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TREES WITH EQUAL STRONG ROMAN DOMINATION

NUMBER AND ROMAN DOMINATION NUMBER

Xue-Gang Chen and Moo Young Sohn

Abstract. A graph theoretical model called Roman domination in

graphs originates from the historical background that any undefended
place (with no legions) of the Roman Empire must be protected by a

stronger neighbor place (having two legions). It is applicable to military
and commercial decision-making problems. A Roman dominating func-

tion for a graph G = (V,E) is a function f : V → {0, 1, 2} such that

every vertex v with f(v) = 0 has at least a neighbor w in G for which
f(w) = 2. The Roman domination number of a graph is the minimum

weight
∑

v∈V f(v) of a Roman dominating function. In order to deal a

problem of a Roman domination-type defensive strategy under multiple

simultaneous attacks, Álvarez-Ruiz et al. [1] initiated the study of a new

parameter related to Roman dominating function, which is called strong

Roman domination. Álvarez-Ruiz et al. posed the following problem:

Characterize the graphs G with equal strong Roman domination number

and Roman domination number. In this paper, we construct a family of
trees. We prove that for a tree, its strong Roman dominance number and

Roman dominance number are equal if and only if the tree belongs to

this family of trees.

1. Introduction

For notation and graph-theoretical terminology not defined here we follow
[1]. Let G = (V,E) be a simple graph with vertex set V = V (G) and edge
set E = E(G). The degree, neighborhood and closed neighborhood of a vertex
v in the graph G are denoted by dG(v), NG(v) and NG[v] = NG(v) ∪ {v},
respectively. If the graph G is clear from context, we simply write d(v), N(v)
and N [v], respectively. The minimum degree and maximum degree of the
graph G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. The di-
ameter diam(G) of a connected graph G is the maximum distance between
two vertices of G. Roman domination number was defined and discussed by
Stewart [4] in 1999. It was developed by ReVelle and Rosing [3] in 2000 and

Received January 17, 2018; Revised September 27, 2018; Accepted October 11, 2018.
2010 Mathematics Subject Classification. 05C69, 05C38.
Key words and phrases. Roman domination number, strong Roman domination number,

tree.

c©2019 Korean Mathematical Society

31



32 X.-G. CHEN AND M. Y. SOHN

Cockayne et al. [2] in 2004. A Roman dominating function of a graph G is
defined as a function f : V (G) → {0, 1, 2} satisfying the condition that every
vertex u for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of an Roman dominating function is defined as the
value f(V (G)) =

∑
v∈V (G) f(v). The Roman domination number of a graph

G, denoted by γR(G), is equal to the minimum weight of a Roman dominating
function of G. In fact, Roman domination is of both historical and mathemati-
cal interest. Emperor Constantine had the requirement that an army or legion
could be sent from its home to defend a neighbouring location only if there was
a second army which would stay and protect the home. Thus, there were two
types of armies: stationary and travelling. Each vertex with no army must have
a neighbouring vertex with a travelling army. Stationary armies then dominate
their own vertices, and a vertex with two armies is dominated by its stationary
army, and its open neighbourhood is dominated by the travelling army. This
is applicable to military and commercial decision-making problems.

In order to deal with a problem of a Roman domination-type defensive strat-
egy under multiple simultaneous attacks, Álvarez-Ruiz et al. [1] initiated the
study of a new parameter related to Roman dominating function, which is
called a strong Roman domination.

Let f : V (G) → {0, 1, . . . , d∆
2 e + 1} be a function that labels the vertices

of G. Let B0 = {v ∈ V : f(v) = 0}. Then f is a strong Roman dominating
function for G, if every v ∈ B0 has a neighbor w, such that f(w) ≥ 1 +
d 1

2 |N(w) ∩ B0|e. The weight of a strong Roman dominating function is the
sum f(V ) =

∑
v∈V f(v). The minimum weight of a strong Roman dominating

function ofG is called the strong Roman domination number ofG and is denoted
by γStR(G). A strong Roman dominating function of G with weight γStR(G) is
called a γStR-function of G. For any S ⊆ V , denotes f(S) =

∑
v∈S f(v). The

graph induced by S ⊆ V is denoted by G[S]. A path on n vertices is denoted by
Pn. A vertex of degree one is called a leaf. A vertex is called a support vertex
if it is adjacent to a leaf. We let L(T ) and S(T ) denote the set of leaves and
support vertices of a tree T , respectively. Let T be a tree. If γR(T ) = γStR(T ),
then T is called a (γR, γStR)-tree.

Álvarez-Ruiz et al. [1] showed the relationship between strong Roman dom-
ination and Roman domination as follows.

Observation 1 ([1]). For any graph G, γR(G) ≤ γStR(G).

Observation 2 ([1]). For any connected graph G with ∆(G) ≤ 2, γStR(G) =
γR(G).

According to this, they posed the following problem.

Problem 1 ([1]). Characterize the graphs G with equal strong Roman domi-
nation and Roman domination numbers.

As a consequence of the definition of strong Roman domination number and
Observation 1, we have the following two observations.
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Observation 3. Let G be a connected graph. Then γR(G) = γStR(G) if and
only if every γStR-function of G is a γR-function of G.

Observation 4. Let G be a connected graph. Then γR(G) = γStR(G) if and
only if there exists a γR-function f of G such that f is a γStR-function G.

The paper is organized as follows. In Section 2, we study the properties
of trees in which strong Roman domination number and Roman domination
number are the same. In Section 3, we construct a family F of trees consisting
of {P1, P2, P3} ∪ {T : T is a tree obtained from P1, P2, P3 by a finite sequence
of operations τi for i ∈ {1, 2, . . . , 9}}. By this family, we characterize all trees
for which strong Roman domination and Roman domination numbers are the
same as follows:

Main Theorem. A tree T is a (γR, γStR)-tree if and only if T belongs to the
family F .

2. Properties of (γR, γStR)-trees

In this section, we give a series of lemmas about (γR, γStR)-trees for opera-
tions τ1 − τ9 that will be used to prove the main theorem.

Lemma 1. Let T be a (γR, γStR)-tree. Then every support vertex is adjacent
to at most two leaves.

