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ALGEBRAIC CONSTRUCTIONS OF GROUPOIDS FOR METRIC

SPACES

Se Won Min, Hee Sik Kim, and Choonkil Park∗

Abstract. Given a groupoid (X, ∗) and a real-valued function d : X → R, a new
(derived) function Φ(X, ∗)(d) is defined as [Φ(X, ∗)(d)](x, y) := d(x ∗ y) + d(y ∗ x)

and thus Φ(X, ∗) : RX → RX2

as well, where R is the set of real numbers. The
mapping Φ(X, ∗) is an R-linear transformation also. Properties of groupoids (X, ∗),
functions d : X → R, and linear transformations Φ(X, ∗) interact in interesting ways
as explored in this paper. Because of the great number of such possible interactions
the results obtained are of necessity limited. Nevertheless, interesting results are
obtained. E.g., if (X, ∗, 0) is a groupoid such that x ∗ y = 0 = y ∗ x if and only if
x = y, which includes the class of all d/BCK-algebras, then (X, ∗) is ∗-metrizable,
i.e., Φ(X, ∗)(d) : X2 → X is a metric on X for some d : X → R.

1. Introduction

Given (Bin(X),�), the set of all groupoids (X, ∗) defined on the set X, it is
the case that if for groupoids (X, ∗) and (X, •), the groupoid (X,�) is defined by
x�y := (x ∗ y) • (y ∗ x), then (Bin(X),�) itself is a semigroup, with identity the
left-zero-semigroup (X, ∗), where x∗y = x for all x, y ∈ X. The study of (Bin(X),�)
can take many forms. Thus, e.g., if Ah(X) represents the set of all commutative
groupoids (X, ∗), where x ∗ y = y ∗ x for all x, y ∈ X, then (Ab(X),�) is a two-sided
ideal of (Bin(X),�), thus explaining why commutativity is such a “strong” property
as compared to other properties. Other properties may be associated with subsemi-
groups, left-ideals, right-ideals, and with other relations, such as partial orders ≤ for
example. Other perspectives are gained by modeling certain types of mathemati-
cal structures, e.g., digraphs, as groupoids (X, ∗) where the product x ∗ y ∈ {x, y},
represents the arrows in the digraph x → y if x ∗ y = y and x ∗ y = x if there is
no such arrow in the digraph. In the existing literature the ideas mentioned above
have already been considered. Analytic observations based on groupoids and semi-
groups have been developed. Sastry et al. [10] discussed a fixed point theorem in a
lattice ordered semigroup cone valued cone metric spaces, and Moghaddasi [4] studied
sequentially injective and complete acts over semigroups.
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In the paper we address the following issue. Suppose that (X, ∗) is a groupoid,
and that d : X → R is a real-valued function on X. We would like to know more
about the interaction of functions d with groupoids (X, ∗). In order to do so, we

consider a function Φ : Bin(X) → (RX2
)R

X
where Φ(X, ∗)(d) : X2 → R is defined

for d : X → R by [Φ(X, ∗)(d)](x, y) := d(x∗y)+d(y ∗x) for all x, y ∈ X. We consider

the function Φ(X, ∗)(d) to be the derived function of d on (X, ∗). Since RX and RX2

are vector spaces over R, Φ(X, ∗) : RX → RX2
is a linear transformation also with

associated KerΦ(X, ∗) and InΦ(X, ∗) among the objects of interest as will be seen
below.

2. Preliminaries

Among the various types of groupoids referenced in what follows along with those
newly defined there are the d-algebras [1, 6, 7] and the BCK/BCI-algebras [2, 3, 12].

A d-algebra ( [6,7]) is a non-empty set X with a constant 0 and a binary operation
“ ∗ ” satisfying the following axioms:

(A) x ∗ x = 0,
(B) 0 ∗ x = 0,
(C) x ∗ y = 0 and y ∗ x = 0 imply x = y

for all x, y ∈ X.

A BCK-algebra is a d-algebra X satisfying the following additional axioms:

(D) (x ∗ (x ∗ y)) ∗ y = 0,
(E) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0

for all x, y, z ∈ X.

The class of algebras fails to be a variety because of the presence axiom (C) which
is not of the type P (x1, x2, · · · ) = 0 for all x1, x2, · · · ∈ X [11]. Given that groups
(X, ∗, 0) are a well-known class of groupoids, a closely related class of groupoids is the
class of B-algebras (X, ∗, 0) [8, 9] subject to the axioms (A) and

(F) x ∗ 0 = x,
(G) (x ∗ y) ∗ z = x ∗ (z ∗ (0 ∗ y))

for all x, y, z ∈ X.

