains the set of non-wandering points, then SCd(x, f) = X. Recall that a
point x ∈ X is a non-wandering point of f , if for every open set U of x, there
exists n ∈ N such that fn(U) ∩ U 6= ∅. The set of all non-wandering points of
f is denoted by Ω(f).

Proposition 2.4. Let (X, d) be a compact metric space and Ω(f) ⊆ SCd(x, f).
Then SCd(x, f) = X.

Proof. Let y ∈ X and ε > 0 be given. We show that x can be strong (ε, d)-chain
to y.

If d(y,Ω(f)) < ε
4 , then there is z ∈ Ω(f) ⊆ SCd(x, f) such that d(y, z) =

d(y,Ω(f)) < ε
4 because Ω(f) is a closed set. This implies that y ∈ SCεd(x, f).

Let

(2.7) y ∈ K = {z : d(z,Ω(f)) ≥ ε

4
)}.

It is clear that for every z ∈ K, there is an open set U(z) such that fn(U(z))∩
U(z) = ∅ for all n ∈ N. Since K is a compact set, there is a finite set
{z1, z2, . . . , zm} ⊂ K such that K ⊆

⋃m
i=1 U(zi). Take p ∈ f−m(y), by the

pigeonhole principle there is 0 ≤ n ≤ m such that fn(p) /∈ K, this implies that
d(fn(p),Ω(f)) < ε

4 . Hence we can say that y ∈ SCεd(x, f). �

The system f : X → X is called conjugate with the system g : Y → Y ,
under h : X → Y whenever h : X → Y is a homeomorphism and h ◦ f = g ◦ h.
In Example 2.2, the system f : (X, d1) → (X, d1) is conjugate with system
f : (X, d2) → (X, d2) under the homeomorphism idX : (X, d1) → (X, d2) and
SCd1(x, f) 6= SCd2(x, f).

Suppose h is a Lipschitz map with Lipschitz constant k > 0. For every ε > 0,
put δ = ε

2k . For every n ∈ N, if
∑n
i=1 d(xi, yi) < δ, then

∑n
i=1 ρ(h(xi), h(yi)) <

k
∑n
i=0 d(xi, yi) < ε. This implies that if f : (X, d) → (X, d) and g : (Y, ρ) →

(Y, ρ) are conjugate under a Lipschitz homeomorphism h, then h(SCd(x, f)) =
SCρ(h(x), g). Also, if id : (X, d1) → (X, d2) is a Lipschitz homeomorphism,
then SCd1(x, f) = SCd2(x, f).

2.2. Some properties of SCd(·, f) : X → 2X

Let Γ : X → 2X be a set-valued map and A ⊆ X. We define Γ(A) as:

Γ(A) = ∪x∈AΓ(x).
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We let the composition Γ2 = Γ ◦ Γ be given by

Γ2(x) = Γ(Γ(x)) = ∪y∈Γ(x)Γ(y)

so we can naturally define the iteration Γn : X → 2X inductively by Γ1(x) =
Γ(x) and Γn(x) = Γ(Γn−1(x)).

Since for all x ∈ X, SCd(x, f) is a closed set, the map SCd(·, f) : X → 2X

defined by x 7→ SCd(x, f) is well-defined.

Lemma 2.5. If xn → x, yn → y and yn ∈ SCd(xn, f), then y ∈ SCd(x, f).

Proof. By the uniform continuity of f , for ε > 0, there is 0 < δ < ε
3 such that

d(a, b) < δ ⇒ d(f(a), f(b)) <
ε

3
.

Choose n ∈ N such that d(xn, x) < δ and d(yn, y) < δ. yn ∈ SCd(xn, f) implies
that there is a finite sequence {z0 = xn, z1, . . . , zm = yn} such that

m−1∑
i=0

d(f(zi), zi+1) <
ε

3
.

Also, d(xn, x) < δ implies that d(f(x), z1) ≤ ε
3 +d(f(z0), z1). Hence by d(yn, y)

< δ < ε
3 , we have

d(f(x), z0) +

m−1∑
i=1

d(f(zi), zi+1) + d(yn, y) < ε.

