DOI QR코드

DOI QR Code

THE JORDAN DERIVATIONS OF SEMIPRIME RINGS AND NONCOMMUTATIVE BANACH ALGEBRAS

  • Kim, Byung-Do (Department of Mathematics Gangneung-Wonju National University)
  • Received : 2016.03.10
  • Accepted : 2016.10.17
  • Published : 2016.11.15

Abstract

Let R be a 3!-torsion free noncommutative semiprime ring, and suppose there exists a Jordan derivation $D:R{\rightarrow}R$ such that [[D(x),x], x]D(x) = 0 or D(x)[[D(x), x], x] = 0 for all $x{\in}R$. In this case we have $[D(x),x]^3=0$ for all $x{\in}R$. Let A be a noncommutative Banach algebra. Suppose there exists a continuous linear Jordan derivation $D:A{\rightarrow}A$ such that $[[D(x),x],x]D(x){\in}rad(A)$ or $D(x)[[D(x),x],x]{\in}rad(A)$ for all $x{\in}A$. In this case, we show that $D(A){\subseteq}rad(A)$.

Keywords

References

  1. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Berlin-Heidelberg-New York, 1973.
  2. M. Bresar, Derivations of noncommutative Banach algebras II, Arch. Math. 63 (1994), 56-59. https://doi.org/10.1007/BF01196299
  3. M. Bresar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003-1006. https://doi.org/10.1090/S0002-9939-1988-0929422-1
  4. L. O. Chung and J. Luh, Semiprime rings with nilpotent derivatives, Canad. Math. Bull. 24 (1981), no. 4, 415-421. https://doi.org/10.4153/CMB-1981-064-9
  5. B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067-1073. https://doi.org/10.2307/2373290
  6. B. D. Kim, On the derivations of semiprime rings and noncommutative Banach algebras, Acta Mathematica Sinica 16 (2000), no. 1, 21-28. https://doi.org/10.1007/s101149900020
  7. B. D. Kim, Derivations of semiprime rings and noncommutative Banach algebras, Commun. Korean Math. Soc 17 (2002), no. 4, 607-618. https://doi.org/10.4134/CKMS.2002.17.4.607
  8. B. D. Kim, Jordan derivations of semiprime rings and noncommutative Banach algebras, II, J. Korea Soc. Math. Educ. Ser. B. Pure Appl. Math. 15 (2008), no. 3, 259-296.
  9. A. M. Sinclair, Jordan homohorphisms and derivations on semisimple Banach algebras, Proc. Amer. Math. Soc. 24 (1970), 209-214.
  10. I. M. Singer and J. Wermer, Derivations on commutative normed algebras, Math. Ann. 129 (1955), 260-264. https://doi.org/10.1007/BF01362370
  11. J. Vukman, A result concerning derivations in noncommutative Banach algebras, Glasnik Mathematicki 26 (1991), 83-88.
  12. J. Vukman, On derivations in prime rings and Banach algebras, Proc. Amer. Math. Soc. 116 (1992), no. 4, 877-884. https://doi.org/10.1090/S0002-9939-1992-1072093-8