TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER AND ROMAN DOMINATION NUMBER

Xue-Gang Chen and Moo Young Sohn

Abstract

A graph theoretical model called Roman domination in graphs originates from the historical background that any undefended place (with no legions) of the Roman Empire must be protected by a stronger neighbor place (having two legions). It is applicable to military and commercial decision-making problems. A Roman dominating function for a graph $G=(V, E)$ is a function $f: V \rightarrow\{0,1,2\}$ such that every vertex v with $f(v)=0$ has at least a neighbor w in G for which $f(w)=2$. The Roman domination number of a graph is the minimum weight $\sum_{v \in V} f(v)$ of a Roman dominating function. In order to deal a problem of a Roman domination-type defensive strategy under multiple simultaneous attacks, Álvarez-Ruiz et al. [1] initiated the study of a new parameter related to Roman dominating function, which is called strong Roman domination. Álvarez-Ruiz et al. posed the following problem: Characterize the graphs G with equal strong Roman domination number and Roman domination number. In this paper, we construct a family of trees. We prove that for a tree, its strong Roman dominance number and Roman dominance number are equal if and only if the tree belongs to this family of trees.

1. Introduction

For notation and graph-theoretical terminology not defined here we follow [1]. Let $G=(V, E)$ be a simple graph with vertex set $V=V(G)$ and edge set $E=E(G)$. The degree, neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $d_{G}(v), N_{G}(v)$ and $N_{G}[v]=N_{G}(v) \cup\{v\}$, respectively. If the graph G is clear from context, we simply write $d(v), N(v)$ and $N[v]$, respectively. The minimum degree and maximum degree of the graph G are denoted by $\delta=\delta(G)$ and $\Delta=\Delta(G)$, respectively. The diameter $\operatorname{diam}(G)$ of a connected graph G is the maximum distance between two vertices of G. Roman domination number was defined and discussed by Stewart [4] in 1999. It was developed by ReVelle and Rosing [3] in 2000 and

[^0]Cockayne et al. [2] in 2004. A Roman dominating function of a graph G is defined as a function $f: V(G) \rightarrow\{0,1,2\}$ satisfying the condition that every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an Roman dominating function is defined as the value $f(V(G))=\sum_{v \in V(G)} f(v)$. The Roman domination number of a graph G, denoted by $\gamma_{R}(G)$, is equal to the minimum weight of a Roman dominating function of G. In fact, Roman domination is of both historical and mathematical interest. Emperor Constantine had the requirement that an army or legion could be sent from its home to defend a neighbouring location only if there was a second army which would stay and protect the home. Thus, there were two types of armies: stationary and travelling. Each vertex with no army must have a neighbouring vertex with a travelling army. Stationary armies then dominate their own vertices, and a vertex with two armies is dominated by its stationary army, and its open neighbourhood is dominated by the travelling army. This is applicable to military and commercial decision-making problems.

In order to deal with a problem of a Roman domination-type defensive strategy under multiple simultaneous attacks, Álvarez-Ruiz et al. [1] initiated the study of a new parameter related to Roman dominating function, which is called a strong Roman domination.

Let $f: V(G) \rightarrow\left\{0,1, \ldots,\left\lceil\frac{\Delta}{2}\right\rceil+1\right\}$ be a function that labels the vertices of G. Let $B_{0}=\{v \in V: f(v)=0\}$. Then f is a strong Roman dominating function for G, if every $v \in B_{0}$ has a neighbor w, such that $f(w) \geq 1+$ $\left\lceil\frac{1}{2}\left|N(w) \cap B_{0}\right|\right\rceil$. The weight of a strong Roman dominating function is the sum $f(V)=\sum_{v \in V} f(v)$. The minimum weight of a strong Roman dominating function of G is called the strong Roman domination number of G and is denoted by $\gamma_{S t R}(G)$. A strong Roman dominating function of G with weight $\gamma_{S t R}(G)$ is called a $\gamma_{S t R}$-function of G. For any $S \subseteq V$, denotes $f(S)=\sum_{v \in S} f(v)$. The graph induced by $S \subseteq V$ is denoted by $G[S]$. A path on n vertices is denoted by P_{n}. A vertex of degree one is called a leaf. A vertex is called a support vertex if it is adjacent to a leaf. We let $L(T)$ and $S(T)$ denote the set of leaves and support vertices of a tree T, respectively. Let T be a tree. If $\gamma_{R}(T)=\gamma_{S t R}(T)$, then T is called a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Álvarez-Ruiz et al. [1] showed the relationship between strong Roman domination and Roman domination as follows.

Observation 1 ([1]). For any graph $G, \gamma_{R}(G) \leq \gamma_{S t R}(G)$.
Observation 2 ([1]). For any connected graph G with $\Delta(G) \leq 2, \gamma_{S t R}(G)=$ $\gamma_{R}(G)$.

According to this, they posed the following problem.
Problem 1 ([1]). Characterize the graphs G with equal strong Roman domination and Roman domination numbers.

As a consequence of the definition of strong Roman domination number and Observation 1, we have the following two observations.

Observation 3. Let G be a connected graph. Then $\gamma_{R}(G)=\gamma_{S t R}(G)$ if and only if every $\gamma_{S t R}$-function of G is a γ_{R}-function of G.
Observation 4. Let G be a connected graph. Then $\gamma_{R}(G)=\gamma_{S t R}(G)$ if and only if there exists a γ_{R}-function f of G such that f is a $\gamma_{S t R}$-function G.

The paper is organized as follows. In Section 2, we study the properties of trees in which strong Roman domination number and Roman domination number are the same. In Section 3, we construct a family \mathcal{F} of trees consisting of $\left\{P_{1}, P_{2}, P_{3}\right\} \cup\left\{T: T\right.$ is a tree obtained from P_{1}, P_{2}, P_{3} by a finite sequence of operations τ_{i} for $\left.i \in\{1,2, \ldots, 9\}\right\}$. By this family, we characterize all trees for which strong Roman domination and Roman domination numbers are the same as follows:
Main Theorem. A tree T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T belongs to the family \mathcal{F}.

2. Properties of $\left(\gamma_{R}, \gamma_{S t R}\right)$-trees

In this section, we give a series of lemmas about $\left(\gamma_{R}, \gamma_{S t R}\right)$-trees for operations $\tau_{1}-\tau_{9}$ that will be used to prove the main theorem.
Lemma 1. Let T be a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Then every support vertex is adjacent to at most two leaves.