This means that y ∈ SCd(x, f). �

We say that

• Γ : X → 2X is transitive provided SΓ = Γ where SΓ(x) :=
⋃∞
n=1 Γn(x),

• Γ : X → 2X is a cluster map if DΓ = Γ where DΓ(x) := ∩ε>0Γ(Bε(x).

It is clear that if Γ2 = Γ, then Γ is transitive. Also from the definition of
DΓ(x), we immediately obtain that Γ(x) ⊆ DΓ(x).

Proposition 2.6. The map SC : X → 2X is transitive and it is a cluster map.

Proof. It is clear that if z ∈ SCd(y, f) and y ∈ SCd(x, f), then z ∈ SCd(x, f).

So SC2 = SC. Let y ∈ ∩ε>0SC(Bε(x). This means that there are {xn} and
{yn} such that xn → x, yn → y and yn ∈ SCd(xn, f). Lemma 2.5 implies that
y ∈ SCd(x, f). Hence SC is a cluster map. �

2.3. Some properties of SCd(f)

Let us define

(2.8) SCd(f) = {(x, y) | y ∈ SCd(x, f)}.
Some properties of the relation SCd(f) are illustrated in the next Proposition:

Proposition 2.7. The relation SCd(f) has the following properties:

(1) SCd(f) is a transitive relation,
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(2) (x, y) ∈ SCd(f) if and only if (f(x), y) ∈ SCd(f),
(3) SCd(f) is a closed set,
(4) If (X, f) is conjugate with (Y, g) under a Lipschitz homeomorphism

h : (X, d)→ (Y, ρ), then h(SCd(f)) = SCρ(g),
(5) lim supn∈N{fn} ⊆ SCd(f),
(6) If Ω(f)× Ω(f) ⊆ SCd(f), then SCd(f) = X ×X.

Proof. (1) The transitivity of the relation SCd(f) follows directly from Lemma
2.1.

(2) Let (f(x), y) ∈ SCd(f). Since for every x ∈ X, (x, f(x)) ∈ SCd(f), by the
transitivity of SCd(f) we have (x, y) ∈ SCd(f). Conversely, let (x, y) ∈ SCd(f)
and ε > 0 be given. Choose 0 < δ < ε

4 such that

(2.9) d(a, b) < δ ⇒ d(f(a), f(b)) <
ε

4
.

Since (x, y) ∈ SCd(f), there is a strong (δ, d)-chain, {xn}mn=0, from x to y. One
can check that {f(x), x2, x3, . . . , xk} is a strong (ε, d)-chain from f(x) to y.

(3) Let (x, y) ∈ SCd(f) and ε > 0 be given. Choose δ > 0 satisfies in (2.9)
and (z, w) ∈ SCd(f) such that d(x, z) < δ and d(y, w) < δ. The inequalities
d(f(x), f(z)) < ε

4 , d(w, y) < ε
4 and (z, w) ∈ SCd(f) imply that (x, y) ∈ SCd(f).

(4) It is clear.

(5) Note that lim supn∈N{fn} =
⋂∞
n=1

⋃∞
k=n{fk}. Hence if

(x, y) ∈
∞⋂
n=1

∞⋃
k=n

{fk},

then there are {xn} and {yn} in X and {kn} ⊆ N such that yn = fkn(xn),
xn → x and yn → y. For ε > 0, there is 0 < δ < ε such that

d(a, b) < δ ⇒ d(f(a), f(b)) < ε.

Choose n ∈ N such that d(xn, x) < δ and d(yn, y) < δ. It is easy to see that
the finite sequence

{x, , f(xn), f2(xn), . . . , fkn−1(xn), y}
is a strong (ε, d)-chain from x to y. Hence, (x, y) ∈ SCd(f).

(6) Since Ω(f)×Ω(f) ⊆ SCd(f), for every x ∈ X, we have Ω(f) ⊆ SCd(x, f).
Hence, Proposition 2.4 implies that SCd(x, f) = X. �

A finite sequence {xn}kn=0 is called ε-chain from x to y, if x0 = x, xk = y
and d(f(xn), xn+1) < ε for n = 0, 1, . . . , k − 1. Let Cε(x, f) denote the set of
points y ∈ X such that x can be ε-chain to y, also let Cε+(x, f) =

⋂
δ Cε+δ(x, f).

