ON [1, 2]-DOMINATION IN TREES

Xue-Gang Chen and Moo Young Sohn

Abstract

Chellai et al. [3] gave an upper bound on the [1, 2]-domination number of tree and posed an open question "how to classify trees satisfying the sharp bound?". Yang and Wu [5] gave a partial solution for tree of order n with ℓ-leaves such that every non-leaf vertex has degree at least 4. In this paper, we give a new upper bound on the [1, 2]-domination number of tree which extends the result of Yang and Wu. In addition, we design a polynomial time algorithm for solving the open question. By using this algorithm, we give a characterization on the [1, 2]-domination number for trees of order n with ℓ leaves satisfying $n-\ell$. Thereby, the open question posed by Chellai et al. is solved.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let $G=$ (V, E) be a graph with $|V|=n$. The neighborhood and closed neighborhood of a vertex v in the graph G are denoted by $N(v)$ and $N[v]=N(v) \cup\{v\}$, respectively. The graph induced by $S \subseteq V$ is denoted by $G[S]$. Let $G-S$ denote the induced subgraph $G[V-S]$. A tree is a connected graph that contains no cycles. A leaf of a tree T is a vertex of degree 1 . We denote the set of leaves in tree T by $L(T)$.

A subset $D \subseteq V$ in a graph $G=(V, E)$ is a [1, 2]-set if, for every vertex $v \in V \backslash D, 1 \leq|N(v) \cap D| \leq 2$. A [1, 2]-set D is a dominating set. The [1,2]domination number $\gamma_{[1,2]}(G)$ of G is the minimum cardinality of all [1, 2]-sets in G. The notions of [1,2]-set and [1,2]-domination were first investigated by Dejter [4]. For any two integers j and k, a subset $D \subseteq V$ in a graph $G=(V, E)$ is a $[j, k]$-set if, for every vertex $v \in V \backslash D, j \leq|N(v) \cap D| \leq k$. For $j \geq 1$, a [$j, k]$-set D is a dominating set. The notions of $[j, k]$-set and $[j, k]$-domination were recently introduced by Chellali et al. [3]. For more general concepts, called set-restricted dominating set and set-restricted domination number, we refer to Amin and Slater $[1,2]$.

Chellali et al. [3] gave the following open question.

Received April 26, 2017; Accepted November 7, 2017.
2010 Mathematics Subject Classification. 05C69, 05C85.
Key words and phrases. [1, 2]-domination number, tree, polynomial algorithm.

Question 1.1. If T is a tree of order n with ℓ leaves, then $\gamma_{[1,2]}(T) \leq n-\ell$. For which trees is this bound sharp?

Yang and Wu [5] gave the following result.
Theorem 1.1. Let T be a tree of order n with ℓ leaves such that every non-leaf vertex has degree at least 4 . Then $\gamma_{[1,2]}(T)=n-\ell$.

In this paper, we give a new upper bound on the [1, 2]-domination number of tree which extends the result of Yang and Wu. In addition, we design a polynomial time algorithm for solving the open question. By using this algorithm, we give a characterization on the [1, 2]-domination number for trees of order n with ℓ leaves satisfying $n-\ell$. Thereby, the open question posed by Chellai et al. is solved.

2. Main results

View T as the rooted tree at vertex t. For a vertex v in a rooted tree T, let $C(v)$ and $D(v)$ denote the sets of children and descendants of v, respectively. Let $T_{v}=T[D(v) \cup\{v\}]$. Let T be a tree. For $1 \leq i \leq \Delta(T)$, let $S_{i}(T)=\{v \mid v \in$ $V(T), d(v)=i\}$. If T has ℓ leaves, then $\left|S_{1}(T)\right|=|L(T)|=\ell$. Let $S(T)$ denote the set of support vertices of T. Let $I(T)=V(T)-S_{1}(T)$. By the definition of [1, 2]-dominating set of T, if $v \in S(T)$ and $\left|N(v) \cap S_{1}(T)\right| \geq 3$, then v belongs to every $\gamma_{[1,2]}$-set of T. A new upper bound on the [1, 2]-domination number of tree is given in the following.