Proof. Assume that vertex u is a support vertex and |N(u) ∩ L(T )| ≥ 3. Let
N(u) ∩ L(T ) = {vi : i = 1, 2, . . . , l} for l ≥ 3. Let f be a γStR-function of
T . If f(vi) ≥ 1 for 1 ≤ i ≤ l, then f(N(u) ∩ L(T )) ≥ 3. If f(vi) = 0 for
1 ≤ i ≤ l, then f(u) ≥ 1 + d l2e ≥ 1 + d 3

2e = 3. Without loss of generality, we
may assume that f(v1) = 0 and f(v2) ≥ 1. Then f(u) ≥ 2. Hence, in all cases
f(u) + f(N(u) ∩ L(T )) ≥ 3. By Observation 3, f is also a γR-function of T .
Define f ′ on V (T ) by f ′(x) = f(x) for x ∈ V (T )−({u}∪(N(u)∩L(T ))), f ′(u) =
2 and f ′(x) = 0 for x ∈ N(u) ∩ L(T ). Obviously f ′ is a Roman dominating
function of T with weight less than γStR(T ), which is a contradiction. �

If a support vertex u is adjacent to two leaves and d(u) = 3, then u is called
an end strong support vertex. If a support vertex u is adjacent to exactly one
leaf and d(u) = 2, then u is called an end weak support vertex.

Lemma 2. Let T be a (γR, γStR)-tree. Suppose that u is an end strong support
vertex, N(u) ∩ L(T ) = {v, v′} and N(u) \ {v, v′} = {w}. Then for any γStR-
function f of T , f(u) = 2 and f(w) = 2.

Proof. Let f be a γStR-function of T . Suppose that f(w) ≤ 1. Then, f(N [u]) ≥
3. Define f ′ on V (T ) by f ′(x) = f(x) for x ∈ V (T ) − N [u], f ′(u) = 2 and
f ′(x) = 0 for x ∈ N(u). Obviously f ′ is a Roman dominating function of
T with weight less than γStR(T ), which is a contradiction. Hence, we can
assume that f(w) ≥ 2. Since γR(T ) = γStR(T ), f is a γR-function of T . So
f(w) = 2. Suppose that f(u) = 1. Then, f(v) = f(v′) = 1. Define f ′ on
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V (T ) by f ′(x) = f(x) for x ∈ V (T ) − {u, v, v′}, f ′(u) = 2, f ′(v) = 0 and
f ′(v′) = 0. Obviously f ′ is a Roman dominating function of T with weight
less than γStR(T ), which is a contradiction. For the other case, let f(u) = 0.
Now f(v) ≥ 1 and f(v′) ≥ 1. If f(v) ≥ 2 or f(v′) ≥ 2, then define f ′ on
V (T ) by f ′(x) = f(x) for x ∈ V (T ) − {u, v, v′}, f ′(u) = 2, f ′(v) = 0 and
f ′(v′) = 0. Obviously f ′ is a Roman dominating function of T with weight less
than γStR(T ), which is a contradiction. Hence, f(v) = f(v′) = 1. Since f is a
γStR-function T , w is adjacent to at most two vertices in B0. If |N(w)∩B0| = 1,
then define f ′ on V (T ) by f ′(x) = f(x) for x ∈ V (T )− {u, v, v′, w}, f ′(u) = 2
and f ′(x) = 0 for x ∈ N(u). Obviously f ′ is a Roman dominating function of
T with weight less than γStR(T ), which is a contradiction. If |N(w)∩B0| = 2,
then assume that u′ ∈ (N(w) ∩ B0) \ {u}. Define f ′ on V (T ) by f ′(x) = f(x)
for x ∈ V (T )− {u, u′, v, v′, w}, f ′(u) = 2, f ′(x) = 0 for x ∈ N(u) and f ′(u′) =
1. Obviously f ′ is a Roman dominating function of T with weight less than
γStR(T ), which is a contradiction. Hence, f(u) = 2. �

Lemma 3. Let T be a (γR, γStR)-tree. Suppose that u is an end weak support
vertex, N(u) ∩ L(T ) = {v} and N(u) − {v} = {w}. For any γStR-function f
of T , the following hold.

(1) f(w) 6= 1.
(2) If f(w) = 2, then f(u) = 0 and f(v) = 1.
(3) If f(w) = 0, then there exists a γStR-function f

′ of T such that f ′(w) =
0, f ′(u) = 2 and f ′(v) = 0.

Proof. Let f be a γStR-function of T .
(1) Suppose that f(w) = 1. It is obvious that f(u) + f(v) ≥ 2. Define f ′

on V (T ) by f ′(x) = f(x) for x ∈ V (T ) − {u, v, w}, f ′(u) = 2, f ′(w) = 0 and
f ′(v) = 0. Obviously f ′ is a Roman dominating function of T with weight less
than γStR(T ), which is a contradiction. Hence, f(w) 6= 1.

(2) Suppose that f(w) = 2. If f(u) + f(v) ≥ 2, then define f ′ on V (T )
by f ′(x) = f(x) for x ∈ V (T ) − {u, v}, f ′(u) = 0 and f ′(v) = 1. Obviously
f ′ is a Roman dominating function of T with weight less than γStR(T ), which
is a contradiction. Hence, f(u) + f(v) ≤ 1. Since f is a γStR-function T ,
f(u) + f(v) = 1. So, f(u) = 0 and f(v) = 1.

(3) If f(w) = 0, then it is obvious that (f(u), f(v)) ∈ {(1, 1), (2, 0), (0, 2)}.
Define f ′ on V (T ) by f ′(x) = f(x) for x ∈ V (T ) − {u, v}, f ′(u) = 2 and
f ′(v) = 0. Obviously f ′ is a γStR-function of T such that f ′(w) = 0, f ′(u) = 2
and f ′(v) = 0. �

Lemma 4. Let T be a tree. Assume that P4 : vuwx is an induced subgraph
of T with d(v) = 1, d(u) = 2 and d(w) = 2. Let T ′ = T − {w, u, v}. Then
T is a (γR, γStR)-tree if and only if T ′ is a (γR, γStR)-tree and there exists a
γStR-function f

′ of T ′ such that f ′(x) ≤ 1.