Given a B-algebra (X, ∗, 0), if we define x•y := x∗ (0∗y), then (X, •, 0) becomes a
group. Also, for a group (X, •, 0), x ∗ y := x • y−1 yields a B-algebra (X, ∗, 0). Given
a field K := X, if we set x ∗ y := a+ bx+ cy, with a, b, c ∈ K, then (X, ∗) is a linear
groupoid over K, and again the linear groupoids form a large class of groupoids whose
properties have been of interest [8] and continue to be of interest below. A final class
of groupoids on a set X which comes up in the text below is the class of selective
groupoids (X, ∗) such that x ∗ y ∈ {x, y} which can be modeled as digraphs. Many
other types are also mentioned and some new classes are discussed [5]. A desirable
property for a class K of groupoids on a set X is that if (X, ∗), (X, •) are elements of
K then so is (X,�) = (X, ∗)�(X, •), where x�y = (x ∗ y) • (y ∗ x) for all x, y ∈ X.
If this is the case, then (K,�) is a subsemigroup of the semigroup (Bin(X),�).
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3. (X, ∗)-derived functions

Given a groupoid (X, ∗), let d : X → R be any real-valued function. Then a
function Φ(X, ∗)(d) : X ×X → R is said to be an (X, ∗)-derived function from d if

Φ(X, ∗)(d)(x, y) := d(x ∗ y) + d(y ∗ x)

for all x, y ∈ X. If we let RX := {f |f : X → R} and RX2
:= {g|g : X2 → R}, and

if we define (f + g)(x) := f(x) + f(y) and (αf)(x) := αf(x) for all x ∈ X and for all

f, g ∈ RX (or RX2
) and for all α ∈ R, then RX and RX2

are vector spaces over R.

Proposition 3.1. Let (X, ∗) be a groupoid and let di : X → R be functions (i =
1, 2). If Φ(X, ∗)(di) are (X, ∗)-derived functions, then αΦ(X, ∗)(d1) + βΦ(X, ∗)(d2) is
also an (X, ∗)-derived function for all α, β ∈ R.

Proof. Given x, y ∈ X, we have

[αΦ(X, ∗)(d1) + βΦ(X, ∗)(d2)](x, y)

= αΦ(X, ∗)(d1)(x, y) + βΦ(X, ∗)(d2)(x, y)

= α(d1(x ∗ y) + d1(y ∗ x)) + β(d2(x ∗ y) + d2(y ∗ x))

= (αd1 + βd2)(x ∗ y) + (αd2 + βd2)(y ∗ x)

= Φ(X, ∗)(αd1 + βd2)(x, y),

which proves the proposition.

Proposition 3.1 shows that Φ(X, ∗)(αd1 +βd2) = αΦ(X, ∗)(d1)+βΦ(X, ∗)(d2), i.e.,

Φ(X, ∗) is an R-linear transformation from RX to RX2
. Note that Φ(X, ∗)(x, y) =

d(x ∗ y) + d(y ∗ x) = Φ(X, ∗)(y, x) for any groupoid (X, ∗). Given (X, ∗) ∈ Bin(X),
since dim(RX) = |X|, if |X| < ∞, then dimKerΦ(X, ∗) + dimImΦ(X, ∗) = |X|,
while otherwise KerΦ(X, ∗) ⊕ ImΦ(X, ∗) ∼= RX . Given (X, ∗) ∈ Bin(X), we define
the kernel of Φ(X, ∗) by

KerΦ(X, ∗) := {d ∈ RX | d(x ∗ y) + d(y ∗ x) = 0, for all x, y ∈ X}.

Proposition 3.2. Let (X, ∗) ∈ Bin(X). If (X, ∗) has an identity e, i.e., x ∗ e =
x = e ∗ x for all x ∈ X, then ImΦ(X, ∗) ∼= RX .

Proof. If d ∈ KerΦ(X, ∗), then d(x ∗ y) + d(y ∗ x) = 0 for all x, y ∈ X. It follows
that d(x ∗ e) + d(e ∗ x) = 0 for all x ∈ X. Hence 2d(x) = 0 for all x ∈ X, i.e., d = 0
and KerΦ(X, ∗) = {0}, proving the proposition.

Proposition 3.3. (X, ∗) ∈ Bin(X) is commutative, i.e., x ∗ y = y ∗ x for all
x, y ∈ X and X ∗X = X, then ImΦ(X, ∗) ∼= RX .

Proof. If d ∈ KerΦ(X, ∗), then d(x ∗ y) +d(y ∗x) = 0 for all x, y ∈ X. Since (X, ∗)
is commutative, we have d(x ∗ y) = 0 for all x, y ∈ X. Since X ∗X = X, we obtain
d(x) = 0 for all x ∈ X, proving KerΦ(X, ∗) = {0}.

In Proposition 3.3, the condition X ∗ X = X is necessary. In fact, let (X, ∗) be
a commutative groupoid with X ∗ X  X. Then there exists an u ∈ X \ X ∗ X.
Define a function d : X → R by d(x) := 1 when x = u, d(x) := 0 otherwise. Then
Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) = 0 for all x, y ∈ X, i.e., d is a non-zero element
of KerΦ(X, ∗).
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Proposition 3.4. If (X, ∗) is the left-zero-semigroup, i.e., x∗y = x for all x, y ∈ X,
then ImΦ(X, ∗) ∼= RX .