Theorem 2.1. Let T be a tree with ℓ leaves. If $S_{2}(T) \backslash S(T) \neq \emptyset$, then $\gamma_{[1,2]}(T) \leq n-\ell-\left\lceil\frac{2}{3}\left|S_{2}(T) \backslash S(T)\right|\right\rceil$.
Proof. Let $T_{1}, T_{2}, \ldots, T_{j}$ be the components of $T\left[S_{2}(T) \backslash S(T)\right]$. Then each T_{i} is a path. Assume $v_{1}, v_{2}, \ldots, v_{a_{i}}$ denote the vertices of T_{i}. Define

$$
S_{T_{i}}= \begin{cases}\left\{v_{3 k+1}, v_{3 k+2} \mid k=0,1, \ldots, \frac{a_{i}-3}{3}\right\} & \text { if } a_{i} \equiv 0(\bmod 3), \\ \left\{v_{3 k+1}, v_{3 k+2} \mid k=0,1, \ldots, \frac{a_{i}-4}{3}\right\} \cup\left\{v_{a_{i}}\right\} & \text { if } a_{i} \equiv 1(\bmod 3), \\ \left\{v_{3 k+1}, v_{3 k+2} \mid k=0,1, \ldots, \frac{a_{i}-5}{3}\right\} \cup\left\{v_{a_{i}-1}, v_{a_{i}}\right\} & \text { if } a_{i} \equiv 2(\bmod 3) .\end{cases}
$$

Then $I(T) \backslash\left(\bigcup_{i=1}^{j} S_{T_{i}}\right)$ is a [1, 2]-dominating set of T. It is obvious that $\left|S_{T_{i}}\right|=$ $\left\lceil\frac{2 a_{i}}{3}\right\rceil$. Hence, $\gamma_{[1,2]}(T) \leq\left|I(T) \backslash\left(\bigcup_{i=1}^{j} S_{T_{i}}\right)\right|=|I(T)|-\left|\left(\bigcup_{i=1}^{j} S_{T_{i}}\right)\right|=n-\ell-$ $\sum_{i=1}^{j}\left|S_{T_{i}}\right|=n-\ell-\sum_{i=1}^{j}\left\lceil\frac{2 a_{i}}{3}\right\rceil \leq n-\ell-\left\lceil\frac{2}{3}\left|S_{2}(T) \backslash S(T)\right|\right\rceil$.

Corollary 2.1. Let T be a tree with ℓ leaves. If $S_{2}(T) \backslash S(T) \neq \emptyset$, then $\gamma_{[1,2]}(T)<n-\ell$.

By Corollary 2.1, we will assume that $S_{2}(T) \backslash S(T)=\emptyset$. Theorem 1.1 is extended by the following result.

Theorem 2.2. Let T be a tree of order n with ℓ leaves and $S_{2}(T) \backslash S(T)=\emptyset$. If $\left|S_{2}(T) \cup S_{3}(T)\right| \leq 1$, then $\gamma_{[1,2]}(T)=n-\ell$.

Proof. By Theorem 1.1, if $\left|S_{2}(T) \cup S_{3}(T)\right|=0$, then the theorem holds. So, we can assume that $\left|S_{2}(T) \cup S_{3}(T)\right|=1$. Suppose that $\gamma_{[1,2]}(T)<n-\ell$. Among all $\gamma_{[1,2]}$-sets of T, let D be a $\gamma_{[1,2]}$-set of T such that $|D \cap I(T)|$ is maximized. Since $\gamma_{[1,2]}(T)<n-\ell=|I(T)|$, it follows that there exists a vertex $u \in I(T)$ such that $u \in V(T)-D$. Set $W=\{w \mid w$ is reachable by a path from u, all vertices of which belong to $V(T)-D\}$.
 it follows that $d(u)=2$. Since $S_{2}(T) \backslash S(T)=\emptyset$, it follows that $u \in S(T)$. Say $v \in N(u) \cap S_{1}(T)$. Let $D^{\prime}=(D \backslash\{v\}) \cup\{u\}$. Then D^{\prime} is a $\gamma_{[1,2]}$-set of T such that $\left|D^{\prime} \cap I(G)\right|>|D \cap I(G)|$, which is a contradiction.