Proof. It is obvious that γR(T ) = γR(T ′) + 2. Suppose that T is a (γR, γStR)-
tree. Then γR(T ) = γStR(T ). By Lemma 3, there exists a γStR-function f
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of T such that (f(w), f(u), f(v)) ∈ {(2, 0, 1), (0, 2, 0)}. If (f(w), f(u), f(v)) =
(2, 0, 1), then f(x) = 0. Otherwise, if f(x) ≥ 1, then define f ′ on V (T ) by
f ′(y) = f(y) for y ∈ V (T ) − {u, v, w}, f ′(w) = 0, f ′(u) = 2 and f ′(v) =
0. Obviously f ′ is a Roman dominating function of T with weight less than
γStR(T ), which is a contradiction. Hence, define f ′ on V (T ′) by f ′(y) = f(y)
for y ∈ V (T ′)−{x} and f ′(x) = 1. Obviously f ′ is a strong Roman dominating
function of T ′. So γStR(T ′) ≤ γStR(T )− 2. Suppose that (f(w), f(u), f(v)) =
(0, 2, 0). If f(x) = 2, then there exists exactly one vertex u′ ∈ N(x) − {w}
such that f(u′) = 0. Otherwise, define f ′ on V (T ) by f ′(y) = f(y) for y ∈
V (T ) − {x} and f ′(x) = 1. Obviously f ′ is a Roman dominating function of
T with weight less than γStR(T ), which is a contradiction. Hence, define f ′

on V (T ′) by f ′(y) = f(y) for y ∈ V (T ′) − {x, u′}, f ′(u′) = 1 and f ′(x) = 1.
Obviously f ′ is a strong Roman dominating function of T ′. So γStR(T ′) ≤
γStR(T )−2. If f(x) ≤ 1, then define f ′ on V (T ′) by f ′(y) = f(y) for y ∈ V (T ′).
Obviously f ′ is a strong Roman dominating function for T ′. So γStR(T ′) ≤
γStR(T ) − 2. Hence, in all cases, γStR(T ′) ≤ γStR(T ) − 2. It follows that
γR(T ) = γR(T ′) + 2 ≤ γStR(T ′) + 2 ≤ γStR(T ). So γR(T ′) = γStR(T ′) and
γStR(T ) = γStR(T ′) + 2. Hence, T ′ is a (γR, γStR)-tree and there exists a
γStR-function f ′ of T ′ such that f ′(x) ≤ 1.

Conversely, let f ′ be a γStR-function of T ′ such that f ′(x) ≤ 1. Define f
on V (T ) by f(y) = f ′(y) for y ∈ V (T ′), f(w) = 0, f(u) = 2 and f(v) = 0.
Obviously f is a strong Roman dominating function of T . So γStR(T ) ≤
γStR(T ′)+2. So γStR(T ) ≤ γStR(T ′)+2 = γR(T ′)+2 = γR(T ). By Observation
1, γR(T ) = γStR(T ) and T is a (γR, γStR)-tree. �

Lemma 5. Let T be a tree. Suppose that w is adjacent to two end strong
support vertices u1 and u2. Say N(ui) − {w} = {vi, ti} for i = 1, 2. Let T ′ =
T−{u1, v1, t1}. Then T is a (γR, γStR)-tree if and only if T ′ is a (γR, γStR)-tree.

Proof. It is obvious that γR(T ) = γR(T ′) + 2. Suppose that T is a (γR, γStR)-
tree. Then γR(T ) = γStR(T ). By Lemma 2, for any γStR-function f of T ,
f(w) = f(u1) = f(u2) = 2. Define f ′ on V (T ′) by f ′(x) = f(x) for x ∈ V (T ′).
Obviously f ′ is a strong Roman dominating function of T ′. So γStR(T ′) ≤
γStR(T )− 2. It follows that γR(T ) = γR(T ′) + 2 ≤ γStR(T ′) + 2 ≤ γStR(T ). So
γR(T ′) = γStR(T ′) and T ′ is a (γR, γStR)-tree.

Conversely, let f ′ be a γStR-function of T ′. By Lemma 2, f ′(w) = 2. Define
f on V (T ) by f(x) = f ′(x) for x ∈ V (T ′), f(u1) = 2, f(v1) = 0 and f(t1) = 0.
Obviously f is a strong Roman dominating function of T . So γStR(T ) ≤
γStR(T ′) + 2. Hence γStR(T ) ≤ γStR(T ′) + 2 = γR(T ′) + 2 = γR(T ). By
Observation 1, γR(T ) = γStR(T ) and T is a (γR, γStR)-tree. �

Lemma 6. Let T be a tree. Suppose that d(w) = 3, 4 and {u1, u2, u3} ⊆ N(w),
where u1 is an end strong support vertex, ui is a leaf or an end weak support
vertex for i = 2, 3. Let T ′ = T − ((N [u1] ∪N(u2) ∪N(u3))− {w}). Then T is
a (γR, γStR)-tree if and only if T ′ is a (γR, γStR)-tree.
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Proof. Let l = |{ui : ui is an end weak support vertex for i ∈ {2, 3}}|, where
l ∈ {0, 1, 2}. It is obvious that γR(T ) = γR(T ′) + l + 2. Suppose that T
is a (γR, γStR)-tree. Then γR(T ) = γStR(T ). By Lemma 2, for any γStR-
function f of T , f(w) = f(u1) = 2. Define f ′ on V (T ′) by f ′(x) = f(x)
for x ∈ V (T ′). Obviously f ′ is a strong Roman dominating function of T ′.
So γStR(T ′) ≤ γStR(T ) − l − 2. It follows that γR(T ) = γR(T ′) + l + 2 ≤
γStR(T ′) + l + 2 ≤ γStR(T ). So γR(T ′) = γStR(T ′) and T ′ is a (γR, γStR)-tree.

Conversely, let f ′ be a γStR-function of T ′. By Lemma 2, f ′(w) = 2. Define
f on V (T ) by f(x) = f ′(x) for x ∈ V (T ′), f(u1) = 2, f(x) = 0 for x ∈
N(u1) ∩ L(T ) and f(x) = 1 for x ∈ N({u2, u3}) ∩ L(T ). Obviously f is a
strong Roman dominating function of T . So γStR(T ) ≤ γStR(T ′)+ l+2. Hence
γStR(T ) ≤ γStR(T ′) + l + 2 = γR(T ′) + l + 2 = γR(T ). So γR(T ) = γStR(T )
and T is a (γR, γStR)-tree. �

Lemma 7. Let T be a tree. Suppose that d(w) = 3 and {u1, u2} ⊆ N(w),
where u1 is an end strong support vertex, u2 is an end weak support vertex.
Let T ′ = T − (N [u1]− {w}). Then T is a (γR, γStR)-tree if and only if T ′ is a
(γR, γStR)-tree and there exists a γStR-function f

′ of T ′ such that f ′(w) = 2.

