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ON [1,2]-DOMINATION IN TREES

XUE-GANG CHEN AND M0OO YOUNG SOHN

ABSTRACT. Chellai et al. [3] gave an upper bound on the [1, 2]-domination
number of tree and posed an open question “how to classify trees satis-
fying the sharp bound?”. Yang and Wu [5] gave a partial solution for
tree of order n with ¢-leaves such that every non-leaf vertex has degree at
least 4. In this paper, we give a new upper bound on the [1, 2]-domination
number of tree which extends the result of Yang and Wu. In addition,
we design a polynomial time algorithm for solving the open question. By
using this algorithm, we give a characterization on the [1,2]-domination
number for trees of order n with ¢ leaves satisfying n — £. Thereby, the
open question posed by Chellai et al. is solved.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G =
(V, E) be a graph with |[V| = n. The neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by N(v) and N[v] = N(v) U {v},
respectively. The graph induced by S C V is denoted by G[S]. Let G — S
denote the induced subgraph G[V — S]. A tree is a connected graph that
contains no cycles. A leaf of a tree T is a vertex of degree 1. We denote the
set of leaves in tree T by L(T).

A subset D C V in a graph G = (V,E) is a [1,2]-set if, for every vertex
veV\D,1<|NwnD| <2 AlJl2]-set D is a dominating set. The [1,2]-
domination number 7[; 5)(G) of G is the minimum cardinality of all [1,2]-sets
in G. The notions of [1,2]-set and [1,2]-domination were first investigated by
Dejter [4]. For any two integers j and k, a subset D C V in a graph G = (V, E)
is a [j, k]-set if, for every vertex v € V\ D, j < |N(w)ND| < k. For j > 1, a
[4, k]-set D is a dominating set. The notions of [j, k]-set and [j, k]-domination
were recently introduced by Chellali et al. [3]. For more general concepts, called
set-restricted dominating set and set-restricted domination number, we refer
to Amin and Slater [1,2].

Chellali et al. [3] gave the following open question.
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Question 1.1. If T'is a tree of order n with £ leaves, then vy o)(T) < n —£.
For which trees is this bound sharp?

Yang and Wu [5] gave the following result.

Theorem 1.1. Let T be a tree of order n with £ leaves such that every non-leaf
vertex has degree at least 4. Then vy o) (T) =n — L.

In this paper, we give a new upper bound on the [1, 2]-domination number
of tree which extends the result of Yang and Wu. In addition, we design
a polynomial time algorithm for solving the open question. By using this
algorithm, we give a characterization on the [1, 2]-domination number for trees
of order n with ¢ leaves satisfying n — £. Thereby, the open question posed by
Chellai et al. is solved.

2. Main results

View T as the rooted tree at vertex t. For a vertex v in a rooted tree T, let
C(v) and D(v) denote the sets of children and descendants of v, respectively.
Let T, = T[D(v)U{v}]. Let T be a tree. For 1 <i < A(T), let S;(T) ={v|v €
V(T),d(v) =i}. If T has ¢ leaves, then |S1(T)| = |L(T)| = £. Let S(T') denote
the set of support vertices of T. Let I(T") = V(T') — S1(T'). By the definition of
[1,2]-dominating set of T, if v € S(T) and |[N(v) N S1(T)| > 3, then v belongs
to every yp,9-set of 7. A new upper bound on the [1,2]-domination number
of tree is given in the following.

Theorem 2.1. Let T be a tree with £ leaves. If So(T) \ S(T) # 0, then
2(T) < n— €= [3]S2(T) \ S(T)[1.

Proof. Let T1,Ts, ..., T; be the components of T[S2(T) \ S(T)]. Then each T;

is a path. Assume vy, vs,...,v,, denote the vertices of T;. Define
{U3k+1vv3k+2|k:0’1""’%_2} if a; =0 (mod 3),
STi = {U3k+1,vgk+2|k20,1,...,%}U{1}ai} if a; = 1 (mOd 3),

{vsk41, Vsp2lk = 0,1,..., %2} U {vg,—1,vq,} if a; = 2 (mod 3).

Then I(T)\ ( le St,) is a [1, 2]-dominating set of T'. It is obvious that |St,| =
[%5+1. Hence, y11,2(T) < [I(T)\ (UjZ, St)l = ()| = [(UiZy S1)l =n — £~
|57,
=1 T;

=n— =1, [%] <n——[3]S(T)\ S(T)|. O

Corollary 2.1. Let T be a tree with £ leaves. If So(T)\ S(T) # 0, then
Y,2)(T) <n—L.

By Corollary 2.1, we will assume that So(T) \ S(T) = 0. Theorem 1.1 is
extended by the following result.