Case 2. $|W| \geq 2$. Then $T[W]$ is a subtree of T with at least two leaves. Let v and t be two leaves of $T[W]$. Then $d(v) \geq 2$ and $d(t) \geq 2$. Since $\left|S_{2}(T) \cup S_{3}(T)\right|=1$, it follows that $d(v) \geq 4$ or $d(t) \geq 4$. Without loss of generality, we can assume that $d(v) \geq 4$. Then v is dominated by D at least three times, a contradiction.
Lemma 2.1. Let T be a tree with ℓ leaves. Suppose that $v \in S(T)$ and $\mid N(v) \cap$ $S_{1}(T) \mid \geq 3$. Say $N(v) \backslash S_{1}(T)=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$. For $i=1,2, \ldots, k$, let T_{i} denote the component of $T-v$ containing v_{i}, and let $T_{i}^{\prime}=T-\bigcup_{j=1, j \neq i}^{k} T_{j}$. Then
$\gamma_{[1,2]}(T)=n-\ell \quad$ if and only if $\quad \gamma_{[1,2]}\left(T_{i}^{\prime}\right)=n\left(T_{i}^{\prime}\right)-\left|S_{1}\left(T_{i}^{\prime}\right)\right|$ for $i=1,2, \ldots, k$.
Proof. It is obvious that $\bigcap_{j=1}^{k}\left(I\left(T_{j}^{\prime}\right)\right)=\{v\}$ and $\bigcup_{j=1}^{k}\left(I\left(T_{j}^{\prime}\right)\right)=I(T)$. Suppose that $\gamma_{[1,2]}(T)=n-\ell=|I(T)|$. Then $I(T)$ is a $\gamma_{[1,2]}$-set of T. If there exists i such that $\gamma_{[1,2]}\left(T_{i}^{\prime}\right)<n\left(T_{i}^{\prime}\right)-\left|S_{1}\left(T_{i}^{\prime}\right)\right|$, assume that D_{i}^{\prime} is a $\gamma_{[1,2]}$-set of T_{i}^{\prime}, then $\left|D_{i}^{\prime}\right|<\left|I\left(T_{i}^{\prime}\right)\right|$. Since v is adjacent to at least three leaves in $T_{i}^{\prime}, v \in D_{i}^{\prime}$. Hence, $D_{i}^{\prime} \cup \bigcup_{j=1, j \neq i}^{k} I\left(T_{j}^{\prime}\right)$ is a $[1,2]$-dominating set of T with cardinality less than $\gamma_{[1,2]}(T)$, which is a contradiction. Hence, $\gamma_{[1,2]}\left(T_{i}^{\prime}\right)=n\left(T_{i}^{\prime}\right)-\left|S_{1}\left(T_{i}^{\prime}\right)\right|$.

Conversely, let D be a $\gamma_{[1,2]}$-set of T. It is obvious that $v \in D$. Then $D \cap V\left(T_{i}^{\prime}\right)$ is a [1, 2]-dominating set of T_{i}^{\prime}. If $\gamma_{[1,2]}(T)<n-\ell$, there exists i such that $\left|D \cap V\left(T_{i}^{\prime}\right)\right|<\left|I\left(T_{i}^{\prime}\right)\right|$. Then $\gamma_{[1,2]}\left(T_{i}^{\prime}\right)<n\left(T_{i}^{\prime}\right)-\left|S_{1}\left(T_{i}^{\prime}\right)\right|$, which is a contradiction.

Lemma 2.2. Let T be a tree of order n. Assume that $|N(u) \cap L(T)| \geq 4$. Say $w \in N(u) \cap L(T)$. Let $T^{\prime}=T-w$. Then
$\gamma_{[1,2]}(T)=|V(T)|-|L(T)|$ if and only if $\gamma_{[1,2]}\left(T^{\prime}\right)=\left|V\left(T^{\prime}\right)\right|-\left|L\left(T^{\prime}\right)\right|$.
Let T be a tree with $n \geq 3$. If $\operatorname{diam}(T)=2,3$, it is obvious that $\gamma_{[1,2]}(T)=$ $|V(T)|-|L(T)|$. So we can assume that $\operatorname{diam}(T) \geq 4$. By Corollary 2.1, Lemma 2.1 and Lemma 2.2, in order to give a characterization of tree with $\gamma_{[1,2]}(T)=n-\ell$, we define a family of trees. Let Γ^{\prime} be a family of trees T satisfying the following properties.
(1) $\operatorname{diam}(T) \geq 4$.
(2) For each vertex $u \in I(T) \backslash S(T), d(u) \geq 3$.
(3) For each vertex $u \in V(T),|N(v) \cap L(T)| \leq 3$.
(4) If $|N(v) \cap L(T)|=3$, then $|N(v) \cap I(T)|=1$.

