• Title/Summary/Keyword: 2.45 GHz amplifier

Search Result 50, Processing Time 0.03 seconds

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

A 800MHz~5.8GHz Wideband CMOS Low-Noise Amplifier (800MHz~5.8GHz 광대역 CMOS 저잡음 증폭기 설계)

  • Kim, Hye-Won;Tak, Ji-Young;Lee, Jin-Ju;Shin, Ji-Hye;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.12
    • /
    • pp.45-51
    • /
    • 2011
  • This paper presents a wideband low-noise amplifier (LNA) covering 800MHz~5.8GHz for various wireless communication standards by utilizing in a 0.13um CMOS technology. Particularly, the LNA consists of two stages to improve the low-noise characteristics, that is, a cascode input stage and an output buffer with noise cancellation technique. Also, a feedback resistor is exploited to help achieve wideband impedance matching and wide bandwidth. Measure results demonstrate the bandwidth of 811MHz~5.8GHz, the maximum gain of 11.7dB within the bandwidth, the noise figure of 2.58~5.11dB. The chip occupies the area of $0.7{\times}0.9mm^2$, including pads. DC measurements reveal the power consumption of 12mW from a single 1.2V supply.

Design of Two-Stage CMOS Power Amplifier (이단으로 구성된 CMOS 전력증폭기 설계)

  • Bae, Jongsuk;Ham, Junghyun;Jung, Haeryun;Lim, Wonsub;Jo, Sooho;Yang, Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.9
    • /
    • pp.895-902
    • /
    • 2014
  • This paper presents a 2-stage CMOS power amplifier for the 1.75 GHz band using a $0.18-{\mu}m$ CMOS process. Using ADS simulation, a power gain of 28 dB and an efficiency of 45 % at an 1dB compression point of 27 dBm were achieved. The implemented CMOS power amplifier delivered an output power of up to 24.8 dBm with a power-added efficiency of 41.3 % and a power gain of 22.9 dB. For a 16-QAM uplink LTE signal, the PA exhibited a power gain of 22.6 dB and an average output power of 23.1 dBm with a PAE of 35.1 % while meeting an ACLR(Adjacent Channel Leakage Ratio) level of -30 dBc.

Design of High Efficiency Switching-Mode Doherty Power Amplifier Using GaN HEMT (GaN HEMT를 이용한 고효율 스위칭 모드 도허티 전력증폭기 설계)

  • Choi, Gil-Wong;Kim, Hyoung-Jong;Choi, Jin-Joo;Kim, Seon-Joo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.5
    • /
    • pp.72-79
    • /
    • 2010
  • In this paper, we describe the design and implementation of a high efficiency Doherty power amplifier using gallium nitride (GaN) high-electron mobility transistor (HEMT). The carrier and peaking amplifiers of the proposed Doherty power amplifier consist of the switching-mode Class-E power amplifiers. The test conditions are a duty of 10% and a pulse width of $100\;{\mu}s$ and pulse repetition frequency (PRF) of 1 kHz for a S-band radar application. A RF performance peak PAE of 64% with drain efficiency of 80.6%, at 6 dB output back-off point from saturated output power of 45.5 dBm, was obtained at 2.85 GHz.

The Susceptibility of LNA(Low Noise Amplifier) Due To Front-Door Coupling Under Narrow-Band High Power Electromagnetic Wave (안테나에 커플링되는 협대역 고출력 전자기파에 대한 저잡음 증폭기의 민감성 분석)

  • Hwang, Sun-Mook;Huh, Chang-Su
    • Journal of IKEEE
    • /
    • v.19 no.3
    • /
    • pp.440-446
    • /
    • 2015
  • This study has examined susceptibility of LNA(Low Noise Amplifier) due to Front-Door Coupling under Narrow-Band high power electromagnetic wave. M/DFR(Malfunction/Destruction Failure Rate) was measured to investigate the diagnostic of IC test. In addition, decapsulation analysis was used to understand the inside of the chip state in LNA devices. The experiments is employed as an open-ended waveguide to study the destruction effects of LNA using a 2.45 GHz Magnetron as a high power electromagnetic wave. The susceptibility level of LNA was assessed by electric field strength, and its failure modes were observed. The malfunction of LNA device has showed as the type of self-reset and power-reset. The electric field strength of malfunction threshold is 524 V/m and 1150 V/m respectively. Also, he electric field of destruction threshold is 1530 V/m. Three types of damaged LNA were observed by decapsulation analysis: component, onchipwire, and bondwire destruction. Based on these results, the susceptibility of the LNA can be applied to a database to help elucidate the effects of microwaves on electronic equipment.