Proof. It is obvious that γR(T ) = γR(T ′) + 2. Suppose that T is a (γR, γStR)-
tree. By Lemma 2, for any γStR-function f of T , f(w) = f(u1) = 2. Define
f ′ on V (T ′) by f ′(x) = f(x) for x ∈ V (T ′). Obviously f ′ is a strong Roman
dominating function for T ′. So γStR(T ′) ≤ γStR(T )−2. It follows that γR(T ) =
γR(T ′) + 2 ≤ γStR(T ′) + 2 ≤ γStR(T ). So γR(T ′) = γStR(T ′) and γStR(T ) =
γStR(T ′) + 2. Hence T ′ is a (γR, γStR)-tree and there exists a γStR-function f ′

of T ′ such that f ′(w) = 2.
Conversely, let f ′ be a γStR-function of T ′ with f ′(w) = 2. Define f on V (T )

by f(x) = f ′(x) for x ∈ V (T ′), f(u1) = 2 and f(x) = 0 for x ∈ N(u1) ∩ L(T ).
Obviously f is a strong Roman dominating function of T . So γStR(T ) ≤
γStR(T ′) + 2. Hence γStR(T ) ≤ γStR(T ′) + 2 = γR(T ′) + 2 = γR(T ). So
γR(T ) = γStR(T ) and T is a (γR, γStR)-tree. �

Lemma 8. Let T be a tree. Suppose that N(w) = {u1, u2, x}, where u1 is an
end strong support vertex and u2 is a leaf. Let T ′ = T − (N [u1] ∪ {u2}). Then
T is a (γR, γStR)-tree if and only if T ′ is a (γR, γStR)-tree and there exists a
γStR-function f

′ of T ′ such that f ′(x) = 1.

Proof. It is obvious that γR(T ) = γR(T ′) + 3. Suppose that T is a (γR, γStR)-
tree. By Lemma 2, for any γStR-function f of T , f(w) = f(u1) = 2. It is
obvious that f(x) = 0. Define f ′ on V (T ′) by f ′(y) = f(y) for y ∈ V (T ′)−{x}
and f ′(x) = 1. Obviously f ′ is a strong Roman dominating function of T ′. So
γStR(T ′) ≤ γStR(T )− 3. It follows that γR(T ) = γR(T ′) + 3 ≤ γStR(T ′) + 3 ≤
γStR(T ). So γR(T ′) = γStR(T ′) and γStR(T ) = γStR(T ′) + 3. Hence, T ′ is a
(γR, γStR)-tree and there exists a γStR-function f ′ of T ′ such that f ′(x) = 1.

Conversely, let f ′ be a γStR-function of T ′ with f ′(x) = 1. Since T ′ is a
(γR, γStR)-tree, it follows that f ′(y) ≤ 1 for y ∈ N(x) − {w}. Define f on
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V (T ) by f(y) = f ′(y) for y ∈ V (T ′)− {x}, f(x) = 0, f(w) = 2, f(u1) = 2 and
f(y) = 0 for y ∈ N({w, u1})∩L(T ). Obviously f is a strong Roman dominating
function of T . So γStR(T ) ≤ γStR(T ′) + 3. Hence γStR(T ) ≤ γStR(T ′) + 3 =
γR(T ′) + 3 = γR(T ). So γR(T ) = γStR(T ) and T is a (γR, γStR)-tree. �

Lemma 9. Let T be a tree. Suppose that d(w) = 3 and {u1, u2} ⊆ N(w),
where u1 is an end weak support vertex, u2 is a leaf or an end weak support
vertex. Let T ′ = T − ((N(u1) ∪ N(u2)) ∩ L(T )). Then T is a (γR, γStR)-tree
and there exists a γStR-function f of T such that f(w) = 2 if and only if T ′ is
a (γR, γStR)-tree.

Proof. Define l = 1 if u2 is an end weak support vertex, otherwise l = 0. It is
obvious that γR(T ) = γR(T ′) + l + 1. Let f be a γStR-function of T such that
f(w) = 2. Define f ′ on V (T ′) by f ′(x) = f(x) for x ∈ V (T ′). Obviously f ′

is a strong Roman dominating function of T ′. So γStR(T ′) ≤ γStR(T )− l − 1.
It follows that γR(T ) = γR(T ′) + l + 1 ≤ γStR(T ′) + l + 1 ≤ γStR(T ). So
γR(T ′) = γStR(T ′) and T ′ is a (γR, γStR)-tree.

Conversely, let f ′ be a γStR-function of T ′. By Lemma 2, f ′(w) = 2. Define
f on V (T ) by f(x) = f ′(x) for x ∈ V (T ′) and f(x) = 1 for x ∈ N({u1, u2}) ∩
L(T ). Obviously f is a strong Roman dominating function of T . So γStR(T ) ≤
γStR(T ′)+l+1. Hence γStR(T ) ≤ γStR(T ′)+l+1 = γR(T ′)+l+1 = γR(T ). So
γR(T ) = γStR(T ) and γStR(T ) = γStR(T ′)+ l+1. Hence, T is a (γR, γStR)-tree
and there exists a γStR-function f of T such that f(w) = 2. �

Lemma 10. Let T be a tree. Suppose that {w1, w2} ⊆ N(x) and N(w1) =
{x, u1, u2}, where w2 and u1 are end weak support vertices and u2 is a leaf
or an end weak support vertex. Let T ′ = T − (N [u1] ∪ N [u2]). Then T is a
(γR, γStR)-tree and there exists a γStR-function f of T such that f(w1) = 0
if and only if T ′ is a (γR, γStR)-tree and there exists a γStR-function f ′ of T ′

such that f ′(x) = 0.

Proof. Define l = 1 if u2 is an end weak support vertex, otherwise l = 0. It
is obvious that γR(T ) = γR(T ′) + l + 3. Let f be a γStR-function of T such
that f(w1) = 0. By Lemma 3, f(x) = 0. Define f ′ on V (T ′) by f ′(y) = f(y)
for y ∈ V (T ′). Obviously f ′ is a strong Roman dominating function for T ′. So
γStR(T ′) ≤ γStR(T )− l−3. It follows that γR(T ) = γR(T ′)+ l+3 ≤ γStR(T ′)+
l+3 ≤ γStR(T ). So γR(T ′) = γStR(T ′) and γStR(T ) = γStR(T ′)+ l+3. Hence,
T ′ is a (γR, γStR)-tree and there exists a γStR-function f ′ of T ′ such that
f ′(x) = 0.