Proof. If d ∈ RX , then Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) = d(x) + d(y), since
(X, ∗) is the left-zero-semigroup. It follows that 2d(x) = 0 for all x ∈ X, proving that
KerΦ(X, ∗) = {0}.

Theorem 3.5. Let (R, ∗) be a groupoid defined by x ∗ y := a + bx + cy for all
x, y ∈ R where a, b, c ∈ R. If KerΦ(X, ∗) 6= {0}, then b+ c = 0.

Proof. Let d ∈ KerΦ(X, ∗). Then 0 = Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) =
d(a + bx + cy) + d(a + by + cx) for all x, y ∈ R. If b = c = 0, i.e., x ∗ y := a for all
x, y ∈ R, then 0 = d(x ∗ y) + d(y ∗ x) = 2d(a). Hence d(x ∗ y) = d(a) = 0 for all
x, y ∈ R, i.e., d(R×R) = {0}, which shows that KerΦ(X, ∗) = {0}.

If b 6= 0, c = 0, i.e., x ∗ y := a + bx for all x, y ∈ R, then 0 = d(x ∗ y) + d(y ∗ x) =
d(a + bx) + d(a + by) for all x, y ∈ R. If we take u := a + bx, v := a + by, then
x = u−a

b
, y = v−a

b
. It follows that 0 = d(u)+d(v) for all u, v ∈ R, and hence 0 = 2d(u)

for all u ∈ R. Hence KerΦ(X, ∗) = {0}.
The case b = 0, c 6= 0 is similar to the above case, and we omit the proof.
Consider the case b 6= 0 6= c. If b2 − c2 6= 0. Given u, v ∈ R, if we let

x :=
(bu− cv) + (c− b)a

b2 − c2
, y :=

(bv − cu) + (c− b)a
b2 − c2

then

0 = d(x ∗ y) + d(y ∗ x)

= d(a+ bx+ cy) + d(a+ by + cx)

= d(u) + d(v)

for all u, v ∈ R. It follows that KerΦ(X, ∗) = {0}. If b2 − c2 = 0, then b = ±c.
If b = c, i.e., x ∗ y := a + b(x + y) for all x, y ∈ R, then x ∗ y = y ∗ x and hence
0 = Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) = 2d(x ∗ y) for all x, y ∈ R. If u ∈ R, then
there exist x0, y0 ∈ R such that u = a+ b(x0 + y0), i.e., u = x0 ∗ y0. This shows that
d(u) = d(x0 ∗ y0) = 0 for all u ∈ R, proving that KerΦ(X, ∗) = {0}. If b = −c, i.e.,

x ∗ y := a + b(x− y) for all x, y ∈ R, define a function d̂ : R → R by d̂(x) := x− a.

Given x, y ∈ R, we have d̂(x ∗ y) + d̂(y ∗ x) = d̂(a + b(x − y)) + d̂(a + b(y − x)) =

b(x− y) + b(y − x) = 0, proving that d̂ 6= 0 and d̂ ∈ KerΦ(X, ∗).

4. Φ-injective and richly non-commutative

In Section 3, we obtained a class of groupoids which we shall consider as Φ-injective
groupoids, i.e., those groupoids (X, ∗) for which KerΦ(X, ∗) = {0}, i.e., for which the

linear transformation Φ : RX → RX2
is an injection. Suppose that a groupoid (X, ∗)

has the property that for any u, v ∈ X there exist x, y ∈ X such that x ∗ y = u and
y ∗ x = v. Then certainly X ∗ X = X, but in a stronger fashion. E.g., if (X, ∗) is
a leftoid for f , where f : X → X is a surjection, then for given u, v ∈ x there exist
x, y ∈ X such that f(x) = u and f(y) = v. It follows that x ∗ y = f(x) = u, y ∗ x =
f(y) = v. We shall consider groupoids of this type to be richly non-commutative.



Algebraic constructions of groupoids for metric spaces 537

Example 4.1. Let R be the set of all real numbers. Define a binary operation “∗”
on R by x ∗ y := 2x + 3 for all x, y ∈ R. Then (X, ∗) is richly non-commutative. In
fact, given u, v ∈ R, if we let x := u−3

2
, y := v−3

2
, then x ∗ y = 2(u−3

2
) + 3 = u, y ∗ x =

2(v−3
2

) + 3 = v.

Proposition 4.2. If a groupoid (X, ∗) is richly non-commutative, then X∗X = X.

Proof. The proof is straightforward.

The converse of Proposition 4.2 need not be true in general.

Example 4.3. Let X := {0, 1, 2, 3} be a set with the following table:

∗ 0 1 2 3
0 0 0 0 0
1 1 0 1 0
2 2 2 0 0
3 3 2 1 0

Then (X, ∗, 0) is a BCK-algebra [3, p. 245]. It is easy to see that X ∗X = X, but
given 1, 3 ∈ X there are no α, β ∈ X such that α ∗ β = 1, β ∗ α = 3.

