• 제목/요약/키워드: [1, 2]-domination number

검색결과 20건 처리시간 0.023초

TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER

  • Chen, Xue-Gang;Sohn, Moo Young
    • 대한수학회보
    • /
    • 제56권1호
    • /
    • pp.31-44
    • /
    • 2019
  • A graph theoretical model called Roman domination in graphs originates from the historical background that any undefended place (with no legions) of the Roman Empire must be protected by a stronger neighbor place (having two legions). It is applicable to military and commercial decision-making problems. A Roman dominating function for a graph G = (V, E) is a function $f:V{\rightarrow}\{0,1,2\}$ such that every vertex v with f(v)=0 has at least a neighbor w in G for which f(w)=2. The Roman domination number of a graph is the minimum weight ${\sum}_{v{\in}V}\;f(v)$ of a Roman dominating function. In order to deal a problem of a Roman domination-type defensive strategy under multiple simultaneous attacks, ${\acute{A}}lvarez$-Ruiz et al. [1] initiated the study of a new parameter related to Roman dominating function, which is called strong Roman domination. ${\acute{A}}lvarez$-Ruiz et al. posed the following problem: Characterize the graphs G with equal strong Roman domination number and Roman domination number. In this paper, we construct a family of trees. We prove that for a tree, its strong Roman dominance number and Roman dominance number are equal if and only if the tree belongs to this family of trees.

ROMAN k-DOMINATION IN GRAPHS

  • Kammerling, Karsten;Volkmann, Lutz
    • 대한수학회지
    • /
    • 제46권6호
    • /
    • pp.1309-1318
    • /
    • 2009
  • Let k be a positive integer, and let G be a simple graph with vertex set V (G). A Roman k-dominating function on G is a function f : V (G) $\rightarrow$ {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices $\upsilon_1,\;\upsilon_2,\;{\ldots},\;\upsilon_k$ with $f(\upsilon_i)$ = 2 for i = 1, 2, $\ldot$, k. The weight of a Roman k-dominating function is the value f(V (G)) = $\sum_{u{\in}v(G)}$ f(u). The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number ${\gamma}_{kR}$(G) of G. Note that the Roman 1-domination number $\gamma_{1R}$(G) is the usual Roman domination number $\gamma_R$(G). In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.

ON [1, 2]-DOMINATION IN TREES

  • Chen, Xue-Gang;Sohn, Moo Young
    • 대한수학회논문집
    • /
    • 제33권2호
    • /
    • pp.631-638
    • /
    • 2018
  • Chellai et al. [3] gave an upper bound on the [1, 2]-domination number of tree and posed an open question "how to classify trees satisfying the sharp bound?". Yang and Wu [5] gave a partial solution for tree of order n with ${\ell}$-leaves such that every non-leaf vertex has degree at least 4. In this paper, we give a new upper bound on the [1, 2]-domination number of tree which extends the result of Yang and Wu. In addition, we design a polynomial time algorithm for solving the open question. By using this algorithm, we give a characterization on the [1, 2]-domination number for trees of order n with ${\ell}$ leaves satisfying $n-{\ell}$. Thereby, the open question posed by Chellai et al. is solved.

Strong Roman Domination in Grid Graphs

  • Chen, Xue-Gang;Sohn, Moo Young
    • Kyungpook Mathematical Journal
    • /
    • 제59권3호
    • /
    • pp.515-523
    • /
    • 2019
  • Consider a graph G of order n and maximum degree ${\Delta}$. Let $f:V(G){\rightarrow}\{0,1,{\cdots},{\lceil}{\frac{{\Delta}}{2}}{\rceil}+1\}$ be a function that labels the vertices of G. Let $B_0=\{v{\in}V(G):f(v)=0\}$. The function f is a strong Roman dominating function for G if every $v{\in}B_0$ has a neighbor w such that $f(w){\geq}1+{\lceil}{\frac{1}{2}}{\mid}N(w){\cap}B_0{\mid}{\rceil}$. In this paper, we study the bounds on strong Roman domination numbers of the Cartesian product $P_m{\square}P_k$ of paths $P_m$ and paths $P_k$. We compute the exact values for the strong Roman domination number of the Cartesian product $P_2{\square}P_k$ and $P_3{\square}P_k$. We also show that the strong Roman domination number of the Cartesian product $P_4{\square}P_k$ is between ${\lceil}{\frac{1}{3}}(8k-{\lfloor}{\frac{k}{8}}{\rfloor}+1){\rceil}$ and ${\lceil}{\frac{8k}{3}}{\rceil}$ for $k{\geq}8$, and that both bounds are sharp bounds.

ON MINUS TOTAL DOMINATION OF DIRECTED GRAPHS

  • Li, WenSheng;Xing, Huaming;Sohn, Moo Young
    • 대한수학회논문집
    • /
    • 제29권2호
    • /
    • pp.359-366
    • /
    • 2014
  • A three-valued function f defined on the vertices of a digraph D = (V, A), $f:V{\rightarrow}\{-1,0,+1\}$ is a minus total dominating function(MTDF) if $f(N^-(v)){\geq}1$ for each vertex $v{\in}V$. The minus total domination number of a digraph D equals the minimum weight of an MTDF of D. In this paper, we discuss some properties of the minus total domination number and obtain a few lower bounds of the minus total domination number on a digraph D.