Conversely, let f ′ be a γStR-function of T ′ with f ′(x) = 0. Define f on V (T )
by f(z) = f ′(z) for z ∈ V (T ′), f(u1) = 2 and f(z) = 0 for z ∈ N({u1, u2}). If
u2 is an end weak support vertex, f(u2) = 2, otherwise, f(u2) = 1. Obviously
f is a strong Roman dominating function of T . So γStR(T ) ≤ γStR(T ′) + l+ 3.
Hence γStR(T ) ≤ γStR(T ′)+l+3 = γR(T ′)+l+3 = γR(T ). So γR(T ) = γStR(T )
and γStR(T ) = γStR(T ′) + l+ 3. Hence, T is a (γR, γStR)-tree and there exists
a γStR-function f of T such that f(w1) = 0. �
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Lemma 11. Let T be a tree. Suppose that d(x) = 3 and N(x) = {y, w1, w2}
and N(w1) = {x, u1, u2}, where u1 is an end weak support vertex, w2 is a leaf
and u2 is a leaf or an end weak support vertex. Let T ′ = T − ((N [u1]∪N [u2])∪
{x,w2}). Then T is a (γR, γStR)-tree and there exists a γStR-function f of T
such that f(w1) = 0 if and only if T ′ is a (γR, γStR)-tree and there exists a
γStR-function f

′ of T ′ such that f ′(y) = 2 and y is a leaf of T ′.

Proof. Define l = 1 if u2 is an end weak support vertex, otherwise l = 0. It is
obvious that γR(T ) = γR(T ′) + l + 4. Let f be a γStR-function of T such that
f(w1) = 0. Then by Lemma 3, f(u1) = 2. Since γR(T ) = γStR(T ), f is a γR-
function of T . Hence, f(v) ≤ 2 for any v ∈ V (T ). If f(x) = 2, then f(w2) = 0.
Since f is a γStR-function of T , it follows that f(y) ≥ 1. Define f1 on V (T ) by
f1(z) = f(z) for z ∈ V (T ′), f1(w1) = 2, f1(z) = 0 for z ∈ N(w1), and f1(z) = 1
for z ∈ N(N(w1))−{y}. It is obvious that f1 is a Roman dominating function
of T . So γR(T ) ≤ f1(V (T )) = f(V (T )) − 1 = γStR(T ) − 1 = γR(T ) − 1,
which is a contradiction. Hence, f(x) ≤ 1. If f(x) = 1, then f(w2) = 1.
Then define f1 on V (T ) as above. It is obvious that f1 is a Roman dominating
function of T . So γR(T ) ≤ f1(V (T )) = f(V (T )) − 1 = γR(T ) − 1, which
is a contradiction. Hence, f(x) = 0. Then f(w2) ≥ 1. If f(w2) = 2, then
define f1 on V (T ) as above. It is obvious that f1 is a Roman dominating
function of T . So γR(T ) ≤ f1(V (T )) = f(V (T )) − 1 = γR(T ) − 1, which is
a contradiction. Hence, f(w2) = 1. By the definition of Roman domination,
f(y) = 2. Suppose that dT (y) ≥ 3. Say NT (y) − {x} = {z1, z2, . . . , zl}. Then
l ≥ 2. Since f is a γStR-function of T , it follows that there exists at most
one vertex zi ∈ N(y)− {x} with f(zi) = 0. Without loss of generality, we can
assume that f(zi) ≥ 1 for 2 ≤ i ≤ l. If there exists zi such that f(zi) = 1, where
i ∈ {2, . . . , l}, then define f1 on V (T ) by f1(z) = f(z) for z ∈ V (T )−{zi} and
f1(zi) = 0. It is obvious that f1 is a Roman dominating function of T whose
weight is less than γR(T ), which is a contradiction. Hence, we can assume that
f(zi) = 2 for 2 ≤ i ≤ l.

Define f1 on V (T ) by f1(z) = f(z) for z ∈ V (T ′) − {y, z1}, f1(w1) = 2,
f1(z) = 0 for z ∈ N(w1), and f1(z) = 1 for z ∈ N(N(w1)) − {y}, f1(y) = 0.
If f(z1) = 0, f1(z1) = 1, otherwise, f1(z1) = f(z1). It is obvious that f1

is a Roman dominating function of T . So γR(T ) ≤ f1(V (T )) < f(V (T )) =
γStR(T ) = γR(T ), which is a contradiction. Hence, dT (y) = 2. So, f(u1) = 2,
f(x) = 0, f(y) = 2, f(w2) = 1 and dT (y) = 2.

Define f ′ on V (T ′) by f ′(z) = f(z) for z ∈ V (T ′). Obviously f ′ is a strong
Roman dominating function for T ′. So γStR(T ′) ≤ γStR(T )− l − 4. It follows
that γR(T ) = γR(T ′)+l+4 ≤ γStR(T ′)+l+4 ≤ γStR(T ). So γR(T ′) = γStR(T ′)
and γStR(T ) = γStR(T ′) + l+ 4. Hence, T ′ is a (γR, γStR)-tree and there exists
a γStR-function f ′ of T ′ such that f ′(y) = 2 and dT ′(y) = 1.

Conversely, let f ′ be a γStR-function of T ′ with f ′(y) = 2. Define f on
V (T ) by f(z) = f ′(z) for z ∈ V (T ′), f(u1) = 2, f(w2) = 1, f(x) = 0 and
f(z) = 0 for z ∈ N({u1, u2}). If u2 is an end weak support vertex, f(u2) = 2,
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otherwise, f(u2) = 1. Obviously f is a strong Roman dominating function
for T . So γStR(T ) ≤ γStR(T ′) + l + 4. Hence γStR(T ) ≤ γStR(T ′) + l + 4 =
γR(T ′) + l+ 4 = γR(T ). So γR(T ) = γStR(T ) and γStR(T ) = γStR(T ′) + l+ 4.
Hence, T is a (γR, γStR)-tree and there exists a γStR-function f of T such that
f(w1) = 0. �

Lemma 12. Let T be a tree. Suppose that N(x) = {y, w} and N(w) =
{x, u1, u2}, where u1 is an end weak support vertex and u2 is a leaf or an
end weak support vertex. Let T ′ = T − (N [u1] ∪ N [u2] ∪ {x}). Then T is a
(γR, γStR)-tree and there exists a γStR-function f of T such that f(w) = 0 if
and only if T ′ is a (γR, γStR)-tree and there exists a γStR-function f ′ of T ′

such that f ′(y) = 2 and y is a leaf of T ′.

