DOI QR코드

DOI QR Code

A High-Voltage Compliant Neural Stimulation IC for Implant Devices Using Standard CMOS Process

체내 이식 기기용 표준 CMOS 고전압 신경 자극 집적 회로

  • Abdi, Alfian (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology) ;
  • Cha, Hyouk-Kyu (Dept. of Electrical and Information Engineering, Seoul National University of Science and Technology)
  • 알피안 압디 (서울과학기술대학교 전기정보 공학과) ;
  • 차혁규 (서울과학기술대학교 전기정보 공학과)
  • Received : 2015.01.14
  • Accepted : 2015.04.20
  • Published : 2015.05.25

Abstract

This paper presents the design of an implantable stimulation IC intended for neural prosthetic devices using $0.18-{\mu}m$ standard CMOS technology. The proposed single-channel biphasic current stimulator prototype is designed to deliver up to 1 mA of current to the tissue-equivalent $10-k{\Omega}$ load using 12.8-V supply voltage. To utilize only low-voltage standard CMOS transistors in the design, transistor stacking with dynamic gate biasing technique is used for reliable operation at high-voltage. In addition, active charge balancing circuit is used to maintain zero net charge at the stimulation site over the complete stimulation cycle. The area of the total stimulator IC consisting of DAC, current stimulation output driver, level-shifters, digital logic, and active charge balancer is $0.13mm^2$ and is suitable to be applied for multi-channel neural prosthetic devices.

본 논문에서는 신경 관련 인공 전자기기를 위한 신경 자극 집적회로를 $0.18-{\mu}m$ 표준 CMOS 반도체 공정을 이용하여 설계하였다. 제안 된 신경 자극 회로는 12.8-V 전원을 사용하면서 $10-k{\Omega}$의 부하에 최대 1 mA의 전류까지 전달이 가능하다. 표준 CMOS 공정 기술로 구현을 위해서 저전압 트랜지스터만을 이용하여 설계를 하였고, 고전압에서의 안정적인 동작을 위하여 트랜지스터 스태킹 기술을 적용하였다. 또한, 신경 자극 동작 후 전하 잔여량이 남아 있지 않도록 active charge balancing회로를 포함하였다. 제안 된 단일 채널 자극 집적회로의 경우 디지털-아날로그 변환기, 전류 출력 드라이버, 레벨 시프터, 디지털 제어 부분, 그리고 active charge balancing 회로까지 모두 포함하여 전체 칩 레이아웃 면적은 $0.13mm^2$을 차지하며, 다중 채널 방식의 신경 자극 기능의 체내 이식용 인공 전자기기 시스템에 적용을 하는데 적합하다.

Keywords

References

  1. B.R. Thurgood, D.J. Warren, N.M. Ledbetter, G.A. Clark, and R.R Harrison, "A wireless integrated circuit for 100 channel charge-balanced neural stimulation," IEEE Trans. on Biomedical Circuits and Systems, vol.3, no.6, Dec 2009
  2. M.Ortmanns, A. Rocke, M. Gehrke, and H.-J. Tiedtke, "A 232-channel epiretinal stimulator ASIC," IEEE J. of Solid-State Circuits, vol.42, no.12, Dec. 2007
  3. H. Chun, Y. Yang, and T. Lehmann, "Safety ensuring retinal prosthesis with precise charge balance and low power consumption," IEEE Trans. on Biomedical Circuits and Systems, Mar. 2013
  4. J. Seo, K. Lim, S. Lee, J. Ahn, S. Hong, H. Yoo, S. Jung, S. Park, D.-I. Cho, and H. Ko, "An arbitrary waveform 16 channel neural stimulator with adaptive supply regulator in $0.35-{\mu}m$ HV CMOS for visual prosthesis," J. Semiconductor Tech. and Science, vol. 13, no. 1, Feb. 2013
  5. B. Serneels, M. Steyaert, and W. Dehaene, "A 5.5 V SOPA line driver in a standard 1.2 V 0.13 um CMOS technology," Proc. of Eur. Solid-State Circuits Conf. (ESSCIRC), 2005
  6. M. Sivaprakasam, W. Liu, M.S. Humayun, and J.D. Weiland. "A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device," IEEE J. of Solid-State Circuits, vol. 40, no. 3, Mar. 2005
  7. N. Dommel, Y.T. Wong, T. Lehmann, P. Byrnes-Preston, N.H. Lovell, and G.J. Suaning, "Microelectronic retinal prosthesis: use of high-voltage CMOS in retinal neurostimulators," IEEE Intl. Conf. of Engin. Medicine and Bio. Society (EMBS), 2006
  8. U. Bihr T. Ungru, H. Xu, J. Anders, J. Becker, and M. Ortmanns, "A bidirectional neural interface with a HV stimulator and a LV neural amplifier,"IEEE Intl. Symp. Circuits and Systems (ISCAS), 2013
  9. M. Ortmanns, "Charge balancing in functional electrical stimulators: a comparative study," IEEE Intl. Symp. Circuits and Systems (ISCAS), 2007
  10. D. Jiang, A. Demosthenous, T. Perkins, X. Liu, and N. Donaldson, "A stimulator ASIC featuring versatile management for vestibular prosthesis," IEEE Trans. on Biomedical Circuits and Systems, vol.5, no.2, Apr. 2011.