If $|N(v) \cap L(T)|=3, v$ is called a strong support vertex. Define $A(T)=$ $\{u||N(u) \cap L(T)|=3\}$. Let P be the longest path in T. Let t denote the third vertex in the path P. View T as a tree rooted at t. For $i=0,1,2, \ldots, \operatorname{diam}(T)-$ 2, define $L_{i}=\{u \mid d(u, t)=i, u \in V(T)\}$. For each $v \in V(T)$, define

$$
h(v)= \begin{cases}1 & \text { if }|N(v) \cap L(T)|=2 \\ 0 & \text { if }|N(v) \cap L(T)|=1, \\ -1 & \text { if }|N(v) \cap L(T)|=0, \\ +\infty & \text { if } v \in A(T) \cup L(T)\end{cases}
$$

Algorithm 1:

Input: A tree $T \in \Gamma^{\prime}$ and a root vertex t.
Output: $\gamma_{[1,2]}(T)<n-\ell$ or $\gamma_{[1,2]}(T)=n-\ell$.
Step 0: For each vertex $v \in\{u \mid u \in S(T), C(u) \subseteq L(T)\} \cup L(T)$, define $g(v)=0$ and label v with $(h(v), g(v))$.
Step 1: while there exists a vertex $v \in I(T) \backslash\{t\}$ such that v is unlabeled do

Choose an unlabeled vertex $v \in V(T)$ such that each vertex of $C(v)$ has been labeled. Say $C(v)=\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-1}\right\}$ and $h\left(v_{1}\right)+g\left(v_{1}\right) \geq$ $h\left(v_{2}\right)+g\left(v_{2}\right) \geq \cdots \geq h\left(v_{d_{v}-1}\right)+g\left(v_{d_{v}-1}\right)$.
(1) Case 1. $|C(v) \cap(A(T) \cup L(T))|=2$.
(a) Define $g(v)=\sum_{w \in C(v) \backslash(A(T) \cup L(T))}(h(w)+g(w))$.
(b) Label v with $(h(v), g(v))$.
(2) Case 2. $|C(v) \cap(A(T) \cup L(T))| \leq 1$.

If $h(v)+\sum_{w \in C(v)}(h(w)+g(w))<0$ or $h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+$ $g(w))<0$ then output $r_{[1,2]}(T)<n-\ell$ else
$g(v)=\sum_{w \in C(v) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))(/ /$ If $d(v)=3$, then $g(v)=$ 0.$)$

Label v with $(h(v), g(v))$.

End-while

Step 2: Suppose that every vertex $v \in I(T) \backslash\{t\}$ has been labeled. Say $C(t)=\left\{v_{1}, v_{2}, \ldots, v_{d_{t}}\right\}$ and $h\left(v_{1}\right)+g\left(v_{1}\right) \geq h\left(v_{2}\right)+g\left(v_{2}\right) \geq \cdots \geq$ $h\left(v_{d_{t}}\right)+g\left(v_{d_{t}}\right)$.
If $h(t)+\sum_{w \in C(t) \backslash\left\{v_{1}\right\}}(h(w)+g(w))<0$ or
$h(t)+\sum_{w \in C(v) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))<0$ then output $r_{[1,2]}(T)<$ $n-\ell$ else
(a) Define $g(t)=\sum_{w \in C(t) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))$
(b) Label t with $(h(t), g(t))$.

Theorem 2.3. Let T be the input tree of Algorithm 1. If there exists $v \in I(T) \backslash$ $\{t\}$ with $|C(v) \cap(A(T) \cup L(T))| \leq 1$ such that $h(v)+\sum_{w \in C(v)}(h(w)+g(w))<0$ or $h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+g(w))<0$, then $r_{[1,2]}(T)<n-\ell$.