ON THE SIGNED TOTAL DOMINATION NUMBER OF GENERALIZED PETERSEN GRAPHS P(n, 2)

  • Li, Wen-Sheng;Xing, Hua-Ming;Sohn, Moo Young
    • 대한수학회보
    • /
    • 제50권6호
    • /
    • pp.2021-2026
    • /
    • 2013
  • Let G = (V,E) be a graph. A function $f:V{\rightarrow}\{-1,+1\}$ defined on the vertices of G is a signed total dominating function if the sum of its function values over any open neighborhood is at least one. The signed total domination number of G, ${\gamma}^s_t(G)$, is the minimum weight of a signed total dominating function of G. In this paper, we study the signed total domination number of generalized Petersen graphs P(n, 2) and prove that for any integer $n{\geq}6$, ${\gamma}^s_t(P(n,2))=2[\frac{n}{3}]+2t$, where $t{\equiv}n(mod\;3)$ and $0 {\leq}t{\leq}2$.

AN iP2 EXTENDED STAR GRAPH AND ITS HARMONIOUS CHROMATIC NUMBER

  • P. MANSOOR;A. SADIQUALI
    • Journal of applied mathematics & informatics
    • /
    • 제41권6호
    • /
    • pp.1193-1207
    • /
    • 2023
  • In this paper, we introduce an iP2 extension of a star graph Sn for n ≥ 2 and 1 ≤ i ≤ n - 1. Certain general properties satisfied by order, size, domination (or Roman) numbers γ (or γR) of an iP2 extended star graph are studied. Finally, we study how the parameters such as chromatic number and harmonious chromatic number are affected when an iP2 extension process acts on the star graphs.

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

  • Murugan, E.;Joseph, J. Paulraj
    • Korean Journal of Mathematics
    • /
    • 제30권2호
    • /
    • pp.391-402
    • /
    • 2022
  • For a given graph G = (V, E), a dominating set is a subset V' of the vertex set V so that each vertex in V \ V' is adjacent to a vertex in V'. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by γ(G). For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

트리의 [1,2]-지배 수 상계에 대한 특성 분석 (Analysis on the characteristics for upper bound of [1,2]-domination in trees)

  • 이훈;손무영
    • 한국정보통신학회논문지
    • /
    • 제20권12호
    • /
    • pp.2243-2251
    • /
    • 2016
  • 본 연구에서는 트리구조를 가지는 네트워크의 [1,2]-지배집합에 대한 특성과 지배수의 상계 값에 대한 이론적 모형을 제시하였다. 구체적으로는 트리 네트워크가 가지는 몇 가지 전형적인 제약에 대해서 각 유형이 가지고 있는 지배집합의 지배수의 상계 값을 도출하였다. 본 논문에서는 트리구조의 네트워크에 대한 특성을 해석함에 있어서 그래프이론을 적용하였다. 노드집합 V와 링크집합 E으로 구성되는 그래프 G=(V,E)에 대해서 노드집합 V의 부분 집합 D를 가정한다. 이때 집합 V에 속하면서 집합 D에 속하는 않는 임의의 노드 ${\upsilon}$가 D에 속하는 노드와 1개 이상 2개 이하로만 인접하여 있으면 D를 [1,2]-지배집합이라 한다. 그리고 그래프 G의 [1,2]-지배집합 중 최소 농도를 [1,2]-지배 수라 하고 ${\gamma}_{[1,2]}(G)$로 표시한다. 본 논문에서는 트리(tree)의 [1,2]-지배 수에 대한 특성과 이의 새로운 상계 값을 증명하였다.

ON DOMINATION NUMBERS OF GRAPH BUNDLES

  • Zmazek Blaz;Zerovnik Janez
    • Journal of applied mathematics & informatics
    • /
    • 제22권1_2호
    • /
    • pp.39-48
    • /
    • 2006
  • Let ${\gamma}$(G) be the domination number of a graph G. It is shown that for any $k {\ge} 0$ there exists a Cartesian graph bundle $B{\Box}_{\varphi}F$ such that ${\gamma}(B{\Box}_{\varphi}F) ={\gamma}(B){\gamma}(F)-2k$. The domination numbers of Cartesian bundles of two cycles are determined exactly when the fibre graph is a triangle or a square. A statement similar to Vizing's conjecture on strong graph bundles is shown not to be true by proving the inequality ${\gamma}(B{\bigotimes}_{\varphi}F){\le}{\gamma}(B){\gamma}(F)$ for strong graph bundles. Examples of graphs Band F with ${\gamma}(B{\bigotimes}_{\varphi}F) < {\gamma}(B){\gamma}(F)$ are given.