Similarly to the proof of Lemma 2.1, one can see that Cε(x, f) is an open and
Cε+(x, f) is a closed set. Let us define C(x, f) =

⋂
ε Cε(x, f). Hence C(x, f) is a

closed set. Similarly to the proof of Proposition 2.6, we can say that:

Proposition 2.8. The map C(·, f) : X → 2X defined by x 7→ C(x, f) is a
transitive and cluster map.
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A point x can be chain to y if y ∈ C(x, f) and it is clear that C(x, f) =⋂
ε Cε+(x, f), hence C(x, f) is a closed set. By a similar argument as the proof

of Proposition 2.7, we can say that:

Proposition 2.9. Let C(f) = {(x, y) | y ∈ C(x, f)}. Then

(1) C(f) is a transitive relation on X and a closed subset of X ×X.
(2) (x, y) ∈ C(f) if and only if (f(x), y) ∈ C(f).
(3) If Ω(f)× Ω(f) ⊆ C(f), then C(f) = X ×X.
(4) If (X, f) is conjugate with (Y, g) under a homeomorphism h : X → Y,

then h(C(f)) = C(g).
(5) C(f) does not depend on the metric on X.

Proposition 2.7 and Proposition 2.9 imply that

(2.10) lim sup
n∈N

{fn} ⊆ SCd(f) ⊆ C(f).

Example 2.10. Let f : X → X be as in Example 2.2 and x = (1, 0), y = (0, 0).
Then

• (x, y) ∈ C(f) while (x, y) /∈ SCd1(f).
• Since lim supn∈N{fn} does not depend on the metric on X, (x, y) /∈
SCd1(f) implies that (x, y) /∈ lim supn∈N{fn} while (x, y) ∈ SCd2(f).

Note that Example 2.10 shows that for a continuous map f : X → X, it
may happen that C(f)− SCd(f) 6= ∅ and SCd(f)− lim supn∈N{fn} 6= ∅.

Proposition 2.11. If f : (X, d) → (X, d) has the shadowing property, then
lim supn∈N{fn} = SCd(f) = C(f).

Proof. Let (x, y) ∈ C(f) and ε > 0 be given. There is a δ > 0 that satisfies
in the definition of shadowing property of f . Let {xn}kn=0 be a δ-chain with
x0 = x and xk = y. Take xn = fn−k(y) for n > k, by shadowing property
of f, there is p ∈ X with d(fn(p), xn) < ε This implies that d(x, p) < ε and
d(fk(p), y) < ε, i.e., (x, y) ∈ lim supn∈N f

n. �

Corless and Pilyugin in [1] proved C0-genericity of the shadowing on a com-
pact smooth manifold (without boundary) and later Mazur [7] proved the same
result for generalized homogeneous compact metric spaces with no isolated
point. It implies that:

Corollary 2.12. Let X be a generalized homogeneous compact metric space.
Then for any generic homeomorphism f on X, lim supn∈N{fn} = SCd(f) =
C(f).

3. Strong chain transitive map

We say that

• f is a chain transitive map on A ⊆ X, if A×A ⊆ C(f) and
• f is a strong chain transitive map on A ⊆ X, if A×A ⊆ SCd(f).
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So, a homeomorphism f : X → X is chain transitive on A if and only if f−1 is
a chain transitive map on A. Also if f is a bi-Lipschitz homeomorphism, then
f : X → X is strong chain transitive on A if and only if f−1 is a strong chain
transitive map on A. We say that f is a chain transitive map (resp. strong
chain transitive) if C(f) = X ×X (resp. SCd(f) = X ×X). It is clear that if
f is a chain transitive map on a dense subset of X, then it is chain transitive.
Also, if f is a strong chain transitive map on a dense subset of X, then it is a
strong chain transitive map.

Proposition 3.1. Let (X, d) be a compact metric space, f : X → X be a
continuous map and Y be a dense subset of X with f(Y ) = Y . Then f is a
strong d-chain transitive map if and only if f|Y is a strong d-chain transitive
map.