Proof. Assume that vertex u is a support vertex and $|N(u) \cap L(T)| \geq 3$. Let $N(u) \cap L(T)=\left\{v_{i}: i=1,2, \ldots, l\right\}$ for $l \geq 3$. Let f be a $\gamma_{S t R}$-function of T. If $f\left(v_{i}\right) \geq 1$ for $1 \leq i \leq l$, then $f(N(u) \cap L(T)) \geq 3$. If $f\left(v_{i}\right)=0$ for $1 \leq i \leq l$, then $f(u) \geq 1+\left\lceil\frac{l}{2}\right\rceil \geq 1+\left\lceil\frac{3}{2}\right\rceil=3$. Without loss of generality, we may assume that $f\left(v_{1}\right)=0$ and $f\left(v_{2}\right) \geq 1$. Then $f(u) \geq 2$. Hence, in all cases $f(u)+f(N(u) \cap L(T)) \geq 3$. By Observation $3, f$ is also a γ_{R}-function of T. Define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-(\{u\} \cup(N(u) \cap L(T))), f^{\prime}(u)=$ 2 and $f^{\prime}(x)=0$ for $x \in N(u) \cap L(T)$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction.

If a support vertex u is adjacent to two leaves and $d(u)=3$, then u is called an end strong support vertex. If a support vertex u is adjacent to exactly one leaf and $d(u)=2$, then u is called an end weak support vertex.

Lemma 2. Let T be a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Suppose that u is an end strong support vertex, $N(u) \cap L(T)=\left\{v, v^{\prime}\right\}$ and $N(u) \backslash\left\{v, v^{\prime}\right\}=\{w\}$. Then for any $\gamma_{S t R^{-}}$ function f of $T, f(u)=2$ and $f(w)=2$.
Proof. Let f be a $\gamma_{S t R}$-function of T. Suppose that $f(w) \leq 1$. Then, $f(N[u]) \geq$ 3. Define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-N[u], f^{\prime}(u)=2$ and $f^{\prime}(x)=0$ for $x \in N(u)$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, we can assume that $f(w) \geq 2$. Since $\gamma_{R}(T)=\gamma_{S t R}(T), f$ is a γ_{R}-function of T. So $f(w)=2$. Suppose that $f(u)=1$. Then, $f(v)=f\left(v^{\prime}\right)=1$. Define f^{\prime} on
$V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\left\{u, v, v^{\prime}\right\}, f^{\prime}(u)=2, f^{\prime}(v)=0$ and $f^{\prime}\left(v^{\prime}\right)=0$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. For the other case, let $f(u)=0$. Now $f(v) \geq 1$ and $f\left(v^{\prime}\right) \geq 1$. If $f(v) \geq 2$ or $f\left(v^{\prime}\right) \geq 2$, then define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\left\{u, v, v^{\prime}\right\}, f^{\prime}(u)=2, f^{\prime}(v)=0$ and $f^{\prime}\left(v^{\prime}\right)=0$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, $f(v)=f\left(v^{\prime}\right)=1$. Since f is a $\gamma_{S t R}$-function T, w is adjacent to at most two vertices in B_{0}. If $\left|N(w) \cap B_{0}\right|=1$, then define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\left\{u, v, v^{\prime}, w\right\}, f^{\prime}(u)=2$ and $f^{\prime}(x)=0$ for $x \in N(u)$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. If $\left|N(w) \cap B_{0}\right|=2$, then assume that $u^{\prime} \in\left(N(w) \cap B_{0}\right) \backslash\{u\}$. Define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\left\{u, u^{\prime}, v, v^{\prime}, w\right\}, f^{\prime}(u)=2, f^{\prime}(x)=0$ for $x \in N(u)$ and $f^{\prime}\left(u^{\prime}\right)=$ 1. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, $f(u)=2$.

Lemma 3. Let T be a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Suppose that u is an end weak support vertex, $N(u) \cap L(T)=\{v\}$ and $N(u)-\{v\}=\{w\}$. For any $\gamma_{S t R}$-function f of T, the following hold.
(1) $f(w) \neq 1$.
(2) If $f(w)=2$, then $f(u)=0$ and $f(v)=1$.
(3) If $f(w)=0$, then there exists a $\gamma_{S t R}$-function f^{\prime} of T such that $f^{\prime}(w)=$ $0, f^{\prime}(u)=2$ and $f^{\prime}(v)=0$.