Theorem 2.2. Let T be a tree of order n with £ leaves and So(T)\ S(T) = 0.
If |So(T) U S5(T)| < 1, then v 9(T) =n — L.
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Proof. By Theorem 1.1, if |So(T') U S5(T)| = 0, then the theorem holds. So, we
can assume that |So(7") U S3(T)| = 1. Suppose that yj 2)(T) < n —£. Among
all yp,-sets of T', let D be a 7y g)-set of T" such that [D N I(T')| is maximized.
Since Y1,9)(T) < n — £ = [I(T)], it follows that there exists a vertex u € I(T)
such that w € V(T) — D. Set W = {w|w is reachable by a path from u, all
vertices of which belong to V(T') — D}.

Case 1. [W[ = 1. Then W = {u}. Since D is a [ g-set of T" and u € I(T),
it follows that d(u) = 2. Since Sa(T") \ S(T') = 0, it follows that u € S(T'). Say
ve N(wu)NS (T). Let D' = (D \ {v}) U{u}. Then D is a Y1,21-set of T such
that |[D' N I(G)| > |D N I(G)|, which is a contradiction.

Case 2. |W| > 2. Then T[W] is a subtree of T with at least two leaves.
Let v and ¢t be two leaves of T[W]. Then d(v) > 2 and d(¢t) > 2. Since
|S2(T) U S3(T)| = 1, it follows that d(v) > 4 or d(t) > 4. Without loss of
generality, we can assume that d(v) > 4. Then v is dominated by D at least
three times, a contradiction. O

Lemma 2.1. Let T be a tree with £ leaves. Suppose that v € S(T) and |N(v)N
S1(T)] > 3. Say N(w) \ S1(T) = {v1,v9,...,05}. Fori=1,2,...k, let T;
denote the component of T — v containing v;, and let Ti/ =T - U;?:l,j# T;.
Then

Yi,2)(T) =n—~€ if and only if (T,

)=

Proof. Tt is obvious that ﬂjzl( (T ) {v} and U (T )) = I(T). Suppose
that yj1,9)(T) = n — £ = |[I(T)]. Then I( ) is a y1,2)-set of T. If there ex1sts
i such that v, 2]( ") < n(T)) — |S1(T})|, assume that D is a Y1,2-set of T;
then |Dj| < \I( 7). Since v is adjacent to at least three leaves in T}, v € DZ.
Hence, D; U UJ 1t I(T{) is a [1, 2]-dominating set of T with cardinality less
than [ 2)(T'), which is a contradiction. Hence, 71,9 (T}) = n(T}) — |S1(T})].

Conversely, let D be a 3 g-set of T'. It is obvious that v € D. Then
DNV(T))is a [1, 2] dominating set of Tj. If ict 9)(T ) n — £, there exists i

such that [DNV(T})| < |I(T})|. Then Y,2(T, ") < n(Ty) —|S1(T})|, which is a
contradiction. O

n(T, ) |51 (T, )|fomf12 k.

Lemma 2.2. Let T be a tree of order n. Assume that |N(u) N L(T)| > 4. Say
we Nwu)NL(T). Let T' =T —w. Then

V1,2)(T) = [V(T)| = |L(T)| if and only if yp1,2(T") = [V(T")| — |L(T")].

Let T be a tree with n > 3. If diam(T') = 2, 3, it is obvious that yj,2)(T) =
|[V(T)| — |L(T)|. So we can assume that diam(T) > 4. By Corollary 2.1,
Lemma 2.1 and Lemma 2.2, in order to give a characterization of tree with
Yi,2)(T) = n — £, we define a family of trees. Let I' be a family of trees T
satisfying the following properties.

(1) diam(T) > 4.

(2) For each vertex v € I(T) \ S(T), d(u) > 3.
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(3) For each vertex u € V(T), [N(v) N L(T)| < 3.

(4) If IN(v) N L(T)| = 3, then |[N(v) N I(T)| = 1.

If IN(v) N L(T)| = 3, v is called a strong support vertex. Define A(T) =
{u||N(u)NL(T)| = 3}. Let P be the longest path in 7. Let ¢ denote the third
vertex in the path P. View T as a tree rooted at t. Fori =0,1,2,...,diam(T)—
2, define L; = {u|d(u,t) = i,u € V(T)}. For each v € V(T), define