Proof. Suppose f is a strong d-chain transitive map, let a, b ∈ Y and let ε > 0.
There is a strong ( ε3 , d)-chain ({zn}kn=0) from a to b in X. Since X is compact
and Y is dense in X, for every n = 1, . . . , k, there is tn ∈ N(zn,

ε
3n+2 )∩ Y such

that f(tn) ∈ N(f(zn), ε
3n+2 ). Thus

(3.1) d(f(tn), tn+1) ≤ d(f(tn), f(zn))+d(f(zn), zn+1)+d(zn+1, tn+1) <
ε

3n+1
.

Therefore
∑k−1
n=0 d(f(tn), tn+1) < ε. This means that f |Y is a strong d-chain

transitive map. �

If (X, d) and (Y, ρ) are compact metric spaces and (X, f) is conjugate with
(Y, g) under a bi-Lipschitz surjective map h : (X, d)→ (Y, ρ), then f is a strong
d-chain transitive map if and only if g is strong ρ-chain transitive.

If f : X → X is a chain transitive map, then for δ > 0, there is kδ ∈ N such
that for every x ∈ X, kδ is the greatest common denominator of the lengths
of δ-chain from x to x, see [9, Lemma 6]. In the following we show that this
property holds for strong chain transitive maps.

Proposition 3.2. Let f : (X, d)→ (X, d) be a strong d-chain transitive map.
Then for every δ > 0, there is Kδ ∈ N such that for every x ∈ X, kδ is the
greatest common denominator of the lengths of strong (δ, d)-chain from x to x.

Proof. Fix x ∈ X, let Kδ(x) ∈ N be the greatest common denominator of the
lengths of all strong (δ, d)-chains from x to x. Let y ∈ X be given and {yn}mn=0

be a strong (δ, d)-chain from y to y. We will show that Kδ(x) |m. Since f is
a strong d-chain transitive map, for 0 < η < min{d(f(y), y1), d(f(ym−1), y)},
there is a strong (η, d)-chain {zn}pn=1from x to y and a strong (η, d)-chain
{wn}qn=1 from y to x. Hence {z1, z2, . . . , zp−1, w1w2, . . . , wq} is a strong (δ, d)-
chain from x to x of length p+ q and

{z1, z2, . . . , zp−1, y1, y2, . . . , ym−1, w1w2, . . . , wq}
is a strong (δ, d)-chain from x to x of length p+q+m. By the definition ofKδ(x),
we have Kδ(x) | p+ q +m and Kδ(x) | p+ q, this implies that Kδ(x) |m. �
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3.1. Two examples of strong chain transitive map

In this subsection, we show that every homeomorphism on a compact metric
space with the asymptotic-average shadowing property and every non-resonant
torus homeomorphism are strong chain transitive.

Definition ([6]). A sequence {xi}∞i=0 in X is called an asymptotic-average

pseudo orbit of f if limn→∞
1
n

∑n−1
i=0 d(f(xi), xi+1) = 0. A sequence {xi}∞i=0 is

said to be asymptotically shadowed in average by the point z in X if

lim
n→∞

1

n

n−1∑
i=0

d(f i(z), xi) = 0.

A map f is said to have the asymptotic-average shadowing property on X
(Abbrev. AASP), if every asymptotic-average pseudo orbit {xi}∞i=0 of f can
be asymptotically shadowed in average by some points in X .

Proposition 3.3. Let (X, d) be a compact metric space and f be a homeomor-
phism on X. If f has the asymptotic-average shadowing property, then f is a
strong chain transitive map.

Proof. Suppose x, y are two distinct points in X and δ > 0 is a positive number.
It is sufficient to prove that there is a δ-chain from x to y. For every n ∈
{1, 2, . . .} choose k ∈ {0, 1, 2, . . .} such that 2k ≤ n ≤ 2k+1. If 0 ≤ i = n− 2k <
2k−1, take xn = f i(x) and for 2k−1 ≤ i = n − 2k < 2k take xn = y−i where
f(y−i) = y−i+1 where i > 0 and y0 = y.

Claim. The sequence {xn}∞n=0 is a δ-asymptotic-average pseudo orbit of f .

