• Title/Summary/Keyword: Channel Charge

Search Result 280, Processing Time 0.034 seconds

Characterization of the Dependence of the Device on the Channel Stress for Nano-scale CMOSFETs (Nano CMOSFET에서 Channel Stress가 소자에 미치는 영향 분석)

  • Han In-Shik;Ji Hee-Hwan;Kim Kyung-Min;Joo Han-Soo;Park Sung-Hyung;Kim Young-Goo;Wang Jin-Suk;Lee Hi-Deok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-8
    • /
    • 2006
  • In this paper, reliability (HCI, NBTI) and device performance of nano-scale CMOSFETs with different channel stress were investigated. It was shown that NMOS and PMOS performances were improved by tensile and compressive stress, respectively, as well known. It is shown that improved device performance is attributed to the increased mobility of electrons or holes in the channel region. However, reliability characteristics showed different dependence on the channel stress. Both of NMOS and PMOS showed improved hot carrier lifetime for compressive channel stress. NBTI of PMOS also showed improvement for compressive stress. It is shown that $N_{it}$ generation at the interface of $Si/SiO_2$ has a great effect on the reliability. It is also shown that generation of positive fixed charge has an effect in the NBTI. Therefore, reliability as well as device performance should be considered in developing strained-silicon MOSFET.

EEPROM Charge Sensors (EEPROM을 이용한 전하센서)

  • Lee, Dong-Kyu;Jin, Hai-Feng;Yang, Byung-Do;Kim, Young-Suk;Lee, Hyung-Gyoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.8
    • /
    • pp.605-610
    • /
    • 2010
  • The devices based on electrically erasable programmable read-only memory (EEPROM) structure are proposed for the detection of external electric charges. A large size charge contact window (CCW) extended from the floating gate is employed to immobilize external charges, and a control gate with stacked metal-insulator-metal (MIM) capacitor is adapted for a standard single polysilicon CMOS process. When positive voltage is applied to the capacitor of CCW of an n-channel EEPROM, the drain current increases due to the negative shift of its threshold voltage. Also when a pre-charged external capacitor is directly connected to the floating gate metal of CCW, the positive charges of the external capacitor make the drain current increase for n-channel, whereas the negative charges cause it to decrease. For an p-channel, however, the opposite behaviors are observed by the external voltage and charges. With the attachment of external charges to the CCW of EEPROM inverter, the characteristic inverter voltage behavior shifts from the reference curve dependent on external charge polarity. Therefore, we have demonstrated that the EEPROM inverter is capable of detecting external immobilized charges on the floating gate. and these devices are applicable to sensing the pH's or biomolecular reactions.

The Substates with Mutants That Negatively Charged Aspartate in Position 172 Was Replaced with Positive Charge in Murine Inward Rectifier Potassium Channel (Murine Kir2.1)

  • So, I.;Ashmole, I.;Stanfield, P.R.
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.5
    • /
    • pp.267-273
    • /
    • 2003
  • We have investigated the effect on inducing substate(s) of positively charged residues replaced in position 172 of the second transmembrane domain in murine inward rectifier potassium channels, formed by stable or transient transfection of Kir2.1 gene in MEL or CHO cells. Single channel recordings were obtained from either cell-attached patches or inside-out patches excised into solution containing 10 mM EDTA to rule out the effect of $Mg^{2+}$ on the channel gating. The substate(s) could be recorded with all mutants D172H, D172K and D172R. The unitary current-voltage (I-V) relation was not linear with D172H at $pH_i$ 6.3, whereas the unitary I-V relation was linear at $pH_i$ 8.0. The relative occupancy at $S_{LC}$ was increased from 0.018 at $pH_i$ 8.0 to 0.45 at $pH_i$ 5.5. In H-N dimer, that was increased from 0.016 at $pH_i$ 8.0 to 0.23 at $pH_i$ 5.5. The larger the size of the side chain or $pK_a$ with mutants (D172H, D172K and D172R), the more frequent the transitions between the fully open state and substate within an opening. The conductance of the substate also depended upon the pKa or the size of the side chain. The relative occupancy at substate $S_{LC}$ with monomer D172K (0.50) was less than that in K-H dimer (0.83). However, the relative occupancy at substate with D172R (0.79) was similar to that with R-N dimer (0.82). In the contrary to ROMK1, positive charge as well as negative charge in position 172 can induce the substate rather than block the pore in murine Kir2.1. The single channel properties of the mutant, that is, unitary I-V relation, the voltage dependence of the mean open time and relative occupancy of the substates and the increased latency to the first opening, explain the intrinsic gating observed in whole cell recordings.

A study of electrical stress on short channel poly-Si thin film transistors (짧은 채널 길이의 다결정 실리콘 박막 트랜지스터의 전기적 스트레스에 대한 연구)

  • 최권영;김용상;한민구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.8
    • /
    • pp.126-132
    • /
    • 1995
  • The electrical stress of short channel polycrystalline silicon (poly-Si) thin film transistor (TFT) has been investigated. The device characteristics of short channel poly-Si TFT with 5$\mu$m channel length has been observed to be significantly degraded such as a large shift in threshold voltage and asymmetric phenomena after the electrical stress. The dominant degradation mechanism in long channel poly-Si TFT's with 10$\mu$m and 20$\mu$m channel length respectively is charage trappling in gate oxide while that in short channel device with 5.mu.m channel length is defect creation in active poly-Si layer. We propose that the increased defect density within depletion region near drain junction due to high electric field which could be evidenced by kink effect, constitutes the important reason for this significant degradation in short channel poly-Si TFT. The proposed model is verified by comparing the amounts of the defect creation and the charge trapping from the strechout voltage.

