Poly-gate Quantization Effect in Double-Gate MOSFET

폴리 게이트의 양자효과에 의한 Double-Gate MOSFET의 특성 변화 연구

  • 박지선 (이화여자대학교 정보통신학과) ;
  • 이승준 (이화여자대학교 정보통신학) ;
  • 신형순 (이화여자대학교 정보통신학과)
  • Published : 2004.08.01

Abstract

Quantum effects in the poly-gate are analyzed in two dimensions using the density-gradient method, and their impact on the short-channel effect of double-gate MOSFETs is investigated. The 2-D effects of quantum mechanical depletion at the gate to sidewall oxide is identified as the cause of large charge-dipole formation at the corner of the gate. The bias dependence of the charge dipole shows that the magnitude of the dipole peak-value increases in the subthreshold region and there is a large difference in carrier and potential distribution compared to the classical solution. Using evanescent-nude analysis, it is found that the quantum effect in the poly-gate substantially increases the short-channel effect and it is more significant than the quantum effect in the Si film. The penetration of potential contours into the poly-gate due to the dipole formation at the drain side of the gate corner is identified as the reason for the substantial increase in short-channel effects.

Density-gradient 방법을 이용하여 게이트의 양자효과가 double-gate MOSFET의 단채널 효과에 미치는 영향을 2차원으로 분석하였다. 게이트와 sidewall 산화막 경계면에서 발생하는 2차원 양자공핍 현상에 의하여 게이트 코너에 큰 전하 다이폴이 형성되며 subthreshold 영역에서 다이폴의 크기가 증가하고 classical 결과에 비하여 전자 농도와 전압 분포가 매우 다름을 알 수 있었다. Evanescent-nude분석을 통하여 게이트의 양자효과가 소자의 단채널 효과를 증가시키며 이는 기판에서의 양자효과에 의한 영향보다 크다는 것을 확인하였다. 양자효과에 의하여 게이트 코너에 형성되는 전하 다이폴이 단채널 효과를 증가시키는 원인임을 밝혔다.

Keywords

References

  1. International Technology Roadmap for Semicon-ductors 2003 edition. http://public.itrs.net/Files/2003ITRS/Home2003.htm
  2. F. Rana, S. Tiwari, and D. A. Buchanan, Appl. Phys. Lett. 69, 1104 (1996) https://doi.org/10.1063/1.117072
  3. S. Hareland, S. Krishnamurthy, S. Jallepalli, Y. Choh-Fei, K. Hasnat, A. Tasch and C. Maziar, IEEE Trans. on Electron Devices, 43, 90 (1996) https://doi.org/10.1109/16.477597
  4. N. Shigyo and H. Tanimoto, IEEE Trans. on Electron Devices, 47, 1010 (2000) https://doi.org/10.1109/16.841234
  5. N.D. Arora, R. Rios, and C.L. Huang, IEEE Trans. on Electron Devices, 42, 935 (1995) https://doi.org/10.1109/16.381991
  6. K. Krisch, J. Bude, and L. Manchanda, IEEE Electron Devices Lett., 17, 521 (1996) https://doi.org/10.1109/55.541768
  7. C.H. Choi, P.R. Chidambaram, R. Khamankar, C.F. Machala, Z. Yu, and R. W. Dutton, IEEE Electron Device Lett., 23, 224 (2002) https://doi.org/10.1109/55.992846
  8. A.S. Spinelli, A. Pacelli, and A.L. Lacatia, IEEE Trans. on Electron Devices, 47, 2366 (2000) https://doi.org/10.1109/16.887023
  9. C.S. Rafferty, Z. Yu, B. Biegel, M.G. Ancona, J. Bude, and R. W. Dutton, Proc. IEEE SISPAD (Wien, Sep., 1998), p. 137
  10. M.G. Ancona, IEEE Trans. on Electron Devices, 47, 1449 (2000) https://doi.org/10.1109/16.848290
  11. D. Connelly, Z. Yu, and D. Yergeau, IEEE Trans. on Electron Devices, 49, 619 (2002) https://doi.org/10.1109/16.974760
  12. S. Cristoloveanu, J. Korean Phys. Soc., 39, S52, (2001)
  13. J. Yi, Y. Park and H. Min, J. Korean Phys. Soc., 40, 668 (2002) https://doi.org/10.3938/jkps.40.668
  14. Y. Taur, IEEE Trans. on Electron Devices, 48, 2861, (2001) https://doi.org/10.1109/16.974719
  15. Y. Taur, D.A. Buchanam, W. Chen, D.J. Frank, K.E. Ismail, S.H. Lo, G.A. Sai-Halasz, R.G. Viswanathan, C.H. Wann, S.J. Wind, and H.P. Wong, Proc. IEEE, 85, 486 (1997) https://doi.org/10.1109/5.573737
  16. H.P. Wong, D.J. Frank, P.M. Solomon, C.H. Wann, and J.J. Welser, Proc. IEEE, 87, 537 (1999) https://doi.org/10.1109/5.752515
  17. D. Frank, R.H. Dennard, E. Nowak, P.M. Solomon, Y. Taur, and H.P. Wong, Proc. IEEE, 89, 259 (2001) https://doi.org/10.1109/5.915374
  18. T.N. Nguyen, Ph.D. dissertation, Stanford Univ. 1984
  19. D.J. Frank, Y. Taur, and H.P. Wong, IEEE Electron Device Lett., 19, 385 (1998) https://doi.org/10.1109/55.720194
  20. S.H. Oh, D. Monroe, and J.M. Hergenrother, IEEE Electron Device Lett., 21, 445 (2000) https://doi.org/10.1109/55.863106
  21. S. Wolf, 'Silicon Processing for the VLSI Era Vol. 3 - The Submicron MOSFET,' (Lattice Press, New York, 1995)