Proof of Claim. If D is the diameter of X, that is D = max{d(x, y) : x, y ∈ X},
then for 2k ≤ n ≤ 2k+1, we have

(3.2)
1

n

n−1∑
i=0

d(f(xi), xi+1) <
2(k + 1)D

2k
.

Hence,

lim
n→∞

n∑
i=1

d(f(wi), wi+1) = 0.

This means that {xi}∞i=0 is an asymptotic-average pseudo orbit of f . Since f
has the asymptotic-average shadowing property, there is a point z in X such
that

lim
n→∞

n∑
i=1

d(f i(z), wi) = 0.
�

To continue the proof, we need to apply the following statements that have
been proved in [6, Theorem 3.1].

(1) There exist infinitely many positive integers j such that

wnj ∈ {x, f(x), . . . , f2j−1(x)} and d(fnj (z), wnj ) <
δ
3 .
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(2) There exist infinitely many positive integers l such that
wnl ∈ {y−2l+1, . . . , y−1, y} and d(fnl(z), wnl) <

δ
3 .

Thus we can pick two positive integers j0 and l0 such that nj0 < nl0 ,

wnj0 ∈ {x, f(x), . . . , f2j0−1(x)} with d(fnj0 (z), wnj0 ) <
δ

3
,

and

wnl0 ∈ {y−2l+1, . . . , y−1, y} with d(fnl0 (z), wnl) <
δ

3
.

It may be assumed

wnj0 = f j1(x) for some j1 > 0, and wnl0 = y−l1 for some l1 > 0.

The finite sequence

{x, f(x), . . . , f j1(x) = wnj0 , f
nj0+1(z), fnj0+2(z), . . . , fnl0−1(z),

wnl0 = y−l1 , . . . , f
−1(y), y}

is a strong δ-chain from x to y. �

Recall that for a homeomorphism f : X → X and an f -invariant compact
set K, we say that f |K is weakly transitive if given two open sets U and V of
X intersecting K, there exists n > 0 such that fn(U) ∩ V 6= ∅. Note that the
difference with being transitive is that for transitivity one requires the open
sets to be considered relative to K.

Let T2 = R2/Z2 and Homeo0(T2) denote the set of homeomorphisms homo-
topic to the identity. We shall say that f ∈ Homeo0(T2) is non-resonant if the
rotation set of f is a unique vector (α, β) and the values 1, α, β are irrationally
independent (i.e., α, β and α

β are not rational), for further information see [8].

Proposition 3.4 ([8]). Let f ∈ Homeo0(T2) be a non-resonant torus homeo-
morphism. Then f |Ω(f) is weakly transitive.

As a corollary, we can say that:

Corollary 3.5. Let f ∈ Homeo0(T2) be a non-resonant torus homeomorphism.
Then f is a strong chain transitive map.

Proof. Let x, y ∈ Ω(f) and ε > 0 be given. By continuity of f , for ε > 0 there
is 0 < δ < ε

2 such that

d(a, b) < δ ⇒ d(f(a), f(b)) <
ε

2
.

Since B(x, δ) and B(y, δ) intersecting Ω(f) and f is weakly transitive on
Ω(f), there is n ∈ N such that fn(B(x, δ)) ∩ B(y, δ) 6= ∅. Hence there is p ∈
B(x, δ) such that fn(p) ∈ B(x, δ). This implies that {x, f(p), . . . , fn−1(p), y}
is a strong ε-chain from x to y. Therefore f is a strong chain transitive map
on Ω(f) and by Proposition 2.7, we can say that f is a strong chain transitive
map. �
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4. Strong chain recurrent points

A point x ∈ X is called a strong d-chain recurrent point if x can be strong
d-chain to itself. The set of strong d-chain recurrent points is called strong
d-chain recurrent set of f and denoted by SCRd(f).

Remark 4.1. The strong chain recurrent set does depend on the metric, see
[11, Example 3.1].

If for x ∈ X, x can be chain to itself, it is called a chain recurrent point for f
and the set of chain recurrent points is denoted by CR(f) and it depends only
on the topology, not on the metric (see [5]). Note that the following inclusions
always hold.

Ω(f) ⊆ SCRdX (f) ⊆ CR(f).

