DOI QR코드

DOI QR Code

ROMAN k-DOMINATION IN GRAPHS

  • Published : 2009.11.01

Abstract

Let k be a positive integer, and let G be a simple graph with vertex set V (G). A Roman k-dominating function on G is a function f : V (G) $\rightarrow$ {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent to at least k vertices $\upsilon_1,\;\upsilon_2,\;{\ldots},\;\upsilon_k$ with $f(\upsilon_i)$ = 2 for i = 1, 2, $\ldot$, k. The weight of a Roman k-dominating function is the value f(V (G)) = $\sum_{u{\in}v(G)}$ f(u). The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number ${\gamma}_{kR}$(G) of G. Note that the Roman 1-domination number $\gamma_{1R}$(G) is the usual Roman domination number $\gamma_R$(G). In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.

Keywords

References

  1. E. W. Chambers, B. Kinnersley, N. Prince, and D. B. West, Extremal problems for Roman domination, unpublished manuscript, 2007.
  2. E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22. https://doi.org/10.1016/j.disc.2003.06.004
  3. E. J. Cockayne, P. J. P. Grobler, W. R. Grudnlingh, J. Munganga, and J. H. van Vuuren, Protection of a graph, Util. Math. 67 (2005), 19-32.
  4. J. F. Fink and M. S. Jacobson, n-domination in graphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 283-300, Wiley-Intersci. Publ., Wiley, New York, 1985.
  5. J. F. Fink and M. S. Jacobson, On n-domination, n-dependence and forbidden subgraphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 301-311, Wiley-Intersci. Publ., Wiley, New York, 1985.
  6. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, Inc., New York, 1998.
  7. T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, 209. Marcel Dekker, Inc., New York, 1998.
  8. C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594. https://doi.org/10.2307/2589113
  9. I. Steward, Defend the Roman Empire!, Sci. Amer. 281 (1999), 136-139. https://doi.org/10.1038/scientificamerican1299-136
  10. L. Volkmann, Graphen an allen Ecken und Kanten, RWTH Aachen 2006, XVI, 377 pp. http://www.math2.rwth-aachen.de/»uebung/GT/graphen1.html.

Cited by

  1. Relations between the Roman k-domination and Roman domination numbers in graphs vol.06, pp.03, 2014, https://doi.org/10.1142/S1793830914500451
  2. The Nk-valued Roman Domination and Its Boundaries vol.48, 2015, https://doi.org/10.1016/j.endm.2015.05.014
  3. k-Domination and k-Independence in Graphs: A Survey vol.28, pp.1, 2012, https://doi.org/10.1007/s00373-011-1040-3
  4. On the strong Roman domination number of graphs vol.231, 2017, https://doi.org/10.1016/j.dam.2016.12.013
  5. A CORRECTION TO A PAPER ON ROMAN κ-DOMINATION IN GRAPHS vol.50, pp.2, 2013, https://doi.org/10.4134/BKMS.2013.50.2.469
  6. Data reductions and combinatorial bounds for improved approximation algorithms vol.82, pp.3, 2016, https://doi.org/10.1016/j.jcss.2015.11.010
  7. A survey of Nordhaus–Gaddum type relations vol.161, pp.4-5, 2013, https://doi.org/10.1016/j.dam.2011.12.018
  8. The Roman k-domatic number of a graph vol.27, pp.10, 2011, https://doi.org/10.1007/s10114-011-0385-0