Proof. Let f be a $\gamma_{S t R}$-function of T.
(1) Suppose that $f(w)=1$. It is obvious that $f(u)+f(v) \geq 2$. Define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\{u, v, w\}, f^{\prime}(u)=2, f^{\prime}(w)=0$ and $f^{\prime}(v)=0$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, $f(w) \neq 1$.
(2) Suppose that $f(w)=2$. If $f(u)+f(v) \geq 2$, then define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\{u, v\}, f^{\prime}(u)=0$ and $f^{\prime}(v)=1$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, $f(u)+f(v) \leq 1$. Since f is a $\gamma_{S t R}$-function T, $f(u)+f(v)=1$. So, $f(u)=0$ and $f(v)=1$.
(3) If $f(w)=0$, then it is obvious that $(f(u), f(v)) \in\{(1,1),(2,0),(0,2)\}$. Define f^{\prime} on $V(T)$ by $f^{\prime}(x)=f(x)$ for $x \in V(T)-\{u, v\}, f^{\prime}(u)=2$ and $f^{\prime}(v)=0$. Obviously f^{\prime} is a $\gamma_{S t R}$-function of T such that $f^{\prime}(w)=0, f^{\prime}(u)=2$ and $f^{\prime}(v)=0$.
Lemma 4. Let T be a tree. Assume that $P_{4}: v u w x$ is an induced subgraph of T with $d(v)=1, d(u)=2$ and $d(w)=2$. Let $T^{\prime}=T-\{w, u, v\}$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x) \leq 1$.
Proof. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2$. Suppose that T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$ tree. Then $\gamma_{R}(T)=\gamma_{S t R}(T)$. By Lemma 3, there exists a $\gamma_{S t R^{-} \text {-function } f}$
of T such that $(f(w), f(u), f(v)) \in\{(2,0,1),(0,2,0)\}$. If $(f(w), f(u), f(v))=$ $(2,0,1)$, then $f(x)=0$. Otherwise, if $f(x) \geq 1$, then define f^{\prime} on $V(T)$ by $f^{\prime}(y)=f(y)$ for $y \in V(T)-\{u, v, w\}, f^{\prime}(w)=0, f^{\prime}(u)=2$ and $f^{\prime}(v)=$ 0 . Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(y)=f(y)$ for $y \in V\left(T^{\prime}\right)-\{x\}$ and $f^{\prime}(x)=1$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-2$. Suppose that $(f(w), f(u), f(v))=$ $(0,2,0)$. If $f(x)=2$, then there exists exactly one vertex $u^{\prime} \in N(x)-\{w\}$ such that $f\left(u^{\prime}\right)=0$. Otherwise, define f^{\prime} on $V(T)$ by $f^{\prime}(y)=f(y)$ for $y \in$ $V(T)-\{x\}$ and $f^{\prime}(x)=1$. Obviously f^{\prime} is a Roman dominating function of T with weight less than $\gamma_{S t R}(T)$, which is a contradiction. Hence, define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(y)=f(y)$ for $y \in V\left(T^{\prime}\right)-\left\{x, u^{\prime}\right\}, f^{\prime}\left(u^{\prime}\right)=1$ and $f^{\prime}(x)=1$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq$ $\gamma_{S t R}(T)-2$. If $f(x) \leq 1$, then define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(y)=f(y)$ for $y \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function for T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq$ $\gamma_{S t R}(T)-2$. Hence, in all cases, $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-2$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+2$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x) \leq 1$.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime} such that $f^{\prime}(x) \leq 1$. Define f on $V(T)$ by $f(y)=f^{\prime}(y)$ for $y \in V\left(T^{\prime}\right), f(w)=0, f(u)=2$ and $f(v)=0$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq$ $\gamma_{S t R}\left(T^{\prime}\right)+2$. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+2=\gamma_{R}\left(T^{\prime}\right)+2=\gamma_{R}(T)$. By Observation $1, \gamma_{R}(T)=\gamma_{S t R}(T)$ and T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Lemma 5. Let T be a tree. Suppose that w is adjacent to two end strong support vertices u_{1} and u_{2}. Say $N\left(u_{i}\right)-\{w\}=\left\{v_{i}, t_{i}\right\}$ for $i=1,2$. Let $T^{\prime}=$ $T-\left\{u_{1}, v_{1}, t_{1}\right\}$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.
Proof. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2$. Suppose that T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$ tree. Then $\gamma_{R}(T)=\gamma_{S t R}(T)$. By Lemma 2, for any $\gamma_{S t R}$-function f of T, $f(w)=f\left(u_{1}\right)=f\left(u_{2}\right)=2$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(x)=f(x)$ for $x \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq$ $\gamma_{S t R}(T)-2$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime}. By Lemma 2, $f^{\prime}(w)=2$. Define f on $V(T)$ by $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2, f\left(v_{1}\right)=0$ and $f\left(t_{1}\right)=0$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq$ $\gamma_{S t R}\left(T^{\prime}\right)+2$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+2=\gamma_{R}\left(T^{\prime}\right)+2=\gamma_{R}(T)$. By Observation 1, $\gamma_{R}(T)=\gamma_{S t R}(T)$ and T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Lemma 6. Let T be a tree. Suppose that $d(w)=3,4$ and $\left\{u_{1}, u_{2}, u_{3}\right\} \subseteq N(w)$, where u_{1} is an end strong support vertex, u_{i} is a leaf or an end weak support vertex for $i=2,3$. Let $T^{\prime}=T-\left(\left(N\left[u_{1}\right] \cup N\left(u_{2}\right) \cup N\left(u_{3}\right)\right)-\{w\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Proof. Let $l=\mid\left\{u_{i}: u_{i}\right.$ is an end weak support vertex for $\left.i \in\{2,3\}\right\} \mid$, where $l \in\{0,1,2\}$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+2$. Suppose that T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Then $\gamma_{R}(T)=\gamma_{S t R}(T)$. By Lemma 2, for any $\gamma_{S t R^{-}}$ function f of $T, f(w)=f\left(u_{1}\right)=2$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(x)=f(x)$ for $x \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-2$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+2 \leq$ $\gamma_{S t R}\left(T^{\prime}\right)+l+2 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime}. By Lemma 2, $f^{\prime}(w)=2$. Define f on $V(T)$ by $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2, f(x)=0$ for $x \in$ $N\left(u_{1}\right) \cap L(T)$ and $f(x)=1$ for $x \in N\left(\left\{u_{2}, u_{3}\right\}\right) \cap L(T)$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+2$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+2=\gamma_{R}\left(T^{\prime}\right)+l+2=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.
Lemma 7. Let T be a tree. Suppose that $d(w)=3$ and $\left\{u_{1}, u_{2}\right\} \subseteq N(w)$, where u_{1} is an end strong support vertex, u_{2} is an end weak support vertex. Let $T^{\prime}=T-\left(N\left[u_{1}\right]-\{w\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(w)=2$.

Proof. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+2$. Suppose that T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$ tree. By Lemma 2, for any $\gamma_{S t R}$-function f of $T, f(w)=f\left(u_{1}\right)=2$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(x)=f(x)$ for $x \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function for T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-2$. It follows that $\gamma_{R}(T)=$ $\gamma_{R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}\left(T^{\prime}\right)+2 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=$ $\gamma_{S t R}\left(T^{\prime}\right)+2$. Hence T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(w)=2$.

Conversely, let f^{\prime} be a $\gamma_{S t R^{\prime}}$-function of T^{\prime} with $f^{\prime}(w)=2$. Define f on $V(T)$ by $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2$ and $f(x)=0$ for $x \in N\left(u_{1}\right) \cap L(T)$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq$ $\gamma_{S t R}\left(T^{\prime}\right)+2$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+2=\gamma_{R}\left(T^{\prime}\right)+2=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.
Lemma 8. Let T be a tree. Suppose that $N(w)=\left\{u_{1}, u_{2}, x\right\}$, where u_{1} is an end strong support vertex and u_{2} is a leaf. Let $T^{\prime}=T-\left(N\left[u_{1}\right] \cup\left\{u_{2}\right\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=1$.

