DOI QR코드

DOI QR Code

ALGEBRAIC CONSTRUCTIONS OF GROUPOIDS FOR METRIC SPACES

  • Se Won Min (Department of Mathematics, Hanyang University) ;
  • Hee Sik Kim (Department of Mathematics, Hanyang University) ;
  • Choonkil Park (Department of Mathematics, Research Institute for Convergence of Basicl Sciences, Hanyang University)
  • Received : 2024.06.05
  • Accepted : 2024.09.12
  • Published : 2024.09.30

Abstract

Given a groupoid (X, *) and a real-valued function d : X → R, a new (derived) function Φ(X, *)(d) is defined as [Φ(X, *)(d)](x, y) := d(x * y) + d(y * x) and thus Φ(X, *) : RX → RX2 as well, where R is the set of real numbers. The mapping Φ(X, *) is an R-linear transformation also. Properties of groupoids (X, *), functions d : X → R, and linear transformations Φ(X, *) interact in interesting ways as explored in this paper. Because of the great number of such possible interactions the results obtained are of necessity limited. Nevertheless, interesting results are obtained. E.g., if (X, *, 0) is a groupoid such that x * y = 0 = y * x if and only if x = y, which includes the class of all d/BCK-algebras, then (X, *) is *-metrizable, i.e., Φ(X, *)(d) : X2 → X is a metric on X for some d : X → R.

Keywords

References

  1. P. J. Allen, H. S. Kim and J. Neggers, On companion d-algebras, Math. Slovaca 57 (2) (2007), 93-106. https://dx.doi.org/10.2478/s12175-007-0001-z
  2. A. Iorgulescu, Algebras of Logic as BCK algebras, Editura ASE, Bucharest, 2008.
  3. J. Meng and Y. B. Jun, BCK-algebras, Kyungmoon Sa, Korea, 1994.
  4. Gh. Moghaddasi, Sequentially injective and complete acts over a semigroup, J. Nonlinear Sci. Appl. 5 (5) (2012), 345-349. https://dx.doi.org/10.22436/jnsa.005.05.04
  5. L. Nebesk'y, Travel groupoids, Czech. Math. J. 56 (2) (2006), 659-675. https://dx.doi.org/10.1007/s10587-006-0046-0
  6. J. Neggers and H. S. Kim, On d-algebras, Math. Slovaca 49 (1) (1999), 19-26.
  7. J. Neggers, Y. B. Jun and H. S. Kim, On d-ideals in d-algebras, Math. Slovaca 49 (3) (1999), 243-251.
  8. J. Neggers and H. S. Kim, On B-algebras, Mate. Vesnik 54 (1-2) (2002), 21-29.
  9. H. K. Park and H. S. Kim, On quadratic B-algebras, Quasigroups Related Syst. 8 (2001), 67-72.
  10. K. P. R. Sastry, Ch. R. Rao, A. C. Sekhar and M. Balaiah, A fixed point theorem in a lattice ordered semigroup cone valued cone metric spaces, J. Nonlinear Sci. Appl. 6 (4) (2013), 285-292. https://dx.doi.org/10.22436/jnsa.006.04.06
  11. A. Wronski, BCK-algebras do not form a variety, Math. Japon. 28 (1983), 211-213.
  12. H. Yisheng, BCI-algebras, Science Press, Beijing, 2006.