A Wideband LNA and High-Q Bandpass Filter for Subsampling Direct Conversion Receivers (서브샘플링 직접변환 수신기용 광대역 증폭기 및 High-Q 대역통과 필터)

  • Park, Jeong-Min;Yun, Ji-Sook;Seo, Mi-Kyung;Han, Jung-Won;Choi, Boo-Young;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.11
    • /
    • pp.89-94
    • /
    • 2008
  • In this paper, a cascade of a wideband amplifier and a high-Q bandpass filter (BPF) has been realized in a 0.18mm CMOS technology for the applications of subsampling direct-conversion receivers. The wideband amplifier is designed to obtain the -3dB bandwidth of 5.4GHz, and the high-Q BPF is designed to select a 2.4GHz RF signal for the Bluetooth specifications. The measured results demonstrate 18.8dB power gain at 2.34GHz with 31MHz bandwidth, corresponding to the quality factor of 75. Also, it shows the noise figure (NF) of 8.6dB, and the broadband input matching (S11) of less than -12dB within the bandwidth. The whole chip dissipates 64.8mW from a single 1.8V supply and occupies the area of $1.0{\times}1.0mm2$.

Design of Antenna for Beam Scanning for Dual-Band base station (이중대역 기지국용 빔 스캔 안테나 설계)

  • Ko Jin-Hyun;Jang Jae-Su;Ha Jae-Kwon;Park Sae-Houn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.632-636
    • /
    • 2006
  • It is needed to use the beam scanning to control the cell coverage of the base station considering operation conditions, season, time period, radiation character and mobility of customers and vehicles for varied wireless communication service and quality improvement. This paper proposes a mobile antenna system which can obtain the characteristics of the beam scanning by controlling the directivity depending on the operation condition. Radiation block is made of 2 sub-array of $1\times3$ patched antennas for ITS of 5.8GHZ bandwidth with the gain of 13dBi, and of 2 sub-array of single patched antenna for WiBro of 2.3GHZ bandwidth with the gain of 12dBi. RF module is made of a switch, an amplifier, a PAD, a 3-Bit phase shifter, and a power divider. The system is able to control the beam tilting with electronic methode by using 3-bit phase shifter$(45^{\circ},\;90^{\circ},\;180^{\circ})$.

  • PDF

A $120-dB{\Omega}$ 8-Gb/s CMOS Optical Receiver Using Analog Adaptive Equalizer (아날로그 어댑티브 이퀄라이저를 이용한 $120-dB{\Omega}$ 8-Gb/s CMOS 광 수신기)

  • Lee, Dong-Myung;Choi, Boo-Young;Han, Jung-Won;Han, Gun-Hee;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.6
    • /
    • pp.119-124
    • /
    • 2008
  • Transimpedance amplifier(TIA) is the most significant element to determine the performance of the optical receiver, and thus the TIA must satisfy tile design requirements of high gain and wide bandwidth. In f)is paper, we propose a novel single chip optical receiver that exploits an analog adaptive equalizer and a limiting amplifier to enhance the gain and bandwidth performance, respectively. The proposed optical receiver is designed by using a $0.13{\mu}m$ CMOS process and its post-layout simulations show $120dB{\Omgea}$ transimpedance gain and 5.88GHz bandwidth. The chip core occupies the area of $0.088mm^2$, due to utilizing the negative impedance converter circuit rather than using on-chip passive inductors.

Design of The Two-Stage Low Noise Amplifier for IMT-2000 Base Stations (IMT-2000 기지국용 저잡음 증폭기 설계)

  • 배영수;최재훈
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2001.11a
    • /
    • pp.252-256
    • /
    • 2001
  • 본 논문에서는 IMT-2000 기지국용 2단 저잡음 증폭기를 설계했다. 잡음지수 특성이 뛰어난 HP사의 PHEMT 소자인 ATF-35143을 사용하였고 능동소자의 바이어스는 $V_{ds}$ 가 3 v $I_{d}$을 30mA로 설정했다. 첫 단은 최소잡음 지수에 중점을 두고 설계했고 둘째 단은 이득에 초점을 맞추어 설계했다. 입출력 정재파 비를 줄이기 위해서 전체증폭기의 앞단과 뒷단에 삽입손실이 0.2dB인 X503 SMT 90도 하이브리드 커플러를 설치 했다. 제작을 위해 기판은 두께 0.76mm이고 비유전율 4.2의 FR-4를 사용했다. 설계된 저잡음 증폭기의 특성은 주파수대역 1.92GHz~1.98GHz에서 잡음지수 0.45dB, 입출력 정재파 비 1.2이하, 이득은 32dB이상의 특성을 보였다.

  • PDF

Design of LNA Using EM simulator (EM 시뮬레이터를 이용한 LNA 설계)

  • Choi, Moon-Ho;Kim, Yeong-Seuk;Jung, Sung-Il;Lee, Han-Yeong;Jang, Seuk-Hwan;Lee, Jong-Arc
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.873-876
    • /
    • 2005
  • A low noise amplifier(LNA) using electro-magnetic field simulator is designed in standard 0.25um CMOS process. Integrated spiral inductor is simulated using EM field solver. Then LNA is simulated with active device, capacitor and simulated inductor by EM field solver. A S11 and S21 of -15.45dB and 17.8dB at 2.3GHz as simulation results was achieved. A Noise Figure is 2.92dB. And Measurements show a S11 and S21 of -12.4dB and 17.8dB at 2.3GHz. A Noise Figure of 3.3dB was achieved.

  • PDF