Proof. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+3$. Suppose that T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$ tree. By Lemma 2, for any $\gamma_{S t R}$-function f of $T, f(w)=f\left(u_{1}\right)=2$. It is obvious that $f(x)=0$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(y)=f(y)$ for $y \in V\left(T^{\prime}\right)-\{x\}$ and $f^{\prime}(x)=1$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-3$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+3 \leq \gamma_{S t R}\left(T^{\prime}\right)+3 \leq$ $\gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+3$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=1$.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime} with $f^{\prime}(x)=1$. Since T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree, it follows that $f^{\prime}(y) \leq 1$ for $y \in N(x)-\{w\}$. Define f on
$V(T)$ by $f(y)=f^{\prime}(y)$ for $y \in V\left(T^{\prime}\right)-\{x\}, f(x)=0, f(w)=2, f\left(u_{1}\right)=2$ and $f(y)=0$ for $y \in N\left(\left\{w, u_{1}\right\}\right) \cap L(T)$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+3$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+3=$ $\gamma_{R}\left(T^{\prime}\right)+3=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Lemma 9. Let T be a tree. Suppose that $d(w)=3$ and $\left\{u_{1}, u_{2}\right\} \subseteq N(w)$, where u_{1} is an end weak support vertex, u_{2} is a leaf or an end weak support vertex. Let $T^{\prime}=T-\left(\left(N\left(u_{1}\right) \cup N\left(u_{2}\right)\right) \cap L(T)\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f(w)=2$ if and only if T^{\prime} is $a\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Proof. Define $l=1$ if u_{2} is an end weak support vertex, otherwise $l=0$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+1$. Let f be a $\gamma_{S t R}$-function of T such that $f(w)=2$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(x)=f(x)$ for $x \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-1$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+1 \leq \gamma_{S t R}\left(T^{\prime}\right)+l+1 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Conversely, let f^{\prime} be a $\gamma_{S t R^{\prime}}$-function of T^{\prime}. By Lemma 2, $f^{\prime}(w)=2$. Define f on $V(T)$ by $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ and $f(x)=1$ for $x \in N\left(\left\{u_{1}, u_{2}\right\}\right) \cap$ $L(T)$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq$ $\gamma_{S t R}\left(T^{\prime}\right)+l+1$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+1=\gamma_{R}\left(T^{\prime}\right)+l+1=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+1$. Hence, T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f(w)=2$.

Lemma 10. Let T be a tree. Suppose that $\left\{w_{1}, w_{2}\right\} \subseteq N(x)$ and $N\left(w_{1}\right)=$ $\left\{x, u_{1}, u_{2}\right\}$, where w_{2} and u_{1} are end weak support vertices and u_{2} is a leaf or an end weak support vertex. Let $T^{\prime}=T-\left(N\left[u_{1}\right] \cup N\left[u_{2}\right]\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$ if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=0$.

Proof. Define $l=1$ if u_{2} is an end weak support vertex, otherwise $l=0$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+3$. Let f be a $\gamma_{S t R^{\prime}}$-function of T such that $f\left(w_{1}\right)=0$. By Lemma 3, $f(x)=0$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(y)=f(y)$ for $y \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function for T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-3$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+3 \leq \gamma_{S t R}\left(T^{\prime}\right)+$ $l+3 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=0$.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime} with $f^{\prime}(x)=0$. Define f on $V(T)$ by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2$ and $f(z)=0$ for $z \in N\left(\left\{u_{1}, u_{2}\right\}\right)$. If u_{2} is an end weak support vertex, $f\left(u_{2}\right)=2$, otherwise, $f\left(u_{2}\right)=1$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3=\gamma_{R}\left(T^{\prime}\right)+l+3=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. Hence, T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$.

Lemma 11. Let T be a tree. Suppose that $d(x)=3$ and $N(x)=\left\{y, w_{1}, w_{2}\right\}$ and $N\left(w_{1}\right)=\left\{x, u_{1}, u_{2}\right\}$, where u_{1} is an end weak support vertex, w_{2} is a leaf and u_{2} is a leaf or an end weak support vertex. Let $T^{\prime}=T-\left(\left(N\left[u_{1}\right] \cup N\left[u_{2}\right]\right) \cup\right.$ $\left.\left\{x, w_{2}\right\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}-$ function f of T such that $f\left(w_{1}\right)=0$ if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and y is a leaf of T^{\prime}.

Proof. Define $l=1$ if u_{2} is an end weak support vertex, otherwise $l=0$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+4$. Let f be a $\gamma_{S t R}$-function of T such that $f\left(w_{1}\right)=0$. Then by Lemma 3, $f\left(u_{1}\right)=2$. Since $\gamma_{R}(T)=\gamma_{S t R}(T), f$ is a $\gamma_{R^{-}}$ function of T. Hence, $f(v) \leq 2$ for any $v \in V(T)$. If $f(x)=2$, then $f\left(w_{2}\right)=0$. Since f is a $\gamma_{S t R}$-function of T, it follows that $f(y) \geq 1$. Define f_{1} on $V(T)$ by $f_{1}(z)=f(z)$ for $z \in V\left(T^{\prime}\right), f_{1}\left(w_{1}\right)=2, f_{1}(z)=0$ for $z \in N\left(w_{1}\right)$, and $f_{1}(z)=1$ for $z \in N\left(N\left(w_{1}\right)\right)-\{y\}$. It is obvious that f_{1} is a Roman dominating function of T. So $\gamma_{R}(T) \leq f_{1}(V(T))=f(V(T))-1=\gamma_{S t R}(T)-1=\gamma_{R}(T)-1$, which is a contradiction. Hence, $f(x) \leq 1$. If $f(x)=1$, then $f\left(w_{2}\right)=1$. Then define f_{1} on $V(T)$ as above. It is obvious that f_{1} is a Roman dominating function of T. So $\gamma_{R}(T) \leq f_{1}(V(T))=f(V(T))-1=\gamma_{R}(T)-1$, which is a contradiction. Hence, $f(x)=0$. Then $f\left(w_{2}\right) \geq 1$. If $f\left(w_{2}\right)=2$, then define f_{1} on $V(T)$ as above. It is obvious that f_{1} is a Roman dominating function of T. So $\gamma_{R}(T) \leq f_{1}(V(T))=f(V(T))-1=\gamma_{R}(T)-1$, which is a contradiction. Hence, $f\left(w_{2}\right)=1$. By the definition of Roman domination, $f(y)=2$. Suppose that $d_{T}(y) \geq 3$. Say $N_{T}(y)-\{x\}=\left\{z_{1}, z_{2}, \ldots, z_{l}\right\}$. Then $l \geq 2$. Since f is a $\gamma_{S t R}$-function of T, it follows that there exists at most one vertex $z_{i} \in N(y)-\{x\}$ with $f\left(z_{i}\right)=0$. Without loss of generality, we can assume that $f\left(z_{i}\right) \geq 1$ for $2 \leq i \leq l$. If there exists z_{i} such that $f\left(z_{i}\right)=1$, where $i \in\{2, \ldots, l\}$, then define f_{1} on $V(T)$ by $f_{1}(z)=f(z)$ for $z \in V(T)-\left\{z_{i}\right\}$ and $f_{1}\left(z_{i}\right)=0$. It is obvious that f_{1} is a Roman dominating function of T whose weight is less than $\gamma_{R}(T)$, which is a contradiction. Hence, we can assume that $f\left(z_{i}\right)=2$ for $2 \leq i \leq l$.