Proof. Define l = 1 if u2 is an end weak support vertex, otherwise l = 0. It
is obvious that γR(T ) = γR(T ′) + l + 3. Let f be a γStR-function of T such
that f(w) = 0. Then f(u1) = 2, f(x) = 0 and f(y) = 2. Furthermore,
dT (y) = 2 by a similar reason in the proof of Lemma 11. Define f ′ on V (T ′)
by f ′(z) = f(z) for z ∈ V (T ′). Obviously f ′ is a strong Roman dominating
function of T ′. So γStR(T ′) ≤ γStR(T ) − l − 3. It follows that γR(T ) =
γR(T ′) + l + 3 ≤ γStR(T ′) + l + 3 ≤ γStR(T ). So γR(T ′) = γStR(T ′) and
γStR(T ) = γStR(T ′) + l + 3. Hence, T ′ is a (γR, γStR)-tree and there exists a
γStR-function f ′ of T ′ such that f ′(y) = 2 and dT ′(y) = 1.

Conversely, let f ′ be a γStR-function of T ′ with f ′(y) = 2. Define f on
V (T ) by f(z) = f ′(z) for z ∈ V (T ′), f(u1) = 2, f(x) = 0 and f(z) = 0 for
z ∈ N({u1, u2}). If u2 is an end weak support vertex, f(u2) = 2, otherwise,
f(u2) = 1. Obviously f is a strong Roman dominating function of T . So
γStR(T ) ≤ γStR(T ′) + l+ 3. So γStR(T ) ≤ γStR(T ′) + l+ 3 = γR(T ′) + l+ 3 =
γR(T ). Hence γR(T ) = γStR(T ) and γStR(T ) = γStR(T ′) + l + 3. So, T is a
(γR, γStR)-tree and there exists a γStR-function f of T such that f(w) = 0. �

Lemma 13. Let T be a tree. Suppose that {w1, w2} ⊆ N(x) and N(wi)−{x} =
{ui, ti} for i = 1, 2, where u1, t1, u2 are end weak support vertices and t2 is a
leaf or an end weak support vertex. Let T ′ = T − (N [u2] ∪N [t2]). Then T is
a (γR, γStR)-tree and there exists a γStR-function f of T such that f(w1) = 0
if and only if T ′ is a (γR, γStR)-tree and there exists a γStR-function f ′ of T ′

such that f ′(w1) = 0.

Proof. Define l = 1 if t2 is an end weak support vertex, otherwise l = 0.
It is obvious that γR(T ) = γR(T ′) + l + 3. Let f be a γStR-function of T
such that f(w1) = 0. Then f(x) = 0, f(w2) = 0 and f(u2) = 2. If t2
is an end weak support vertex, f(t2) = 2, otherwise, f(t2) = 1. Define f ′

on V (T ′) by f ′(z) = f(z) for z ∈ V (T ′). Obviously f ′ is a strong Roman
dominating function for T ′. So γStR(T ′) ≤ γStR(T ) − l − 3. It follows that
γR(T ) = γR(T ′) + l + 3 ≤ γStR(T ′) + l + 3 ≤ γStR(T ). So γR(T ′) = γStR(T ′)
and γStR(T ) = γStR(T ′) + l+ 3. Hence, T ′ is a (γR, γStR)-tree and there exists
a γStR-function f ′ of T ′ such that f ′(w1) = 0.
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Conversely, let f ′ be a γStR-function of T ′ with f ′(w1) = 0. Define f on V (T )
by f(z) = f ′(z) for z ∈ V (T ′), f(u2) = 2 and f(z) = 0 for z ∈ N({u2, t2}). If
t2 is an end weak support vertex, f(t2) = 2, otherwise, f(t2) = 1. Obviously f
is a strong Roman dominating function of T . So γStR(T ) ≤ γStR(T ′)+ l+3. So
γStR(T ) ≤ γStR(T ′) + l+ 3 = γR(T ′) + l+ 3 = γR(T ). Hence γR(T ) = γStR(T )
and γStR(T ) = γStR(T ′) + l + 3. So T is a (γR, γStR)-tree and there exists a
γStR-function f of T such that f(w1) = 0. �

By a similar proof as Lemma 13, we give the following result. The proof is
omitted.

Lemma 14. Let T be a tree. Suppose that {w1, w2} ⊆ N(x) and N(wi)−{x} =
{ui, ti} for i = 1, 2, where u1, u2 are end weak support vertices and t1, t2 are
leaves. Let T ′ = T−(N [u2]∪{t2}). Then T is a (γR, γStR)-tree and there exists
a γStR-function f of T such that f(w1) = 0 if and only if T ′ is a (γR, γStR)-tree
and there exists a γStR-function f

′ of T ′ such that f ′(w1) = 0.

3. A characterization of (γR, γStR)-trees

In the following, we construct a family F of trees with equal strong Roman
domination and Roman domination numbers. For this purpose, we introduce
some additional notation. Let Pk : v1, v2, . . . , vk be a path with order k. Let
a double star S(1, 2) be obtained from P4 and a vertex v5 by joining an edge
v3v5. Let T be a tree. Let f be a γStR-function of T . Let’s denote f by
f = (f(v1), f(v2), . . . , f(vn)). For any tree T ∈ F , we denote z(T ) by a
collection of γStR-functions of T . Define BTi = {v : there exists f ∈ z(T ) such
that f(v) = i} for i = 0, 1, 2. It is obvious that if z(T ) is given, then BTi is
determined. Hence we only give z(T ) for any tree T .

Firstly, if T = Pi for i = 1, 2, 3, then z(T ) = {f : f is a γStR-function
of T such that f(vi) ≤ 2 for i = 1, 2, . . . , n}. For example, z(P1) = {(1)},
z(P2) = {(1, 1), (0, 2), (2, 0)}, z(P3) = {(0, 2, 0)}.

Let T ′ ∈ F be a tree with z(T ′). We construct a new tree T with z(T ) by
the following operations on the tree T ′ as follows:
• Operation τ1 (Lemma 5). Suppose that u is an end strong support vertex

of a tree T ′. Say N(u) − L(T ′) = {w}. A tree T is obtained from the tree
T ′ by adding a P3 and an edge between w and v2. For any f ∈ z(T ), f can
be obtained from a f ′ ∈ z(T ′) by defining f(x) = f ′(x) for x ∈ V (T ′) and
f(P3) = (0, 2, 0).
• Operation τ2 (Lemma 6). Suppose that w is a support vertex with degree

two or an end strong support vertex. Say N(w) ∩ L(T ′) = {u1, u2}. A tree T
is obtained from the tree T ′ by adding a P3 and an edge between w and v2.
For each ui, do nothing or add a new vertex ti and give an edge between ui
and ti. For any f ∈ z(T ), f can be obtained from a f ′ ∈ z(T ′) by defining
f(x) = f ′(x) for x ∈ V (T ′), f(P3) = (0, 2, 0) and f(ti) = 1 if ui is adjacent to
a leaf ti for i = 1, 2.