1 if IN(v) N | =

L(T)
0 iN() N L(T)| =
1 [N() 0 L(T)| =
+oo fve AT)U (T)
Algorithm 1:
Input: A tree T € IV and a root vertex t.
Output: 7}1,9/(T) <n—Lor yy9(T) =n—1L.
Step 0: For each vertex v € {ulu € S(T),C(u) C L(T)} U L(T), define
g(v) = 0 and label v with (h(v), g(v)).
Step 1: while there exists a vertex v € I(T)\{¢} such that v is unlabeled
do
Choose an unlabeled vertex v € V(T') such that each vertex of C(v)
has been labeled. Say C(v) = {v1,v2,...,v4,-1} and h(v1) + g(v1) >
h(va) + g(v2) > -+ > h(va,—1) + g(vd,-1)-
(1) Casel. |C(v)N(A(T)UL(T))| =2.
(a) Define g(v) = -, cown acmur ) (Mw) + g(w)).
(b) Label v with (h(v), g(v))
(2) Case2. |C(v)N(A(T)UL(T))| <1.
TF A(0)+ S0 et () +9(1)) < 001 A)+Fcoo o (rw)+
g(w)) < 0 then output r(; o(T) <n —{ else
9(0) = 2 wec )\ for,00} (1MW) + g(w)) (// 1 d(v) = 3, then g(v) =
0.)
Label v with (h(v), g(v)).
End-while
Step 2: Suppose that every vertex v € I(T) \ {t} has been labeled. Say
C(t) = {v1,v2,...,vq,} and h(v1) + g(v1) > h(ve) + g(ve) > -+ >
h(va,) + 9(va,)-
If h(t) + X ecn fory (R(w) + g(w)) <0 or
h(t) + X wec ) for 00} (R(w) + g(w)) < 0 then output r(;,2)(T) <
n — ¢ else
(a) Define g(t) = e, fon.0n) (h(10) + (1)
(b) Label t with (h(t), g(t)).

Theorem 2.3. Let T be the input tree of Algorithm 1. If there exists v € I(T)\
{t} with [C(v)N(A(T)UL(T))| < 1 such that h(v)+3,c o (R(w) +g(w)) <0
or h(v) + > pecwn for} (Aw) + g(w)) <0, then r1,9)(T) <n — L.
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Proof. In order to prove this Theorem, we design Algorithm 2 as follows.

Algorithm 2:
Input: Tree T and a root vertex t.
Output: S C V(T)
Step 0: Say v € L;. Define S = {v}.
Step 1: If h(v) + 3, cc) (h(w) + g(w)) <0, S = SUC(v); If h(v) +
S wecton oy (@) +9() < 0, 8 = (SUCE {ur 1) U({e1}NL(T)).
Step 2: For j =i+ 1 to diam(T) — 3
For each v € SN (L; \ L(T))
Say C(v) = {v1,va,...,v4,-1} and h(v1) + g(v1) > h(va) + g(va) >
oo > (v, 1) + g(va,-1)-
If g(v) = X weco)\ (e (W) + gw)) then S = (S U (C(v) \
{v1,v2})) U (Cw) N L(T)) else S =S U(C(v) N L(T))
End-for
End-for

By Algorithm 2, we have a subset S C V(T).

It is easy to prove that T[S] is a subtree of T,. Furthermore, |V(T[S]) N
L(T)[ = [V(T[S]) N I(T)] = h(v) + e (Mw) + g(w)) < 0 or [V(T[S]) N
L(T)| = V(T[S]) N I(T)| = h(v) + X pecpfoy(h(w) + g(w)) < 0. It is
obvious that (I(T)\ (V(T[S])NI(T)))U(V(T[S])NL(T)) is a [1, 2]-dominating
set of T. Hence, rpy o)(T) < [(I(T) \ (V(T[S]) N I(T))) U (V(T[S]) N L(T))| =
(D) = [(V(TIS)) N I(T) | + [(V(T[S)) N L(T)| < I(T) = n — L. O

By a similar proof as above, the following result holds.

Theorem 2.4. Let T be the input tree of Algorithm 1. Suppose that every
vertezx v € I(T) \ {t} has been labeled. If h(t)+3_,co fo} (R(w) +g(w)) <O

or h(t) + X ec (o) fo1,00) (M(w) + g(w)) <0, then rpy 2)(T) <n — L.

Theorem 2.5. Suppose that t is labeled by Algorithm 1. Let S be a 7|1 9)-set
of T. Define |A(w)| =|SNV(Ty)| — | I(T)NV(Ty)| for any w € V(T).
For any v € I(T), we have

(1) If v ¢ S, then |A(v)| > h(v) + g(v).

(2) If v € S, then |A(v)| > 0.

Proof. Suppose v € L;. We will prove it by induction on i.

Suppose that i = diam(T) — 3. If v ¢ S, then v ¢ A(T) and C(v) C S. By
Algorithm 1, g(v) = 0. Then |A(v)| = h(v) 4+ g(v). If v € S, then it is obvious
that |A(v)| = 0.

Suppose that the two results hold for ¢ = diam(T) — 3,...,¢ + 1. We will
prove that the theorem holds for ¢ = [. We will discuss it from the following
two cases.