Define f_{1} on $V(T)$ by $f_{1}(z)=f(z)$ for $z \in V\left(T^{\prime}\right)-\left\{y, z_{1}\right\}, f_{1}\left(w_{1}\right)=2$, $f_{1}(z)=0$ for $z \in N\left(w_{1}\right)$, and $f_{1}(z)=1$ for $z \in N\left(N\left(w_{1}\right)\right)-\{y\}, f_{1}(y)=0$. If $f\left(z_{1}\right)=0, f_{1}\left(z_{1}\right)=1$, otherwise, $f_{1}\left(z_{1}\right)=f\left(z_{1}\right)$. It is obvious that f_{1} is a Roman dominating function of T. So $\gamma_{R}(T) \leq f_{1}(V(T))<f(V(T))=$ $\gamma_{S t R}(T)=\gamma_{R}(T)$, which is a contradiction. Hence, $d_{T}(y)=2$. So, $f\left(u_{1}\right)=2$, $f(x)=0, f(y)=2, f\left(w_{2}\right)=1$ and $d_{T}(y)=2$.

Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(z)=f(z)$ for $z \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function for T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-4$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+4 \leq \gamma_{S t R}\left(T^{\prime}\right)+l+4 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+4$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and $d_{T^{\prime}}(y)=1$.

Conversely, let f^{\prime} be a $\gamma_{S t R}$-function of T^{\prime} with $f^{\prime}(y)=2$. Define f on $V(T)$ by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2, f\left(w_{2}\right)=1, f(x)=0$ and $f(z)=0$ for $z \in N\left(\left\{u_{1}, u_{2}\right\}\right)$. If u_{2} is an end weak support vertex, $f\left(u_{2}\right)=2$,
otherwise, $f\left(u_{2}\right)=1$. Obviously f is a strong Roman dominating function for T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+4$. Hence $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+4=$ $\gamma_{R}\left(T^{\prime}\right)+l+4=\gamma_{R}(T)$. So $\gamma_{R}(T)=\gamma_{S t R}(T)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+4$. Hence, T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$.

Lemma 12. Let T be a tree. Suppose that $N(x)=\{y, w\}$ and $N(w)=$ $\left\{x, u_{1}, u_{2}\right\}$, where u_{1} is an end weak support vertex and u_{2} is a leaf or an end weak support vertex. Let $T^{\prime}=T-\left(N\left[u_{1}\right] \cup N\left[u_{2}\right] \cup\{x\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f(w)=0$ if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and y is a leaf of T^{\prime}.

Proof. Define $l=1$ if u_{2} is an end weak support vertex, otherwise $l=0$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+3$. Let f be a $\gamma_{S t R}$-function of T such that $f(w)=0$. Then $f\left(u_{1}\right)=2, f(x)=0$ and $f(y)=2$. Furthermore, $d_{T}(y)=2$ by a similar reason in the proof of Lemma 11. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(z)=f(z)$ for $z \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function of T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-3$. It follows that $\gamma_{R}(T)=$ $\gamma_{R}\left(T^{\prime}\right)+l+3 \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and $d_{T^{\prime}}(y)=1$.

Conversely, let f^{\prime} be a $\gamma_{S t R^{-}}$-function of T^{\prime} with $f^{\prime}(y)=2$. Define f on $V(T)$ by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right), f\left(u_{1}\right)=2, f(x)=0$ and $f(z)=0$ for $z \in N\left(\left\{u_{1}, u_{2}\right\}\right)$. If u_{2} is an end weak support vertex, $f\left(u_{2}\right)=2$, otherwise, $f\left(u_{2}\right)=1$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3$. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3=\gamma_{R}\left(T^{\prime}\right)+l+3=$ $\gamma_{R}(T)$. Hence $\gamma_{R}(T)=\gamma_{S t R}(T)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. So, T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f(w)=0$.

Lemma 13. Let T be a tree. Suppose that $\left\{w_{1}, w_{2}\right\} \subseteq N(x)$ and $N\left(w_{i}\right)-\{x\}=$ $\left\{u_{i}, t_{i}\right\}$ for $i=1,2$, where u_{1}, t_{1}, u_{2} are end weak support vertices and t_{2} is a leaf or an end weak support vertex. Let $T^{\prime}=T-\left(N\left[u_{2}\right] \cup N\left[t_{2}\right]\right)$. Then T is $a\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$ if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}\left(w_{1}\right)=0$.
Proof. Define $l=1$ if t_{2} is an end weak support vertex, otherwise $l=0$. It is obvious that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+3$. Let f be a $\gamma_{S t R^{\prime}}$-function of T such that $f\left(w_{1}\right)=0$. Then $f(x)=0, f\left(w_{2}\right)=0$ and $f\left(u_{2}\right)=2$. If t_{2} is an end weak support vertex, $f\left(t_{2}\right)=2$, otherwise, $f\left(t_{2}\right)=1$. Define f^{\prime} on $V\left(T^{\prime}\right)$ by $f^{\prime}(z)=f(z)$ for $z \in V\left(T^{\prime}\right)$. Obviously f^{\prime} is a strong Roman dominating function for T^{\prime}. So $\gamma_{S t R}\left(T^{\prime}\right) \leq \gamma_{S t R}(T)-l-3$. It follows that $\gamma_{R}(T)=\gamma_{R}\left(T^{\prime}\right)+l+3 \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3 \leq \gamma_{S t R}(T)$. So $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}\left(w_{1}\right)=0$.