Proposition 4.4. If a groupoid (X, ∗) is richly non-commutative, then it is Φ-
injective.

Proof. Let d ∈ KerΦ(X, ∗). Since (X, ∗) is richly non-commutative, given u, v ∈ X,
there exist x, y ∈ X such that u = x∗y, v = y∗x. It follows that 0 = d(x∗y)+d(y∗x) =
d(u) + d(v) for all u, v ∈ X, and hence 0 = d(u) + d(u) = 2d(u) for all u ∈ X, proving
that KerΦ(X, ∗) = {0}, i.e., (X, ∗) is Φ-injective.

Theorem 4.5. Let (X, ∗) be a richly non-commutative groupoid and let (X, •) be
a Φ-injective groupoid. If (X,�) := (X, ∗)�(X, •), then (X,�) is Φ-injective.

Proof. If d ∈ KerΦ(X,�), then for all x, y ∈ X we have

0 = d(x�y) + d(y�x)

= d((x ∗ y) • (y ∗ x)) + d((y ∗ x) • (x ∗ y))(1)

Since (X, ∗) is richly non-commutative, given u, v ∈ X, there exist x, y ∈ X such that
u = x ∗ y, v = y ∗ x. By (1), we have Φ(X, •)(d)(u, v) = d(u • v) + d(v • u) = 0,
i.e., d ∈ KerΦ(X, •) = {0}, which shows that d = 0. This shows that (X,�) is
Φ-injective.

Theorem 4.6. Let (X, ∗), (X, •) be richly non-commutative groupoids. If (X,�) :=
(X, ∗)�(X, •), then (X,�) is also richly non-commutative.

Proof. Given u, v ∈ X, since (X, •) is richly non-commutative, there exist a, b ∈ X
such that u = a•b, v = b•a. Since (X, ∗) is richly non-commutative, there exist x, y ∈
X such that a = x ∗ y, b = y ∗x. It follows that u = a • b = (x ∗ y) • (y ∗x) = x�y and
v = b•a = (y ∗x)• (x∗y) = y�x, proving that (X,�) is richly non-commutative.

Corollary 4.7. If RNC(X) consists of all richly non-commutative groupoids
defined on X, then (RNC(X),�) is a subsemigroup of (Bin(X), �).
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5. Diagonal groupoids

Given (X, ∗) ∈ Bin(X), we define a set D(X, ∗) by

D(X, ∗) := {x ∗ x |x ∈ X}
A groupoid (X, ∗) is said to be a diagonal groupoid if D(X, ∗) = X. For example, if
“+” is the usual addition on R, then D(R,+) = {x + x|x ∈ R} = {2x|x ∈ R} = R,
i.e., (R,+) is a diagonal groupoid.

Proposition 5.1. Every diagonal groupoid (X, ∗) is Φ-injective.

Proof. If d ∈ KerΦ(X, ∗), then 0 = d(x∗x)+d(x∗x) = 2d(x∗x) for all x ∈ X, i.e.,
d(x ∗ x) = 0. Since (X, ∗) is diagonal, for any x ∈ X, there exists α ∈ X such that
x = α ∗ α. It follows that d(x) = d(α ∗ α) = 0, proving that (X, ∗) is Φ-injective.

Proposition 5.2. Let (X, ∗), (X, •) be diagonal groupoids. If (X,�) := (X, ∗)�(X, •),
then (X,�) is also diagonal.

Proof. The proof is similar to the proof of Theorem 4.6, and we omit it.

Corollary 5.3. If Diag(X) consists of all diagonal groupoids defined on X, then
(Diag(X),�) is a subsemigroup of (Bin(X),�).

6. (X, ∗)-metric on a groupoid

Given (X, ∗) ∈ Bin(X) and a function d : X → R, the (X, ∗)-derived function
Φ(X, ∗)(d) may have the following conditions:

(I) Φ(X, ∗)(d)(x, y) = Φ(X, ∗)(d)(y, x),
(II) Φ(X, ∗)(d)(x, y) ≥ 0,

(III) Φ(X, ∗)(d)(x, y) = 0 if and only if x = y,
(IV) Φ(X, ∗)(d)(x, z) ≤ Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d)(y, z)

for all x, y, z ∈ X. The (X, ∗)-derived function Φ(X, ∗)(d) is said to be an (X, ∗)-
metric on a groupoid (X, ∗) if it satisfies the conditions (I) ∼ (IV). In this case, the
function d is said to be an (X, ∗)-pre-metric over (X, ∗).

