• Title/Summary/Keyword: Analog-to-Digital Converter (ADC)

Search Result 256, Processing Time 0.022 seconds

Digitally controlled phase-locked loop with tracking analog-to-digital converter (Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop)

  • Cha, Soo-Ho;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.35-40
    • /
    • 2005
  • A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

The Implementation of Sigma-Delta ADC/DAC Digital Block

  • Park, Sang-Bong;Lee, Young Dae;Watanabe, Koki
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.5 no.2
    • /
    • pp.11-14
    • /
    • 2013
  • This paper describes the sigma-delta ADC/DAC digital block with two channels. The ADC block has comb filter and three half band filters. And the DAC block has 5th Cascaded-of-Integrators Feedback DSM. The ADC and DAC support I2S, RJ, LJ and selectable input data modes of 24bit, 20bit, and 16bit. It is fabricated with 0.35um Hynix standard CMOS cell library. The chip size is 3700*3700um. It has been verified using NC Verilog Simulator and Matlab Tool.

Design of Pipeline Analog-to-Digital Converter Using a Parallel S/H (병렬 S/H를 이용한 파이프라인 ADC설계)

  • 이승우;이해길;나유찬;신홍규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1229-1232
    • /
    • 2003
  • In this paper, The High-speed Low-power Analog-to-Digital Convener Archecture is proposed using the parallel S/H for High-speed operation. This technique can significantly reduce the sampling frequency per S/H channel. The Analog-to-Digital Converter is designed using 0.35${\mu}{\textrm}{m}$ CMOS technology. The simulation result show that the proposed Analog-to-Digital Converter can be operated at 40Ms/s with 8-bit resolution and INL/DNL errors are +0.4LSB~-0.6LSB / +0.9LSB~-1.4LSB , respectively.

  • PDF

Modeling of Pipeline A/D converter with Verilog-A (Verilog-A를 이용한 파이프라인 A/D변환기의 모델링)

  • Park, Sang-Wook;Lee, Jae-Yong;Yoon, Kwang-Sub
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.1019-1024
    • /
    • 2007
  • In this paper, the 10bit 20MHz pipelined analog-to-digital converter that is able to apply to WLAN system was modeled for ADC design. Each blocks in converter such as sample and hold amplifier(SHA), comparator, multiplyng DAC(MDAC), and digital correction logic(DCL) was modeled. The pipelined ADC with these modeled blocks takes 1/50 less time than the one of simulation using HSPICE.

A New Ripple Analog - to - Digital Converter (새로운 리플 아나로그-디지틀 변환기)

  • Chung, Won-Sup
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.571-573
    • /
    • 1988
  • A new ripple analog-to-digital converter(ADC) has been developed. It consists of two parallel ADCs and a switching network. The circuit operates on the input signal in two serial steps. First a coarse conversion is made to determine the most significant bits by the first parallel ADC. The results control a switching network to connect the series resistor segment, the analog signal is contained within, to the second parallel ADC. At second step, a fine conversion is made to determine the least signification bits by the second parallel ADC. The circuit requires 2(2$\frac{N}{2}$) comparators, 2(2$\frac{N}{2}$) resistors, and 2(2$\frac{N}{2}$) switches for N-bit resolution.

  • PDF

A 9-bit ADC with a Wide-Range Sample-and-Hold Amplifier

  • Lim, Jin-Up;Cho, Young-Joo;Choi, Joong-Ho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.280-285
    • /
    • 2004
  • In this paper, a 9-bit analog-to-digital converter (ADC) is designed for optical disk drive (ODD) servo applications. In the ADC, the circuit technique to increase the operating range of the sample-and-hold amplifier is proposed, which can process the wide-varying input common-mode range. The algorithmic ADC structure is chosen so that the area can be significantly reduced, which is suitable for SoC integration. The ADC is fabricated in a 0.18-$\mu\textrm{m} $ CMOS 1P5M technology. Measurement results of the ADC show that SNDR is 51.5dB for the sampling rate of 6.5MS/s. The power dissipation is 36.3mW for a single supply voltage of 3.3V.

Hardware Implementation of Time Skew Calibration Block for Time Interleaved ADC (TI ADC를 위한 시간 왜곡 교정 블록의 하드웨어 구현)

  • Khan, Sadeque Reza;Choi, Goangseog
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.13 no.3
    • /
    • pp.35-42
    • /
    • 2017
  • This paper presents hardware implementation of background timing-skew calibration technique for time-interleaved analog-to-digital converters (TI ADCs). The timing skew between any two adjacent analog-digital (A/D) channels is detected by using pure digital Finite Impulse Response (FIR) delay filter. This paper includes hardware architecture of the system, main units and small sub-blocks along with control logic circuits. Moreover, timing diagrams of logic simulations using ModelSim are provided and discussed for further understanding about simulations. Simulation process in MATLAB and Verilog is also included and provided with basic settings need to be done. For hardware implementation it not practical to work with all samples. Hence, the simulation is conducted on 512 TI ADC output samples which are stored in the buffer simultaneously and the correction arithmetic is done on those samples according to the time skew algorithm. Through the simulated results, we verified the implemented hardware is working well.