Proof. In order to prove this Theorem, we design Algorithm 2 as follows.

```
Algorithm 2:
Input: Tree \(T\) and a root vertex \(t\).
Output: \(S \subseteq V(T)\)
Step 0: Say \(v \in L_{i}\). Define \(S=\{v\}\).
Step 1: If \(h(v)+\sum_{w \in C(v)}(h(w)+g(w))<0, S=S \cup C(v)\); If \(h(v)+\)
    \(\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+g(w))<0, S=\left(S \cup\left(C(v) \backslash\left\{v_{1}\right\}\right)\right) \cup\left(\left\{v_{1}\right\} \cap L(T)\right)\).
```

Step 2: For $j=i+1$ to $\operatorname{diam}(T)-3$
For each $v \in S \cap\left(L_{j} \backslash L(T)\right)$
Say $C(v)=\left\{v_{1}, v_{2}, \ldots, v_{d_{v}-1}\right\}$ and $h\left(v_{1}\right)+g\left(v_{1}\right) \geq h\left(v_{2}\right)+g\left(v_{2}\right) \geq$
$\cdots \geq h\left(v_{d_{v}-1}\right)+g\left(v_{d_{v}-1}\right)$.
If $g(v)=\sum_{w \in C(v) \backslash\left(v_{1}, v_{2}\right)}(h(w)+g(w))$ then $S=(S \cup(C(v) \backslash$
$\left.\left.\left\{v_{1}, v_{2}\right\}\right)\right) \cup(C(v) \cap L(T))$ else $S=S \cup(C(v) \cap L(T))$

End-for

End-for

By Algorithm 2, we have a subset $S \subseteq V(T)$.
It is easy to prove that $T[S]$ is a subtree of T_{v}. Furthermore, $\mid V(T[S]) \cap$ $L(T)\left|-|V(T[S]) \cap I(T)|=h(v)+\sum_{w \in C(v)}(h(w)+g(w))<0\right.$ or $| V(T[S]) \cap$ $L(T)\left|-|V(T[S]) \cap I(T)|=h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+g(w))<0\right.$. It is obvious that $(I(T) \backslash(V(T[S]) \cap I(T))) \cup(V(T[S]) \cap L(T))$ is a [1, 2]-dominating set of T. Hence, $r_{[1,2]}(T) \leq|(I(T) \backslash(V(T[S]) \cap I(T))) \cup(V(T[S]) \cap L(T))|=$ $|I(T)|-|(V(T[S]) \cap I(T))|+|(V(T[S]) \cap L(T))|<I(T)=n-\ell$.

By a similar proof as above, the following result holds.
Theorem 2.4. Let T be the input tree of Algorithm 1. Suppose that every vertex $v \in I(T) \backslash\{t\}$ has been labeled. If $h(t)+\sum_{w \in C(t) \backslash\left\{v_{1}\right\}}(h(w)+g(w))<0$ or $h(t)+\sum_{w \in C(v) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))<0$, then $r_{[1,2]}(T)<n-\ell$.
Theorem 2.5. Suppose that t is labeled by Algorithm 1. Let S be a $\gamma_{[1,2]}$-set of T. Define $|A(w)|=\left|S \cap V\left(T_{w}\right)\right|-\left|I(T) \cap V\left(T_{w}\right)\right|$ for any $w \in V(T)$.
For any $v \in I(T)$, we have
(1) If $v \notin S$, then $|A(v)| \geq h(v)+g(v)$.
(2) If $v \in S$, then $|A(v)| \geq 0$.

Proof. Suppose $v \in L_{i}$. We will prove it by induction on i.
Suppose that $i=\operatorname{diam}(T)-3$. If $v \notin S$, then $v \notin A(T)$ and $C(v) \subseteq S$. By Algorithm 1, $g(v)=0$. Then $|A(v)|=h(v)+g(v)$. If $v \in S$, then it is obvious that $|A(v)|=0$.

Suppose that the two results hold for $i=\operatorname{diam}(T)-3, \ldots, \ell+1$. We will prove that the theorem holds for $i=l$. We will discuss it from the following two cases.