Example 6.1. Let X := R be the set of real numbers and “−” be the usual
subtraction on X. If we define d(x) := x for all x ∈ X, then Φ(X,−)(|d|) is an
(R,−)-metric on (R,−). In fact, given x, y ∈ X, we have Φ(X,−)(|d|)(x, y) =
|d|(x−y)+ |d|(y−x) = |x−y|+ |y−x| = Φ(X,−)(|d|)(y, x) and Φ(X,−)(|d|)(x, y) =
|x−y|+ |y−x| ≥ 0. Clearly, Φ(X,−)(|d|)(x, y) = 0 if and only if |x−y| = 0 = |y−x|
if and only if x = y. We know that Φ(X,−)(|d|)(x, z) = |x− z| ≤ |x− y|+ |y − z| =
Φ(X,−)(|d|)(x, y) + Φ(X,−)(|d|)(y, z).

Proposition 6.2. Let (X, ∗) ∈ Bin(X) and let d : (X, ∗) → R be a function. If
| d | is an absolute function from R to R, i.e., |d|(x) := |d(x)| for all x ∈ R, then
|Φ(X, ∗)(d)| ≤ Φ(X, ∗)(|d|).

Proof. Given x, y ∈ X, we have

|Φ(X, ∗)(d)|(x, y) = |d(x ∗ y) + d(y ∗ x)|
≤ |d(x ∗ y)|+ |d(y ∗ x)|
= |d|(x ∗ y) + |d|(y ∗ x)

= Φ(X, ∗)(|d|)(x, y),
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proving the proposition.

Theorem 6.3. Let (X, ∗) ∈ Bin(X) and let d1, d2, · · · , dn be (X, ∗)-pre-metrics
on (X, ∗) (i = 1, · · · , n). If we define d := α1d2 + · · · + αndn where αi ≥ 0 with
α1 + · · ·+ αn > 0, then d is an (X, ∗)-pre-metric on (X, ∗).

Proof. (I) Given x, y ∈ X, we have

Φ(X, ∗)(d)(x, y) = Φ(X, ∗)(
n∑
i=1

αidi)(x, y)

= (
n∑
i=1

αidi)(x ∗ y) + (
n∑
i=1

αidi)(y ∗ x)

=
n∑
i=1

αidi(x ∗ y) +
n∑
i=1

αidi(y ∗ x)

= Φ(X, ∗)(
n∑
i=1

αidi)(y, x)

= Φ(X, ∗)(d)(y, x).

(II) It follows from (I) that

Φ(X, ∗)(d)(x, y) =
n∑
i=1

αi(di(x ∗ y) + di(y ∗ x)) =
n∑
i=1

αiΦ(X, ∗)(di)(x, y) ≥ 0.

(III) Assume Φ(X, ∗)(d)(x, y) = 0. Then 0 =
∑n

i=1 αiΦ(X, ∗)(di)(x, y). Without
loss of generality, we let αi0 6= 0. Then αi0Φ(X, ∗)(di0)(x, y) = 0. Since Φ(X, ∗)(di0)
is a metric, we obtain x = y. The converse is trivial, and we omit the proof.

(IV) Given x, y, z ∈ X, we have

Φ(X, ∗)(d)(x, z) =
n∑
i=1

aiΦ(X, ∗)(di)(x, z)

≤
n∑
i=1

ai[Φ(X, ∗)(di)(x, y) + Φ(X, ∗)(di)(y, z)]

= Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d)(y, z)

Hence Φ(X, ∗)(d) is an (X, ∗)-metric on (X, ∗) and hence d is an (X, ∗)-pre-metric on
(X, ∗).

Proposition 6.4. Let (X, ∗) ∈ Bin(X) and let d be an (X, ∗)-pre-metric on
(X, ∗). If d0 ∈ KerΦ(X, ∗), then Φ(X, ∗)(d+ d0) = Φ(X, ∗)(d).

Proof. Given x, y ∈ X, we have

Φ(X, ∗)(d+ d0)(x, y) = (d+ d0)(x ∗ y) + (d+ d0)(y ∗ x)

= [d(x ∗ y) + d0(x ∗ y)] + [d(y ∗ x) + d0(y ∗ x)]

= Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d0)(x, y)

= Φ(X, ∗)(d)(x, y),

proving the proposition.
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In Proposition 6.4, Φ(X, ∗)(d0) need not be an (X, ∗)-metric on (X, ∗) unless |X| =
1. In fact, assume Φ(X, ∗)(d0) is an (X, ∗)-metric on (X, ∗) and |X| ≥ 2. Then there
exist x, y ∈ X such that x 6= y. Since d0 ∈ KerΦ(X, ∗), we have Φ(X, ∗)(d0)(x, y) = 0
and hence x = y, a contradiction.

Proposition 6.5. Let ϕ : (X, ∗) → (Y, •) be a homomorphism of groupoids and
let d : Y → R be a function. Then there exists a map dϕ : X → R such that

Φ(X, ∗)(dϕ)(x, y) = Φ(Y, •)(d)(ϕ(x), ϕ(y))

for all x, y ∈ X.