Double Rail-to-Rail NTV SAR ADC (두 배의 Rail-to-Rail 입력 범위를 갖는 NTV SAR ADC)

  • Jo, Yong-Jun;Seong, Kiho;Seo, In-Shik;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1218-1221
    • /
    • 2018
  • This paper presents a low-power 0.6-V 10-bit 200-kS/s double rail-to-rail successive approximation register (SAR) analog-to-digital converter (ADC). The proposed scheme allows input signal with 4 times power which is compared with conventional one by applying proposed rail-to-rail scheme, and that improves signal-to-noise ratio(SNR) of NTV SAR ADCs. The prototype was designed using 65-nm CMOS technology. At a 0.6-V supply and $2.4-V_{pp}$ (differential) and 200-kS/s, the ADC achieves an SNDR of 59.87 dB and consumes 364.5-nW. The ADC core occupies an active area of only $84{\times}100{\mu}m^2$.

A 10-bit 10MS/s differential straightforward SAR ADC

  • Rikan, Behnam Samadpoor;Abbasizadeh, Hamed;Lee, Dong-Soo;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.3
    • /
    • pp.183-188
    • /
    • 2015
  • A 10-bit 10MS/s low power consumption successive approximation register (SAR) analog-to-digital converter (ADC) using a straightforward capacitive digital-to-analog converter (DAC) is presented in this paper. In the proposed capacitive DAC, switching is always straightforward, and its value is half of the peak-to-peak voltage in each step. Also the most significant bit (MSB) is decided without any switching power consumption. The application of the straightforward switching causes lower power consumption in the structure. The input is sampled at the bottom plate of the capacitor digital-to-analog converter (CDAC) as it provides better linearity and a higher effective number of bits. The comparator applies adaptive power control, which reduces the overall power consumption. The differential prototype SAR ADC was implemented with $0.18{\mu}m$ complementary metal-oxide semiconductor (CMOS) technology and achieves an effective number of bits (ENOB) of 9.49 at a sampling frequency of 10MS/s. The structure consumes 0.522mW from a 1.8V supply. Signal to noise-plus-distortion ratio (SNDR) and spurious free dynamic range (SFDR) are 59.5 dB and 67.1 dB and the figure of merit (FOM) is 95 fJ/conversion-step.

A 1.8 V 40-MS/sec 10-bit 0.18-㎛ CMOS Pipelined ADC using a Bootstrapped Switch with Constant Resistance

  • Eo, Ji-Hun;Kim, Sang-Hun;Kim, Mun-Gyu;Jang, Young-Chan
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.85-90
    • /
    • 2012
  • A 40-MS/sec 10-bit pipelined analog to digital converter (ADC) with a 1.2 Vpp differential input signal is proposed. The implemented pipelined ADC consists of eight stages of 1.5 bit/stage, one stage of 2 bit/stage, a digital error correction block, band-gap reference circuit & reference driver, and clock generator. The 1.5 bit/stage consists of a sub-ADC, digital to analog (DAC), and gain stage, and the 2.0 bit/stage consists of only a 2-bit sub-ADC. A bootstrapped switch with a constant resistance is proposed to improve the linearity of the input switch. It reduces the maximum VGS variation of the conventional bootstrapped switch by 67%. The proposed bootstrapped switch is used in the first 1.5 bit/stage instead of a sample-hold amplifier (SHA). This results in the reduction of the hardware and power consumption. It also increases the input bandwidth and dynamic performance. A reference voltage for the ADC is driven by using an on-chip reference driver without an external reference. A digital error correction with a redundancy is also used to compensate for analog noise such as an input offset voltage of a comparator and a gain error of a gain stage. The proposed pipelined ADC is implemented by using a 0.18-${\mu}m$ 1- poly 5-metal CMOS process with a 1.8 V supply. The total area including a power decoupling capacitor and the power consumption are 0.95 $mm^2$ and 51.5 mW, respectively. The signal-to-noise and distortion ratio (SNDR) is 56.15 dB at the Nyquist frequency, resulting in an effective number of bits (ENOB) of 9.03 bits.