TREES WITH EQUAL STRONG ROMAN DOMINATION NUMBER... 41

• Operation τ3 (Lemma 7). Suppose that w ∈ BT ′

2 , N(w) = {x, u} and u is
an end weak support vertex. A tree T is obtained from the tree T ′ by adding
a P3 and an edge between w and v2. For any f ∈ z(T ), f can be obtained
from a f ′ ∈ z(T ′) with f ′(w) = 2 by defining f(x) = f ′(x) for x ∈ V (T ′) and
f(P3) = (0, 2, 0).

• Operation τ4 (Lemma 8). Suppose that x ∈ BT ′

1 . A tree T is obtained from
the tree T ′ by adding a double star S(1, 2) and an edge between x and v2. For
any f ∈ z(T ), f can be obtained from a f ′ ∈ z(T ′) with f ′(x) = 1 by defining
f(z) = f ′(z) for z ∈ V (T ′)− {x}, f(x) = 0 and f(S(1, 2)) = (0, 2, 2, 0, 0).
• Operation τ5 (Lemma 9). Suppose that w is an end strong support vertex.

Say N(w) ∩ L(T ′) = {u1, u2}. For each ui, a tree T is obtained from the tree
T ′ by adding a new vertex ti and an edge between them or doing nothing. For
any f ∈ z(T ), f can be obtained from a f ′ ∈ z(T ′) by defining f(x) = f ′(x)
for x ∈ V (T ′) and f(x) = 1 for x ∈ V (T )− V (T ′).

• Operation τ6 (Lemma 10). Suppose that w ∈ BT ′

0 , N(w) = {x, u} and u is
a leaf. A tree T is obtained from the tree T ′ by adding a P5 or P4 and an edge
between w and v3. For any f ∈ z(T ), f can be obtained from a f ′ ∈ z(T ′)
with f ′(x) = 0 by defining f(z) = f ′(z) for z ∈ V (T ′) and f(P5) = (0, 2, 0, 2, 0)
or f(P4) = (0, 2, 0, 1).
• Operation τ7 (Lemma 11, Lemma 12). Suppose that y is a leaf with

y ∈ BT ′

2 . A tree T is obtained from the tree T ′ by adding a new vertex x
and edge yx, adding a P5 or P4 and an edge xv3. For vertex x, do nothing or
add a new vertex w2 and an edge between them. For any f ∈ z(T ), f can
be obtained from a f ′ ∈ z(T ′) with f ′(y) = 2 by defining f(z) = f ′(z) for
z ∈ V (T ′), f(x) = 0 and f(P5) = (0, 2, 0, 2, 0) or f(P4) = (0, 2, 0, 1). If x is
adjacent to a leaf w2, then f(w2) = 1.

• Operation τ8 (Lemma 13, Lemma 14). Suppose that w ∈ BT ′

0 and N(w) =
{x, u1, u2}, where u1 is an end weak support vertex and u2 is a leaf or an end
weak support vertex. A tree T is obtained from the tree T ′ by adding a P5

or P4 and an edge between x and v3. For any f ∈ z(T ), f can be obtained
from a f ′ ∈ z(T ′) with f ′(w) = 0 by defining f(z) = f ′(z) for z ∈ V (T ′) and
f(P5) = (0, 2, 0, 2, 0) or f(P4) = (0, 2, 0, 1).

• Operation τ9 (Lemma 4). Suppose that x ∈ V (T ′) with x ∈ BT ′

0 ∪ BT
′

1 . A
tree T is obtained from the tree T ′ by adding a P3 and an edge between x and
v3. For any f ∈ z(T ), f can be obtained from a f ′ ∈ z(T ′) with f ′(x) ≤ 1
by defining f(z) = f ′(z) for z ∈ V (T ′) and f(P3) = (0, 2, 0). If f ′(x) = 1,
then f can also defined by f(z) = f ′(z) for z ∈ V (T ′) − {x}, f(x) = 0 and
f(P3) = (1, 0, 2). Suppose that x is a leaf in T ′ and y is its neighbor. If f ′(x) = 1
and f ′(y) = 1, then f can also defined by f(z) = f ′(z) for z ∈ V (T ′)− {x, y},
f(x) = 2, f(y) = 0 and f(P3) ∈ {(1, 1, 0), (0, 2, 0), (2, 0, 0)}.

Let F be the family of trees consisting of {P1, P2, P3} ∪ {T : T is a tree ob-
tained from P1, P2, P3 by a finite sequence of operations τi for i ∈ {1, 2, . . . , 9}}.
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We show first that each tree in the family F has equal strong Roman domina-
tion number and Roman domination number.

Theorem 1. If T belongs to the family F , then T is a (γR, γStR)-tree.

Proof. We proceed by induction on the number of operations h(T ) required to
construct the tree T . If h(T ) = 0, then T ∈ {P1, P2, P3} and clearly T is a
(γR, γStR)-tree. Assume now that T is a tree with h(T ) = k for some positive
integer k and each tree T ′ ∈ F with h(T ′) < k is a (γR, γStR)-tree. Then T can
be obtained from a tree T ′ belonging to F by operation τi for i ∈ {1, 2, . . . , 9}.
By Lemmas 4-14, T is a (γR, γStR)-tree. �

We show next that every (γR, γStR)-tree belongs to the family F .

Theorem 2. If T is a (γR, γStR)-tree, then T belongs to the family F .
Proof. Let T be a (γR, γStR)-tree. If diam(T ) ≤ 2, then T is P1, P2 or P3. It
is clear that the statement is true. For this reason, we only consider trees T
with diam(T ) ≥ 3.

Let T be a (γR, γStR)-tree and assume that the result holds for all trees on
n(T )−1 and fewer vertices. We proceed by induction on the number of vertices
of a (γR, γStR)-tree.

Assume that γR(T ) = γStR(T ). Let P = t · · · yxwuv be the longest path in
T chosen to maximize d(u). Consider t as a root of T . For any vertex z ∈ V ,
let Tz denote the subtree of T including z and its descendants. Let f be a
StR-function of T . By Lemma 1, d(u) ≤ 3.