Proof. Given a homomorphism ϕ : (X, ∗) → (Y, •) and a function d : Y → R, we
define a function dϕ : X → R by dϕ(x) := d(ϕ(x)) for all x ∈ X. Then

Φ(X, ∗)(dϕ)(x, y) = dϕ(x ∗ y) + dϕ(y ∗ x)

= [d(x ∗ y) + d0(x ∗ y)] + [d(y ∗ x) + d0(y ∗ x)]

= d(ϕ(x ∗ y)) + d(ϕ(y ∗ x))

= d(ϕ(x) • ϕ(y)) + d(ϕ(y) • ϕ(x))

= Φ(Y, •)(d)(ϕ(x), ϕ(y))

proving the proposition.

Corollary 6.6. Let ϕ : (X, ∗) → (Y, •) be a homomorphism of groupoids and
let d : Y → R be a function. If Φ(Y, •)(d) is a (Y, •)-metric over (Y, •) and if ϕ is
one-one, then Φ(X, ∗)(dϕ) is an (X, ∗)-metric over (X, ∗).

Proof. The proofs of (I), (II) and (IV) are routine, and we omit its proof. Consider
(III). Suppose that Φ(X, ∗)(dϕ)(x, y) = 0. Then Φ(Y, •)(d)(ϕ(x), ϕ(y)) = 0. Since
Φ(Y, •)(d) is a (Y, •)-metric, we obtain ϕ(x) = ϕ(y). Since ϕ is one-one, we obtain
x = y.

Assume that x = y. Then ϕ(x) = ϕ(y). Since Φ(Y, •)(d) is a (Y, •)-metric, we have
Φ(Y, •)(d)(ϕ(x), ϕ(y)) = 0. By Proposition 6.5, we obtain Φ(X, ∗)(dϕ)(x, y) = 0.

7. Metrizable groupoids

A groupoid (X, ∗) is said to be ∗-metrizable if, for some function d : X → R, the
(X, ∗)-derived function Φ(X, ∗)(d) : X2 → R with Φ(X, ∗)(d)(x, y) := d(x∗y)+d(y∗x)
is a non-zero (X, ∗)-metric over (X, ∗).

Example 7.1. Let X := R be the set of real numbers and let x ⊗ y := x − y for
all x, y ∈ R. If we define d : X → R by d(x) := |x| for all x ∈ X, then it is easy to
see that (X,⊗) is ⊗-metrizable.

Note that (R,+) is not +-metrizable where + is the usual addition on R. In fact,
assume Φ(R,+)(d) is non-zero +-metrizable over (R,+) for some function d : R→ R.
Then 0 = Φ(R,+)(d)(x, x) = 2d(2x) for all x ∈ R. It follows that d(x) = 0 for all
x ∈ R. This shows that Φ(R, ∗)(d)(x, y) = d(x+ y) + d(y + x) = 0 for all x, y ∈ R, a
contradiction.

Note that the group (R,+) has the associated B-algebra (R, ∗) where x ∗ y :=
x + (−y) = x − y. The fact that (R,+) and (R, ∗) are quite distinct in many ways
is illustrated once again in this setting when we note that (R,+) is not +-metrizable
and that (R, ∗) is ∗-metrizable.
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Proposition 7.2. Every left-zero-semigroup (X, ∗) has no non- (X, ∗)-metric over
(X, ∗).

Proof. Assume Φ(X, ∗)(d) is a non-zero metric over (X, ∗) for some d : X → R.
Then Φ(X, ∗)(d)(x, y) = d(x∗y)+d(y∗x) = d(x)+d(y) ≥ 0 for all x, y ∈ X. It follows
that d(x) ≥ 0 for all x ∈ X. Since Φ(X, ∗)(d)(x, x) = 0, we obtain 2d(x) = 0 for all
x ∈ X. This shows that Φ(X, ∗)(d)(x, y) = 0 for all x, y ∈ X, a contradiction.

Proposition 7.3. Let (X, ∗, 0) be a BCK-algebra and let Φ(X, ∗)(d) be an (X, ∗)-
metric over (X, ∗). Then

(i) d(0) = 0,
(ii) Φ(X, ∗)(d)(x, 0) = d(x) ≥ 0,

(iii) Φ(X, ∗)(d)(x, y) ≤ d(x) = d(y),
(iv) d(x) = d(y) = 0 implies x = y,

for all x, y ∈ X.

Proof. (i) Since (X, ∗, 0) is a BCK-algebra, we have

0 ≤ Φ(X, ∗)(d)(x, 0) = d(x ∗ 0) + d(0 ∗ x) = d(x) + d(0)(2)

for all x ∈ X. If we let x := 0 in (2), then by (III) we have

0 = Φ(X, ∗)(d)(0, 0) = d(0) + d(0) = 2d(0),

i.e., d(0) = 0.
(ii) It follows from (i) and (2) immediately.
(iii) By (IV), (I) and (2), we have

Φ(X, ∗)(d)(x, y) ≤ Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d)(x, y) = d(x) + d(y).