Conversely, let f^{\prime} be a $\gamma_{S t R^{\prime}}$-function of T^{\prime} with $f^{\prime}\left(w_{1}\right)=0$. Define f on $V(T)$ by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right), f\left(u_{2}\right)=2$ and $f(z)=0$ for $z \in N\left(\left\{u_{2}, t_{2}\right\}\right)$. If t_{2} is an end weak support vertex, $f\left(t_{2}\right)=2$, otherwise, $f\left(t_{2}\right)=1$. Obviously f is a strong Roman dominating function of T. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3$. So $\gamma_{S t R}(T) \leq \gamma_{S t R}\left(T^{\prime}\right)+l+3=\gamma_{R}\left(T^{\prime}\right)+l+3=\gamma_{R}(T)$. Hence $\gamma_{R}(T)=\gamma_{S t R}(T)$ and $\gamma_{S t R}(T)=\gamma_{S t R}\left(T^{\prime}\right)+l+3$. So T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$.

By a similar proof as Lemma 13, we give the following result. The proof is omitted.

Lemma 14. Let T be a tree. Suppose that $\left\{w_{1}, w_{2}\right\} \subseteq N(x)$ and $N\left(w_{i}\right)-\{x\}=$ $\left\{u_{i}, t_{i}\right\}$ for $i=1,2$, where u_{1}, u_{2} are end weak support vertices and t_{1}, t_{2} are leaves. Let $T^{\prime}=T-\left(N\left[u_{2}\right] \cup\left\{t_{2}\right\}\right)$. Then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists $a \gamma_{S t R}$-function f of T such that $f\left(w_{1}\right)=0$ if and only if T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}\left(w_{1}\right)=0$.

3. A characterization of $\left(\gamma_{R}, \gamma_{S t R}\right)$-trees

In the following, we construct a family \mathcal{F} of trees with equal strong Roman domination and Roman domination numbers. For this purpose, we introduce some additional notation. Let $P_{k}: v_{1}, v_{2}, \ldots, v_{k}$ be a path with order k. Let a double star $S(1,2)$ be obtained from P_{4} and a vertex v_{5} by joining an edge $v_{3} v_{5}$. Let T be a tree. Let f be a $\gamma_{S t R^{\prime}}$-function of T. Let's denote f by $f=\left(f\left(v_{1}\right), f\left(v_{2}\right), \ldots, f\left(v_{n}\right)\right)$. For any tree $T \in \mathcal{F}$, we denote $\mathcal{F}(T)$ by a collection of $\gamma_{S t R}$-functions of T. Define $\mathcal{B}_{i}^{T}=\{v$: there exists $f \in \digamma(T)$ such that $f(v)=i$ f for $i=0,1,2$. It is obvious that if $\digamma(T)$ is given, then \mathcal{B}_{i}^{T} is determined. Hence we only give $\digamma(T)$ for any tree T.

Firstly, if $T=P_{i}$ for $i=1,2,3$, then $\digamma(T)=\left\{f: f\right.$ is a $\gamma_{S t R}$-function of T such that $f\left(v_{i}\right) \leq 2$ for $\left.i=1,2, \ldots, n\right\}$. For example, $\digamma\left(P_{1}\right)=\{(1)\}$, $\digamma\left(P_{2}\right)=\{(1,1),(0,2),(2,0)\}, \digamma\left(P_{3}\right)=\{(0,2,0)\}$.

Let $T^{\prime} \in \mathcal{F}$ be a tree with $\digamma\left(T^{\prime}\right)$. We construct a new tree T with $\digamma(T)$ by the following operations on the tree T^{\prime} as follows:

- Operation τ_{1} (Lemma 5). Suppose that u is an end strong support vertex of a tree T^{\prime}. Say $N(u)-L\left(T^{\prime}\right)=\{w\}$. A tree T is obtained from the tree T^{\prime} by adding a P_{3} and an edge between w and v_{2}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ by defining $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ and $f\left(P_{3}\right)=(0,2,0)$.
- Operation τ_{2} (Lemma 6). Suppose that w is a support vertex with degree two or an end strong support vertex. Say $N(w) \cap L\left(T^{\prime}\right)=\left\{u_{1}, u_{2}\right\}$. A tree T is obtained from the tree T^{\prime} by adding a P_{3} and an edge between w and v_{2}. For each u_{i}, do nothing or add a new vertex t_{i} and give an edge between u_{i} and t_{i}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ by defining $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right), f\left(P_{3}\right)=(0,2,0)$ and $f\left(t_{i}\right)=1$ if u_{i} is adjacent to a leaf t_{i} for $i=1,2$.
- Operation τ_{3} (Lemma 7). Suppose that $w \in \mathcal{B}_{2}^{T^{\prime}}, N(w)=\{x, u\}$ and u is an end weak support vertex. A tree T is obtained from the tree T^{\prime} by adding a P_{3} and an edge between w and v_{2}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(w)=2$ by defining $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ and $f\left(P_{3}\right)=(0,2,0)$.
- Operation τ_{4} (Lemma 8). Suppose that $x \in \mathcal{B}_{1}^{T^{\prime}}$. A tree T is obtained from the tree T^{\prime} by adding a double star $S(1,2)$ and an edge between x and v_{2}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(x)=1$ by defining $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)-\{x\}, f(x)=0$ and $f(S(1,2))=(0,2,2,0,0)$.
- Operation τ_{5} (Lemma 9). Suppose that w is an end strong support vertex. Say $N(w) \cap L\left(T^{\prime}\right)=\left\{u_{1}, u_{2}\right\}$. For each u_{i}, a tree T is obtained from the tree T^{\prime} by adding a new vertex t_{i} and an edge between them or doing nothing. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ by defining $f(x)=f^{\prime}(x)$ for $x \in V\left(T^{\prime}\right)$ and $f(x)=1$ for $x \in V(T)-V\left(T^{\prime}\right)$.
- Operation τ_{6} (Lemma 10). Suppose that $w \in \mathcal{B}_{0}^{T^{\prime}}, N(w)=\{x, u\}$ and u is a leaf. A tree T is obtained from the tree T^{\prime} by adding a P_{5} or P_{4} and an edge between w and v_{3}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(x)=0$ by defining $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)$ and $f\left(P_{5}\right)=(0,2,0,2,0)$ or $f\left(P_{4}\right)=(0,2,0,1)$.
- Operation τ_{7} (Lemma 11, Lemma 12). Suppose that y is a leaf with $y \in \mathcal{B}_{2}^{T^{\prime}}$. A tree T is obtained from the tree T^{\prime} by adding a new vertex x and edge $y x$, adding a P_{5} or P_{4} and an edge $x v_{3}$. For vertex x, do nothing or add a new vertex w_{2} and an edge between them. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(y)=2$ by defining $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right), f(x)=0$ and $f\left(P_{5}\right)=(0,2,0,2,0)$ or $f\left(P_{4}\right)=(0,2,0,1)$. If x is adjacent to a leaf w_{2}, then $f\left(w_{2}\right)=1$.
- Operation τ_{8} (Lemma 13, Lemma 14). Suppose that $w \in \mathcal{B}_{0}^{T^{\prime}}$ and $N(w)=$ $\left\{x, u_{1}, u_{2}\right\}$, where u_{1} is an end weak support vertex and u_{2} is a leaf or an end weak support vertex. A tree T is obtained from the tree T^{\prime} by adding a P_{5} or P_{4} and an edge between x and v_{3}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(w)=0$ by defining $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)$ and $f\left(P_{5}\right)=(0,2,0,2,0)$ or $f\left(P_{4}\right)=(0,2,0,1)$.
- Operation τ_{9} (Lemma 4). Suppose that $x \in V\left(T^{\prime}\right)$ with $x \in \mathcal{B}_{0}^{T^{\prime}} \cup \mathcal{B}_{1}^{T^{\prime}}$. A tree T is obtained from the tree T^{\prime} by adding a P_{3} and an edge between x and v_{3}. For any $f \in \digamma(T), f$ can be obtained from a $f^{\prime} \in \digamma\left(T^{\prime}\right)$ with $f^{\prime}(x) \leq 1$ by defining $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)$ and $f\left(P_{3}\right)=(0,2,0)$. If $f^{\prime}(x)=1$, then f can also defined by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)-\{x\}, f(x)=0$ and $f\left(P_{3}\right)=(1,0,2)$. Suppose that x is a leaf in T^{\prime} and y is its neighbor. If $f^{\prime}(x)=1$ and $f^{\prime}(y)=1$, then f can also defined by $f(z)=f^{\prime}(z)$ for $z \in V\left(T^{\prime}\right)-\{x, y\}$, $f(x)=2, f(y)=0$ and $f\left(P_{3}\right) \in\{(1,1,0),(0,2,0),(2,0,0)\}$.

Let \mathcal{F} be the family of trees consisting of $\left\{P_{1}, P_{2}, P_{3}\right\} \cup\{T: T$ is a tree obtained from P_{1}, P_{2}, P_{3} by a finite sequence of operations τ_{i} for $\left.i \in\{1,2, \ldots, 9\}\right\}$.

We show first that each tree in the family \mathcal{F} has equal strong Roman domination number and Roman domination number.
Theorem 1. If T belongs to the family \mathcal{F}, then T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.
Proof. We proceed by induction on the number of operations $h(T)$ required to construct the tree T. If $h(T)=0$, then $T \in\left\{P_{1}, P_{2}, P_{3}\right\}$ and clearly T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Assume now that T is a tree with $h(T)=k$ for some positive integer k and each tree $T^{\prime} \in \mathcal{F}$ with $h\left(T^{\prime}\right)<k$ is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. Then T can be obtained from a tree T^{\prime} belonging to \mathcal{F} by operation τ_{i} for $i \in\{1,2, \ldots, 9\}$. By Lemmas $4-14, T$ is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

We show next that every $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree belongs to the family \mathcal{F}.
Theorem 2. If T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree, then T belongs to the family \mathcal{F}.
Proof. Let T be a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree. If $\operatorname{diam}(T) \leq 2$, then T is P_{1}, P_{2} or P_{3}. It is clear that the statement is true. For this reason, we only consider trees T with $\operatorname{diam}(T) \geq 3$.

Let T be a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and assume that the result holds for all trees on $n(T)-1$ and fewer vertices. We proceed by induction on the number of vertices of a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree.

Assume that $\gamma_{R}(T)=\gamma_{S t R}(T)$. Let $P=t \cdots y x w u v$ be the longest path in T chosen to maximize $d(u)$. Consider t as a root of T. For any vertex $z \in V$, let T_{z} denote the subtree of T including z and its descendants. Let f be a $S t R$-function of T. By Lemma $1, d(u) \leq 3$.

Case 1: $d(u)=3$. If w is adjacent to the center of another P_{3}, then let $T^{\prime}=T-T_{u}$. By Lemma 5, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{1}. Hence, $T \in \mathcal{F}$. Without loss of generality, we can assume that each child of w except u is a leaf or an end weak support vertex. Let s and l denote the number of end weak support vertices and leaves that are adjacent to w, respectively. Since f is a $S t R$ function of $T, f(u)=f(w)=2$. Hence, $s+l \leq 2$. If $s+l=0$, then $d(w)=2$. It is obvious that $\gamma_{R}(T) \neq \gamma_{S t R}(T)$. Hence $1 \leq s+l \leq 2$. If $s+l=2$, say $N(w) \cap(L(T) \cup S(T))=\left\{t_{1}, t_{2}, u\right\}$, then define $T^{\prime}=T-\left\{\left(\left(N\left(t_{1}\right) \cup N\left(t_{2}\right)\right) \cap\right.\right.$ $L(T)) \cup(N[u]-\{w\})\}$. By Lemma $6, \gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and by induction hypothesis, $T^{\prime} \in \mathcal{F}$. So T is obtained from T^{\prime} by operation τ_{2}. Hence, $T \in \mathcal{F}$. If $s=1$ and $l=0$, define $T^{\prime}=T-T_{u}$. By Lemma $7, \gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(w)=2$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{3}. So, $T \in \mathcal{F}$. If $l=1$ and $s=0$, define $T^{\prime}=T-T_{w}$. By Lemma $8, \gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{4}. So, $T \in \mathcal{F}$.