Case $1 v \notin S$. Then

$$
|A(v)|=(-1)+\sum_{w \in C(v) \cap S}|A(w)|+\sum_{w \in C(v) \backslash S}|A(w)|
$$

$$
\begin{aligned}
= & (-1)+\sum_{w \in(C(v) \cap S) \cap L(T)}|A(w)|+\sum_{w \in(C(v) \cap S) \backslash L(T)}|A(w)| \\
& +\sum_{w \in C(v) \backslash S}|A(w)| \\
= & h(v)+\sum_{w \in(C(v) \cap S) \backslash L(T)}|A(w)|+\sum_{w \in C(v) \backslash S}|A(w)| .
\end{aligned}
$$

Since $w \in C(v)$ and $v \in L_{i}$, it follows that $w \in L_{i+1}$. By inductive hypothesis, it follows that

$$
\sum_{w \in C(v) \backslash S}|A(w)| \geq \sum_{w \in C(v) \backslash S}(h(w)+g(w))
$$

and

$$
\sum_{w \in(C(v) \cap S) \backslash L(T)}|A(w)| \geq \sum_{w \in(C(v) \cap S) \backslash L(T)} 0=0 .
$$

Hence,

$$
|A(v)| \geq h(v)+\sum_{w \in C(v) \backslash S}(h(w)+g(w)) .
$$

Since S is a $\gamma_{[1,2]}$-set of T, it follows that $|C(v) \cap S| \leq 2$. That is $|C(v) \backslash S| \geq$ $|C(v)|-2$.

Suppose that $|C(v) \cap(L(T) \cup A(T))|=2$. Then $\sum_{w \in C(v) \backslash S}(h(w)+g(w))=g(v)$. Hence, $|A(v)| \geq h(v)+g(v)$.

Suppose that $|C(v) \cap(L(T) \cup A(T))|=1$. Then $h(v) \leq 0$. By Algorithm 1, $h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+g(w)) \geq 0$. So, $h\left(v_{2}\right)+g\left(v_{2}\right) \geq 0$. Hence, $|A(v)| \geq$ $h(v)+\sum_{w \in C(v) \backslash S}(h(w)+g(w)) \geq h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))=h(v)+g(v)$.

Suppose that $|C(v) \cap(L(T) \cup A(T))|=0$. Then $h(v)=-1$. By Algorithm 1, $h(v)+\sum_{w \in C(v)}(h(w)+g(w)) \geq 0$ and $h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}\right\}}(h(w)+g(w)) \geq 0$. So, $h\left(v_{1}\right)+g\left(v_{1}\right) \geq 0$ and $h\left(v_{2}\right)+g\left(v_{2}\right) \geq 0$. Hence, $h(v)+\sum_{w \in C(v) \backslash S}(h(w)+g(w)) \geq$ $h(v)+\sum_{w \in C(v) \backslash\left\{v_{1}, v_{2}\right\}}(h(w)+g(w))=h(v)+g(v)$.

Hence, if $v \notin S$, then $|A(v)| \geq h(v)+g(v)$.
Case $2 v \in S$. Then $|A(v)|=0+\sum_{w \in C(v) \cap S}|A(w)|+\sum_{w \in C(v) \backslash S}|A(w)|$.
Since $w \in C(v)$ and $v \in L_{i}$, it follows that $w \in L_{i+1}$. By inductive hypothesis, it follows that $\sum_{w \in C(v) \cap S}|A(w)| \geq \sum_{w \in C(v) \cap S} 0=0$.

Hence,

$$
|A(v)| \geq \sum_{w \in C(v) \backslash S}|A(w)|
$$

$$
\begin{aligned}
& =\sum_{w \in C(v) \backslash(S \cup L(T))}\left[(-1)+\sum_{w^{\prime} \in C(w) \cap S}\left|A\left(w^{\prime}\right)\right|+\sum_{w^{\prime} \in C(w) \backslash S}\left|A\left(w^{\prime}\right)\right|\right] \\
& =\sum_{w \in C(v) \backslash(S \cup L(T))}\left[h(w)+\sum_{w^{\prime} \in(C(w) \cap S) \backslash L(T)}\left|A\left(w^{\prime}\right)\right|+\sum_{w^{\prime} \in C(w) \backslash S}\left|A\left(w^{\prime}\right)\right|\right] .
\end{aligned}
$$