(iv) Assume that d(x) = d(y) = 0. Then Φ(X, ∗)(d)(x, y) ≤ d(x) + d(y) = 0, i.e.,
Φ(X, ∗)(d)(x, y) = 0. By (III), we obtain x = y.

Proposition 7.4. Let (X, ∗, 0) be a standard BCK-algebra and let Φ(X, ∗)(d) be
an (X, ∗)-metric over (X, ∗). Then

Φ(X, ∗)(d)(x, y) :=

 d(y) if x < y,
d(x) if x < y,

d(x) + d(y) if x || y.

Proof. If x < y, then x ∗ y = 0, y ∗ x = y. It follows that Φ(X, ∗)(d)(x, y) =
d(x ∗ y) + d(y ∗ x) = d(0) + d(y) = d(y) by Proposition 7.3-(i). If y < x, then we
obtain Φ(X, ∗)(d)(x, y) = d(x). Assume that x || y. Then x ∗ y = x, y ∗ x = y. It
follows that Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) = d(x) + d(y).

Theorem 7.5. Let (X, ∗, 0) be a groupoid with the condition: x ∗ y = 0 = y ∗ x if
and only if x = y. Then (X, ∗) is ∗-metrizable.

Proof. Let d : X → R be a function defined by d(0) := 0 and d(x) := 1 if
x 6= 0. Then Φ(X, ∗)(d)(x, y) = d(x ∗ y) + d(y ∗ x) = Φ(X, ∗)(d)(y, x) ≥ 0 and
Φ(X, ∗)(d)(x, y) ∈ {0, 1, 2} for all x, y ∈ X. Moreover, by assumption, we have

Φ(X, ∗)(d)(x, y) = 0 ⇐⇒ d(x ∗ y) + d(y ∗ x) = 0

⇐⇒ d(x ∗ y) = 0 = d(y ∗ x)

⇐⇒ x ∗ y = 0 = y ∗ x
⇐⇒ x = y.
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Assume that the condition (IV) does not hold. Then there exist x, y, z ∈ X such that
Φ(X, ∗)(d)(x, z) > Φ(X, ∗)(d)(x, y)+Φ(X, ∗)(d)(y, z). Since 0 ≤ Φ(X, ∗)(d)(x, z) ≤ 2,
we have two cases: (i) Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d)(y, z) = 0; (ii) Φ(X, ∗)(d)(x, y) +
Φ(X, ∗)(d)(y, z) = 1. For the case (i), since Φ(X, ∗)(d)(x, y) + Φ(X, ∗)(d)(y, z) = 0,
we obtain x = y = z, which implies that 0 = Φ(X, ∗)(d)(x, z) < Φ(X, ∗)(d)(x, y) +
Φ(X, ∗)(d)(y, z) = 0, a contradiction.
Consider the case (ii) Φ(X, ∗)(d)(x, y) +Φ(X, ∗)(d)(y, z) = 1. It follows that either
Φ(X, ∗)(d)(x, y) = 0 or Φ(X, ∗)(d)(y, z) = 0. This shows that either x = y or y =
z. If x = y holds, then Φ(X, ∗)(d)(x, z) > Φ(X, ∗)(d)(x, x) + Φ(X, ∗)(d)(x, z) =
0 + Φ(X, ∗)(d)(x, z) = Φ(X, ∗)(d)(x, z), a contradiction. If y = z, then it leads to
Φ(X, ∗)(d)(x, y) > Φ(X, ∗)(d)(x, y), a contradiction. Hence (X, ∗) is ∗-metrizable.

Corollary 7.6. Every d/BCK-algebra (X, ∗, 0) is ∗-metrizable.

Proof. Every d/BCK-algebra has the condition: x ∗ y = 0 = y ∗ x if and only if
x = y.

Corollary 7.7. Every B-algebra (X, ∗, e) is ∗-metrizable.

Proof. Let (X, •, e) be a group and let (X, ∗, e) be the associated B-algebra. Then
x ∗ y = x • y−1 for all x, y ∈ X. Assume x ∗ y = e = y ∗ x. Then x • y−1 = e = y • x−1

and hence x = y. The converse is trivial.

Example 7.8. Let R be the set of all real numbers and “+” be the usual addition
on R. Define a function d : R→ R by d(0) = 0 and d(x) = 1 if x 6= 0. Then

Φ(R,+)(d)(x, y) = d(x+ y) + d(y + x)

=

{
2 if x+ y 6= 0,

0 otherwise.

The triangle inequality may fail in that Φ(R,+)(d)(x, x) = 2 > 0 = Φ(R,+)(d)(x,−x)+
Φ(R,+)(d)(−x, x) for x 6= 0. In fact, the groupoid (R,+) does not satisfies the con-
dition: x+ y = y + x = 0 if and only if x = y.