Case 1: d(u) = 3. If w is adjacent to the center of another P3, then let
T ′ = T − Tu. By Lemma 5, γR(T ′) = γStR(T ′). By induction hypothesis,
T ′ ∈ F . Hence T is obtained from T ′ by operation τ1. Hence, T ∈ F . Without
loss of generality, we can assume that each child of w except u is a leaf or an
end weak support vertex. Let s and l denote the number of end weak support
vertices and leaves that are adjacent to w, respectively. Since f is a StR-
function of T , f(u) = f(w) = 2. Hence, s+ l ≤ 2. If s+ l = 0, then d(w) = 2.
It is obvious that γR(T ) 6= γStR(T ). Hence 1 ≤ s + l ≤ 2. If s + l = 2, say
N(w) ∩ (L(T ) ∪ S(T )) = {t1, t2, u}, then define T ′ = T − {((N(t1) ∪N(t2)) ∩
L(T )) ∪ (N [u] − {w})}. By Lemma 6, γR(T ′) = γStR(T ′). Hence, T ′ is a
(γR, γStR)-tree and by induction hypothesis, T ′ ∈ F . So T is obtained from T ′

by operation τ2. Hence, T ∈ F . If s = 1 and l = 0, define T ′ = T − Tu. By
Lemma 7, γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such
that f ′(w) = 2. By induction hypothesis, T ′ ∈ F . Hence T is obtained from
T ′ by operation τ3. So, T ∈ F . If l = 1 and s = 0, define T ′ = T − Tw. By
Lemma 8, γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such
that f ′(x) = 1. By induction hypothesis, T ′ ∈ F . Hence T is obtained from T ′

by operation τ4. So, T ∈ F .
Case 2: d(u) = 2. Let s and l denote the number of end weak support

vertices and leaves that are adjacent to w, respectively. By Lemma 3, we can
assume that f(w) = 2 or f(w) = 0.
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Case 2.1: f(w) = 2. Then s + l ≤ 2. If s = 2, then assume that N(w) ∩
S(T ) = {u, u′} and N({u, u′}) ∩ L(T ) = {v1, v2}. Let T ′ = T − {v1, v2}. By
Lemma 9, γR(T ′) = γStR(T ′). Hence, T ′ is a (γR, γStR)-tree and by induction
hypothesis, T ′ ∈ F . So T is obtained from T ′ by operation τ5. Hence, T ∈ F .

If s = l = 1, then let T ′ = T − {v}. By Lemma 9, γR(T ′) = γStR(T ′).
Hence, T ′ is a (γR, γStR)-tree and by induction hypothesis, T ′ ∈ F . So T is
obtained from T ′ by operation τ5. Hence, T ∈ F .

If s = 1 and l = 0, then let T ′ = T − Tw. By Lemma 4, γR(T ′) = γStR(T ′)
and there exists a γStR-function f ′ of T ′ such that f ′(x) ≤ 1. By induction
hypothesis, T ′ ∈ F . Hence T is obtained from T ′ by operation τ9. So, T ∈ F .

Case 2.2: f(w) = 0. Then s + l ≤ 2 with s ≥ 1. If s = 2, then l = 0. If
s = 1, then l ≤ 1. If s = 1 and l = 0, then let T ′ = T − Tw. By Lemma 4,
γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such that f ′(x) ≤ 1.
By induction hypothesis, T ′ ∈ F . Hence T is obtained from T ′ by operation
τ9. So, T ∈ F .

Without loss of generality, we may assume that s = 2 and l = 0 or s = l = 1.
Since γR(T ) = γStR(T ), it follows that without loss of generality, we may
assume that s = 2 and l = 0 or s = l = 1. Hence, w is the central vertex
of P5 or w is the support vertex of P4. Suppose that x is adjacent to an end
strong support vertex t. By Lemma 2, f(t) = 2 and f(x) = 2. Since f is a γStR-
function of T and f(w) = 0, there exists at most one vertex w1 ∈ NT (x)−{w, t}
such that f(w1) = 0. Define f1 on V (T ) by f1(z) = f(z) for z ∈ V (T )−{x,w1},
f1(x) = 0 and f1(w1) = 1 if there exists vertex w1. It is obvious that f1 is
a Roman dominating function of T . So γR(T ) ≤ f1(V (T )) < f(V (T )) =
γStR(T ) = γR(T ), which is a contradiction. Hence, x is not adjacent to an end
strong support vertex. So, among descendant of x, x is only adjacent to a leaf,
an end weak support vertex, or the vertex v3 of P4, P5 or P3.

If x is adjacent to the vertex v3 of P4 or P5, then let T ′ = T − V (P4) or
T ′ = T − V (P5). By Lemma 13 and Lemma 14, γR(T ′) = γStR(T ′) and there
exists a γStR-function f ′ of T ′ such that f ′(w) = 0. By induction hypothesis,
T ′ ∈ F . Hence T is obtained from T ′ by operation τ8. Hence, T ∈ F . If
x is adjacent to the vertex v3 of P3, then let T ′ = T − V (P3). By Lemma 4,
γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such that f ′(x) ≤ 1.
By induction hypothesis, T ′ ∈ F . Hence T is obtained from T ′ by operation
τ9. Hence, T ∈ F . Without loss of generality, we may assume that x is not
adjacent to the vertex v3 of P4,P5 and P3.

If x is adjacent to an end weak support vertex x
′
, then let T ′ = T − Tw. By

Lemma 10, γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such
that f ′(x) = 0. By induction hypothesis, T ′ ∈ F . Hence T is obtained from T ′

by operation τ6. Hence, T ∈ F .
Without loss of generality, we may assume that x is adjacent to an leaf x

′
.

Then x is adjacent to exactly one leaf. Say y ∈ N(x) − {w, x′}. By a similar
reason in the proof of Lemma 11, f(y) = 2 and d(y) = 2. Let T ′ = T − Tx. By
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Lemma 11, γR(T ′) = γStR(T ′) and there exists a γStR-function f ′ of T ′ such
that f ′(y) = 2 and dT ′(y) = 1. By induction hypothesis, T ′ ∈ F . Hence T is
obtained from T ′ by operation τ7. Hence, T ∈ F .

If d(x) = 2, say y ∈ N(x) − {w}, then f(y) = 2 and d(y) = 2. Let
T ′ = T − Tx. By Lemma 12, γR(T ′) = γStR(T ′) and there exists a γStR-
function f ′ of T ′ such that f ′(y) = 2 and dT ′(y) = 1. By induction hypothesis,
T ′ ∈ F . Hence T is obtained from T ′ by operation τ7. So, T ∈ F . �

As an immediate consequence of Theorems 1 and 2 we have the following
characterization of (γR, γStR)-trees.

Theorem 3. A tree T is a (γR, γStR)-tree if and only if T belongs to the family
F .
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