By inductive hypothesis, $\left|A\left(w^{\prime}\right)\right| \geq 0$ for any $w^{\prime} \in(C(w) \cap S) \backslash L(T)$ and $\left|A\left(w^{\prime}\right)\right| \geq h\left(w^{\prime}\right)+g\left(w^{\prime}\right)$ for any $w^{\prime} \in C(w) \backslash S$. So

$$
|A(v)| \geq \sum_{w \in C(v) \backslash(S \cup L(T))}\left[h(w)+\sum_{w^{\prime} \in C(w) \backslash S}\left(h\left(w^{\prime}\right)+g\left(w^{\prime}\right)\right)\right] .
$$

Since $v \in S$ and $w \notin S$, it follows that $|C(w) \cap(A(T) \cup L(T))| \leq 1$ and $|C(w) \backslash S| \geq|C(w)|-1$. Since t is labeled by Algorithm 1, it follows that $h(w)+\sum_{w^{\prime} \in C(w) \backslash S}\left(h\left(w^{\prime}\right)+g\left(w^{\prime}\right)\right) \geq 0$. So $|A(v)| \geq \sum_{w \in C(v) \backslash S} 0 \geq 0$.

Hence, if $v \in S$, then $|A(v)| \geq 0$.
Theorem 2.6. Let $T \in \Gamma^{\prime}$ be the tree rooted at vertex t. Then $\gamma_{[1,2]}(T)=n-\ell$ if and only if vertex t is labeled by Algorithm 1.

Proof. Suppose that $\gamma_{12}(T)=n-\ell$. By Theorem 2.3, Theorem 2.4 and Algorithm 1, vertex t is labeled by Algorithm 1 .

Conversely, we assume that vertex t is labeled by Algorithm 1. Let S be a $\gamma_{[1,2] \text {-set of } T \text {. Suppose that } t \in S \text {. By Theorem 2.5, it follows that }|A(T)|=, ~=~}^{\text {. }}$. $\left|S \cap V\left(T_{t}\right)\right|-\left|I(T) \cap V\left(T_{t}\right)\right| \geq 0$. Since $\left|S \cap V\left(T_{t}\right)\right|=|S|$ and $\left|I(T) \cap V\left(T_{t}\right)\right|=$ $|I(T)|$, it follows that $|S| \geq|I(T)|$. Suppose that $t \notin S$. By Theorem 2.5, it follows that $|A(T)| \geq h(t)+g(t)$. Since vertex t is labeled by Algorithm 1, it follows that $h(t)+g(t) \geq 0$. So $|A(T)|=\left|S \cap V\left(T_{t}\right)\right|-\left|I(T) \cap V\left(T_{t}\right)\right| \geq 0$. That is $|S| \geq|I(T)|$.

Therefore, for any cases, we have $|S| \geq|I(T)|$. It is obvious that $|S| \leq|I(T)|$. Hence $\gamma_{[1,2]}(T)=|S|=|I(T)|=n-\ell$.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A3B03029912).

References

[1] A. T. Amin and P. J. Slater, Neighborhood domination with parity restrictions in graphs, Congr. Numer. 91 (1992), 19-30.
[2] , All parity realizable trees, J. Combin. Math. Combin. Comput. 20 (1996), 53-63.
[3] M. Chellali, T. W. Haynes, and S. T. Hedetniemi, [1, 2]-sets in graphs, Discrete Appl. Math. 161 (2013), no. 18, 2885-2893.
[4] I. J. Dejter, Quasiperfect domination in triangular lattices, Discuss. Math. Graph Theory 29 (2009), no. 1, 179-198.
[5] X. Yang and B. Wu, [1, 2]-domination in graphs, Discrete Appl. Math. 175 (2014), 79-86.

Xue-Gang Chen
Department of Mathematics
North China Electric Power University
Beijing 102206, P. R. China
Email address: gxcxdm@163.com
Moo Young Sohn
Department of Mathematics
Changwon National University
Changwon 641-773, Korea
Email address: mysohn@changwon.ac.kr