Case 2: $\quad d(u)=2$. Let s and l denote the number of end weak support vertices and leaves that are adjacent to w, respectively. By Lemma 3, we can assume that $f(w)=2$ or $f(w)=0$.

Case 2.1: $f(w)=2$. Then $s+l \leq 2$. If $s=2$, then assume that $N(w) \cap$ $S(T)=\left\{u, u^{\prime}\right\}$ and $N\left(\left\{u, u^{\prime}\right\}\right) \cap L(T)=\left\{v_{1}, v_{2}\right\}$. Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. By Lemma $9, \gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and by induction hypothesis, $T^{\prime} \in \mathcal{F}$. So T is obtained from T^{\prime} by operation τ_{5}. Hence, $T \in \mathcal{F}$.

If $s=l=1$, then let $T^{\prime}=T-\{v\}$. By Lemma $9, \gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$. Hence, T^{\prime} is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree and by induction hypothesis, $T^{\prime} \in \mathcal{F}$. So T is obtained from T^{\prime} by operation τ_{5}. Hence, $T \in \mathcal{F}$.

If $s=1$ and $l=0$, then let $T^{\prime}=T-T_{w}$. By Lemma 4, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x) \leq 1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{9}. So, $T \in \mathcal{F}$.

Case 2.2: $f(w)=0$. Then $s+l \leq 2$ with $s \geq 1$. If $s=2$, then $l=0$. If $s=1$, then $l \leq 1$. If $s=1$ and $l=0$, then let $T^{\prime}=T-T_{w}$. By Lemma 4, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x) \leq 1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{9}. So, $T \in \mathcal{F}$.

Without loss of generality, we may assume that $s=2$ and $l=0$ or $s=l=1$. Since $\gamma_{R}(T)=\gamma_{S t R}(T)$, it follows that without loss of generality, we may assume that $s=2$ and $l=0$ or $s=l=1$. Hence, w is the central vertex of P_{5} or w is the support vertex of P_{4}. Suppose that x is adjacent to an end strong support vertex t. By Lemma $2, f(t)=2$ and $f(x)=2$. Since f is a $\gamma_{S t R^{-}}$ function of T and $f(w)=0$, there exists at most one vertex $w_{1} \in N_{T}(x)-\{w, t\}$ such that $f\left(w_{1}\right)=0$. Define f_{1} on $V(T)$ by $f_{1}(z)=f(z)$ for $z \in V(T)-\left\{x, w_{1}\right\}$, $f_{1}(x)=0$ and $f_{1}\left(w_{1}\right)=1$ if there exists vertex w_{1}. It is obvious that f_{1} is a Roman dominating function of T. So $\gamma_{R}(T) \leq f_{1}(V(T))<f(V(T))=$ $\gamma_{S t R}(T)=\gamma_{R}(T)$, which is a contradiction. Hence, x is not adjacent to an end strong support vertex. So, among descendant of x, x is only adjacent to a leaf, an end weak support vertex, or the vertex v_{3} of P_{4}, P_{5} or P_{3}.

If x is adjacent to the vertex v_{3} of P_{4} or P_{5}, then let $T^{\prime}=T-V\left(P_{4}\right)$ or $T^{\prime}=T-V\left(P_{5}\right)$. By Lemma 13 and Lemma 14, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(w)=0$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{8}. Hence, $T \in \mathcal{F}$. If x is adjacent to the vertex v_{3} of P_{3}, then let $T^{\prime}=T-V\left(P_{3}\right)$. By Lemma 4, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x) \leq 1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{9}. Hence, $T \in \mathcal{F}$. Without loss of generality, we may assume that x is not adjacent to the vertex v_{3} of P_{4}, P_{5} and P_{3}.

If x is adjacent to an end weak support vertex x^{\prime}, then let $T^{\prime}=T-T_{w}$. By Lemma 10, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(x)=0$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{6}. Hence, $T \in \mathcal{F}$.

Without loss of generality, we may assume that x is adjacent to an leaf x^{\prime}. Then x is adjacent to exactly one leaf. Say $y \in N(x)-\left\{w, x^{\prime}\right\}$. By a similar reason in the proof of Lemma 11, $f(y)=2$ and $d(y)=2$. Let $T^{\prime}=T-T_{x}$. By

Lemma 11, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{\prime}}$-function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and $d_{T^{\prime}}(y)=1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{7}. Hence, $T \in \mathcal{F}$.

If $d(x)=2$, say $y \in N(x)-\{w\}$, then $f(y)=2$ and $d(y)=2$. Let $T^{\prime}=T-T_{x}$. By Lemma 12, $\gamma_{R}\left(T^{\prime}\right)=\gamma_{S t R}\left(T^{\prime}\right)$ and there exists a $\gamma_{S t R^{-}}$ function f^{\prime} of T^{\prime} such that $f^{\prime}(y)=2$ and $d_{T^{\prime}}(y)=1$. By induction hypothesis, $T^{\prime} \in \mathcal{F}$. Hence T is obtained from T^{\prime} by operation τ_{7}. So, $T \in \mathcal{F}$.

As an immediate consequence of Theorems 1 and 2 we have the following characterization of $\left(\gamma_{R}, \gamma_{S t R}\right)$-trees.

Theorem 3. A tree T is a $\left(\gamma_{R}, \gamma_{S t R}\right)$-tree if and only if T belongs to the family \mathcal{F}.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education(2017R1D1A3B03029912).

References

[1] M. P. Álvarez-Ruiz, T. Mediavilla-Gradolph, and S. M. Sheikholeslami, On the strong Roman domination number of graphs, Discrete Appl. Math. 231 (2017), 44-59.
[2] E. J. Cockayne, P. M. Dreyer Sr., S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[3] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594.
[4] L. Stewart, Defend the roman empire!, Sci. Amer. 281 (1999), no. 6, 136-139.
Xue-Gang Chen
Department of Mathematics
North China Electric Power University
Beijing 102206, P. R. China
Email address: gxcxdm@163.com
Moo Young Sohn
Department of Mathematics
Changwon National University
Changwon 51140, Korea
Email address: mysohn@changwon.ac.kr

[^0]: Received January 17, 2018; Revised September 27, 2018; Accepted October 11, 2018. 2010 Mathematics Subject Classification. 05C69, 05C38.
 Key words and phrases. Roman domination number, strong Roman domination number, tree.