It is easy to see that

• Ω(f) = {x : (x, x) ∈ lim sup{fn}},
• SCRd(f) = {x : x ∈ SCd(x, f)},
• CR(f) = {x : x ∈ C(x, f)}.

Example 4.2. Let S1 = {(x, y) |x2 + y2 = 1} and f : S1 → S1 be a
homeomorphism that fixes every point on the left semicircle S1 and moves
points on the right semicircle clockwise. It can be seen that for any metric d,
SCRd(f) = {(x, y) ∈ S1 |x < 0} but CR(f) = S1.

It is known that if f : (X, d)→ (X, d) has shadowing property, then CR(f) =
SCR(f) = Ω(f), also the chain recurrent set does not depend on the metric.
Hence if f : (X, d) → (X, d) has shadowing property, then the strong chain
recurrent set does not depend on the metric. Also similar to Corollary 2.12,
we can say that for generic homeomorphism f on a generalized homogeneous
compact metric space, the strong chain recurrent set does not depend on the
metric. It is easy to see that if there is k ∈ N such that 1

kd1(x, y) ≤ d2(x, y) ≤
kd1(x, y), then

SCRd1(f) = SCRd2(f).

There is an example to show that SCR(f2) 6= SCR(f), see [11, Example 3.4].
In the following we extend it to every n ∈ N, indeed we use some techniques of
[11] to show that SCR(fn) 6= SCR(f) for all n ∈ N.

Example 4.3. Let n ∈ N be given. For p = 0, 1, . . . and q = 0, 1, . . . , np,

let ap,q = (1 + 1
nnp )ei

πq

np+1 . Take X = S1 ∪∞p=0 {ap,q : q = 0, 1, . . . , np}. Let

g : X → X be defined by g(ap,q) =
ap,q+1

|ap,q+1| for q = 0, 1, . . . , np − 1 and

g(ap,np) = e
iπ
np . Assume that g is constant on [ (2m)π

n , (2m+1)π
n ] for m = 0, 1, . . .

and moves clockwise on [ (2m+1)π
n , (2m+2)π

n ] for m = 1, . . .. It is easy to see that

g|S1 is a homeomorphism which fixes z or satisfies argg(z) > argz for z ∈ S1.

The map h (on S1) is defined by rotation about the origin through angle 2π
n .
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Consider the composite map f = h ◦ g, similar to the proof of [11, Example
3.4], it can be seen that SCR(f) = S1 and

SCR(fn) = {eiθ : θ ∈ [
(2m)π

n
,

(2m+ 1)π

n
],m = 0, 1, . . .}.

Recall that a point x ∈ X is an equicontinuity point of f if for every ε > 0
there is a δ > 0 such that given a point y ∈ X, d(fn(x), fn(y)) < ε holds for
all n ∈ N whenever d(x, y) < δ. If every x ∈ X is a point of equicontinuity,
then we say that f is equicontinuous.

Proposition 4.4. For all n ∈ N, SCRd(fn) = SCRd(f) provided that one of
the following conditions holds.

(1) (X, d) is a compact metric space and f−1 : (X, d)→ (X, d) is equicon-
tinuous,

(2) (X, d) is a compact metric space and f : (X, d)→ (X, d) is Lipschitz,
(3) (X, d) is a compact manifold and f : X → X is a diffeomorphism.

Proof. (1) Let f−1 : X → X be equicontinuous. We claim every x ∈ X
is recurrent under f , i.e., x ∈ ω(x). By contradiction assume that there is
x ∈ X with x /∈ ω(x) and d(x, ω(x, f)) = ε > 0. If y ∈ ω(x, f), then, by the
equicontinuity of f−1, there is δ > 0 such that d(f−i(y), f−i(z)) < ε

2 , for all i
provided that d(y, z) < δ. But there is m > 0 such that d(fm(x), y) < δ which
is a contradiction. This implies that f is a recurrent homeomorphism and by
[3, Proposition 3.4], SCRd(fn) = SCRd(f) for all n ∈ N.

(2) See [11, Proposition 3.3].
(3) It is known that if f : X → X is a diffeomorphism on a compact smooth

manifold X, then f is bi-Lipschitz with respect to the Riemannian distance
functions, hence by item (2), SCRd(fn) = SCRd(f) for all n ∈ N. �
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