Case 1 v ¢ S. Then
A= D+ Y A+ Y |Aw)]

weC (v)NS weC(v)\S
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= (=1 + > |A(w)] + > [A(w)]

we(C(v)NS)NL(T) we(C(v)NS)\L(T)
+ D AW
weC(v)\S
= h(v) + > A+ > |Aw)].
we(C(v)NSH\L(T) weC(v)\S

Since w € C(v) and v € L, it follows that w € L;y;. By inductive hypoth-
esis, it follows that

Do AW = Y (h(w) +g(w))

weC(v)\S weC(v)\S
and
|A(w)] > > 0=0.
we(C(v)NS)\L(T) we(C(v)NS)\L(T)
Hence,
[A@)] = h(v)+ Y7 (h(w) + g(w)).
weC(v)\S
Since S is a 771,9-set of T', it follows that |C'(v) N S| < 2. That is [C(v) \ S| >
@) -2
Suppose that |C(v)N(L(T)UA(T))| = 2. Then >, (h(w)+g(w)) = g(v).
weC(v)\S
Hence, |A(v)| > h(v) + g(v

+9(v).
Suppose that |C(v) N (L(T)U A(T))| = 1. Then h(v) < 0. By Algorithm 1,
hw)+ > (h(w) +g(w)) = 0. So, h(vz) + g(v2) = 0. Hence, [A(v)| =

weC (v)\{v1}
h(v)+ > (h(w)+g(w)) = h(v)+ > (h(w)+g(w)) = h(v)+g(v).
weC (v)\S weC (v)\{v1,v2}

Suppose that |C(v)N(L(T)UA(T))| = 0. Then h(v) = —1. By Algorithm 1,

h(v)+ > (h(w)+g(w)) > 0and h(v)+ > (h(w)+g(w)) > 0. So,
weC(v) weC (v)\{v1}

h(vi)+g(v1) > 0 and h(ve)+g(vey) > 0. Hence, h(v)+ >,  (h(w)+g(w)) >

weC(v)\S
h(v) + > (h(w) + g(w)) = h(v) + g(v).
weC (v)\{v1,v2}
Hence, if v ¢ S, then |A(v)| > h(v) + g(v).
Case 2 v € S. Then |[A(v)| =04+ > JAw)|+ > |A(w)|
weC(v)NS weC(v)\S

Since w € C(v) and v € L, it follows that w € L;y;. By inductive hypoth-

esis, it follows that >~ |JA(w)|> > 0=0.
weC (v)NS weC(v)NS
Hence,

A= Y JAw)

weC (v)\S
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_ S D+ > JA@)+ DD A@)]]

weC(v)\(SUL(T)) w’€C(w)NS w’'eC(w)\S
= > [7(w) + > A+ Y AW
weC (v)\(SUL(T)) w’ €(C(w)NS)\L(T) w'€C(w)\S

By inductive hypothesis, [A(w’)| > 0 for any w’ € (C(w) N S) \ L(T) and
|A(w")] > h(w') + g(w’) for any w’ € C(w) \ S. So

|A(v)] > > [(w)+ Y (h(w') +g(w)).

weC (v)\(SUL(T)) w' €C(w)\S

Since v € S and w ¢ S, it follows that |C(w) N (A(T) U L(T))] < 1 and
|C(w) \ S| > |C(w)| — 1. Since ¢t is labeled by Algorithm 1, it follows that
)+ X (h(w)+g() 0. So [AW)]| > X 020,

w’' eC(w)\S weC(v)\S
Hence, if v € S, then |A(v)| > 0. O

Theorem 2.6. Let T' € I be the tree rooted at vertex t. Then 7y 9)(T) =n—¢
if and only if vertex t is labeled by Algorithm 1.

Proof. Suppose that v12(T") = n — £. By Theorem 2.3, Theorem 2.4 and Algo-
rithm 1, vertex ¢ is labeled by Algorithm 1.

Conversely, we assume that vertex t is labeled by Algorithm 1. Let S be a
Y1,2-set of T'. Suppose that ¢ € S. By Theorem 2.5, it follows that |A(T)| =
SNV (TY)|— |I(T)NV(Ty)| > 0. Since |SNV(T)| = |S| and |[I(T)NV(Ty)| =
|I(T)|, it follows that |S| > |I(T)|. Suppose that ¢ ¢ S. By Theorem 2.5, it
follows that |A(T")| > h(t) + g(t). Since vertex ¢ is labeled by Algorithm 1, it
follows that h(t)+g(t) > 0. So |A(T)| = |SNV(Ty)|— [I(T)NV(T)| > 0. That
is || > |[(T)].

Therefore, for any cases, we have |S| > |I(T)|. It is obvious that |S| < |I(T)|.
Hence vj1,2)(T) = |S| = [I[(T)| =n — L. O
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