8. Quasi-logarithm for groupoids

Let (X, ∗) ∈ Bin(X). A function d : X → R is said to be a quasi-logarithm for
(X, ∗) if for all x, y ∈ X, d(x ∗ y) = αd1(x) + βd2(y) for some functions di : X → R
and for some α, β ∈ R. We denote it by d := αd1 + βd2.

Example 8.1. Let X := R and let a, b, c ∈ X. Define x ∗ y := a + bx + cy for all
x, y ∈ X. Define functions d(x) := x and d1(x) := 1

α
(a+bx), α 6= 0 and d2(x) := 2x for

all x ∈ X. Then d(x∗y) = x∗y = a+bx+cy = α 1
α

(a+bx)+ c
2
d2(y) = αd1(x)+ c

2
d2(y),

i.e., d = αd1 + c
2
d2 is a quasi-logarithm on (X, ∗).

Let (X, ∗) be the left-zero-semigroup. Then d(x ∗ y) = d(x) = 1d(x) + 0d(y), so
that d = d1 = d2, α = 1, β = 0 shows that any function d : X → R whatsoever is a
quasi-logarithm for (X, ∗).

Let X := (0,∞) and let x ∗ y := xy be the usual multiplication on real numbers.
If we define d := log, then log(xy) = log(x) + log(y) so that d = d1 = d2 = log,
α = β = 1 shows that log is a quasi-logarithm for the groupoid (X, ∗).



Algebraic constructions of groupoids for metric spaces 543

Proposition 8.2. Let (X, ∗) ∈ Bin(X) and let d = αd1+βd2 be a quasi-logarithm
where αβ 6= 0. If x0, y0 ∈ X such that d1(x0) = 0 and d2(y0) = 0, then d(x ∗ y) =
d(x ∗ y0) + d(x0 ∗ y) for all x, y ∈ X.

Proof. Since d(x0 ∗ y) = αd1(x0) + βd2(y) = βd2(y), we obtain d2(y) = 1
β
d2(y).

Similarly, d(x∗y0) = αd1(x) +βd2(y0) = αd1(x) implies that d1(x) = 1
α
d(x∗y0). This

shows that d(x ∗ y) = d(x ∗ y0) + d(x0 ∗ y) for all x, y ∈ X.

Proposition 8.3. Let ϕ : (X, ∗) → (Y, •) be a homomorphism of groupoids and
let d = αd1+βd2 be a quasi-logarithm for (Y, •). Then dϕ := d◦ϕ is a quasi-logarithm
for (X, ∗).

Proof. Given x, y ∈ X, we have

dϕ(x ∗ y) = d(ϕ(x ∗ y)))

= d(ϕ(x) • ϕ(y))

= αd1(ϕ(x)) + βd2(ϕ(y))

= α(d1)ϕ(x) + β(d2)ϕ(y),

proving the proposition.

Theorem 8.4. Let (X, ∗), (X, •) ∈ Bin(X) and let (X,�) := (X, ∗)�(X, •). If
d = αd1 + βd2 is a quasi-logarithm for (X, •), then

Φ(X,�)(d) = αΦ(X, ∗)(d1) + βΦ(X, ∗)(d2).

Proof. Given x, y ∈ X, we have d(x�y) = d((x∗y)•(y∗x)) = αd1(x∗y)+βd2(y∗x)
and d(y�x) = αd1(y ∗ x) + βd2(x ∗ y). It follows that

Φ(X,�)(d)(x, y) = d(x�y) + d(y�x)

= αd1(x ∗ y) + βd2(y ∗ x) + αd1(y ∗ x) + βd2(x ∗ y)

= α(d1(x ∗ y) + d1(y ∗ x)) + β(d2(x ∗ y) + d2(y ∗ x))

= αΦ(X, ∗)(d1)(x, y) + βΦ(X, ∗)(d2)(x, y)

= [αΦ(X, ∗)(d1) + βΦ(X, ∗)(d2)](x, y),

proving the theorem.

Corollary 8.5. Let (X, ∗), (X, •) ∈ Bin(X) and let (X,�) := (X, ∗)�(X, •).
Let d = αd1 + βd2 be a quasi-logarithm for (X, •) where α ≥ 0, β ≥ 0, αβ > 0. If
Φ(X, ∗)(di) (i = 1, 2) are an (X, ∗)-metric over (X, ∗), then Φ(X,�) is an (X,�)-
metric over (X,�).

Proof. It follows immediately from Theorem 8.4.

9. Conclusion

As we have seen above, the idea of a derived function Φ(X, ∗)(d) of a function d :
X → R based on the groupoid structure (X, ∗) allows consideration of the interaction
of the groupoid structure (X, ∗) with the function structure d : X → R. Clearly,
the amount of information potentially available in this way is very much larger than
what has been obtained sofar. Our goal has been to point out a direction in which
opportunity lies. In the future we hope and expect to gather larger harvests from
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further investigation of this subject. For example, if d : X → [0, 1], then the approach
used above will produce a sort of fuzzy theory quite naturally.
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