  • PDF

Poly-gate Quantization Effect in Double-Gate MOSFET (폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구)

  • 박지선;이승준;신형순
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.8
    • /
    • pp.17-24
    • /
    • 2004
  • Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

A High-Voltage Compliant Neural Stimulation IC for Implant Devices Using Standard CMOS Process (체내 이식 기기용 표준 CMOS 고전압 신경 자극 집적 회로)

  • Abdi, Alfian;Cha, Hyouk-Kyu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.5
    • /
    • pp.58-65
    • /
    • 2015
  • This paper presents the design of an implantable stimulation IC intended for neural prosthetic devices using $0.18-{\mu}m$ standard CMOS technology. The proposed single-channel biphasic current stimulator prototype is designed to deliver up to 1 mA of current to the tissue-equivalent $10-k{\Omega}$ load using 12.8-V supply voltage. To utilize only low-voltage standard CMOS transistors in the design, transistor stacking with dynamic gate biasing technique is used for reliable operation at high-voltage. In addition, active charge balancing circuit is used to maintain zero net charge at the stimulation site over the complete stimulation cycle. The area of the total stimulator IC consisting of DAC, current stimulation output driver, level-shifters, digital logic, and active charge balancer is $0.13mm^2$ and is suitable to be applied for multi-channel neural prosthetic devices.

The Analysis of Lateral Charge Migration at 3D-NAND Flash Memory by Tapering and Ferroelectric Polarization (Tapering과 Ferroelectric Polarization에 의한 3D NAND Flash Memory의 Lateral Charge Migration 분석)

  • Lee, Jaewoo;Lee, Jongwon;Kang, Myounggon
    • Journal of IKEEE
    • /
    • v.25 no.4
    • /
    • pp.770-773
    • /
    • 2021
  • In this paper, the retention characteristics of 3D NAND flash memory applied with tapering and ferroelectric (HfO2) structure were analyzed after programming operation. Electrons trapped in nitride are affected by lateral charge migration over time. It was confirmed that more lateral charge migration occurred in the channel thickened by tapering of the trapped electrons. In addition, the Oxide-Nitride-Ferroelectric (ONF) structure has better lateral charge migration due to polarization, so the change in threshold voltage (Vth) is reduced compared to the Oxide-Nitride-Oxide (ONO) structure.

Breakdown Characteristics of Silicon Nanowire N-channel GAA MOSFET (실리콘 나노와이어 N-채널 GAA MOSFET의 항복특성)

  • Ryu, In Sang;Kim, Bo Mi;Lee, Ye Lin;Park, Jong Tae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1771-1777
    • /
    • 2016
  • In this thesis, the breakdown voltage characteristics of silicon nanowire N-channel GAA MOSFETs were analyzed through experiments and 3-dimensional device simulation. GAA MOSFETs with the gate length of 250nm, the gate dielectrics thickness of 6nm and the channel width ranged from 400nm to 3.2um were used. The breakdown voltage was decreased with increasing gate voltage but it was increased at high gate voltage. The decrease of breakdown voltage with increasing channel width is believed due to the increased current gain of parasitic transistor, which was resulted from the increased potential in channel center through floating body effects. When the positive charge was trapped into the gate dielectrics after gate stress, the breakdown voltage was decreased due to the increased potential in channel center. When the negative charge was trapped into the gate dielectrics after gate stress, the breakdown voltage was increased due to the decreased potential in channel center. We confirmed that the measurement results were agreed with the device simulation results.

Determination of Memory Trap Distribution in Charge Trap Type SONOSFET NVSM Cells Using Single Junction Charge Pumping Method (Single Junction Charge Pumping 방법을 이용한 전하 트랩형 SONOSFET NVSM 셀의 기억 트랩분포 결정)

  • 양전우;홍순혁;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.10
    • /
    • pp.822-827
    • /
    • 2000
  • The Si-SiO$_2$interface trap and nitride bulk trap distribution of SONOSFET(polysilicon-oxide-nitride-oxide-semiconductor field effect transistor) NVSM (nonvolatile semiconductor memory) cell is investigated by single junction charge pumping method. The device was fabricated by 0.35㎛ standard logic fabrication process including the ONO stack dielectrics. The thickness of ONO dielectricis are 24$\AA$ for tunnel oxide, 74 $\AA$ for nitride and 25 $\AA$ for blocking oxide, respectively. By the use of single junction charge pumping method, the lateral profiles of both interface and memory traps can be calculated directly from experimental charge pumping results without complex numerical simulation. The interface traps were almost uniformly distributed over the whole channel region and its maximum value was 7.97$\times$10$\^$10/㎠. The memory traps were uniformly distributed in the nitride layer and its maximum value was 1.04$\times$10$\^$19/㎤. The degradation characteristics of SONOSFET with write/erase cycling also were investigated.

  • PDF

Analysis of Price Charge Strategies in Online Content Markets (온라인 컨텐츠 시장에서의 유료화 전략에 관한 분석)

  • Cheon, Se-Hak
    • 한국산학경영학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.4-22
    • /
    • 2004
  • The Internet provides a new distribution channel of digital contents for conventional media firms such as newspaper, magazine and encyclopedia publishers and broadcasting companies with very low marginal production and distribution cost. In comparison to traditional offline channel, there have been various revenue models in online content markets such as advertising model, subscription model, affiliation fee model, etc. In the earlier of the Internet era, most of online content firms provided their services free in order to boost offline revenue or they depend on advertising revenue sources in lieu of attaining revenue from their contents. However, as many online content firms are confronted with many difficulties in attaining revenues from online advertising model, they began to charge their contents. This paper shows why they charge their contents and explores entry conditions when conventional firms enter online content markets. And also this paper discusses managerial implications related to pricing strategies in online content markets.

  • PDF