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ON [1, 2]-DOMINATION IN TREES

Xue-Gang Chen and Moo Young Sohn

Abstract. Chellai et al. [3] gave an upper bound on the [1, 2]-domination

number of tree and posed an open question “how to classify trees satis-
fying the sharp bound?”. Yang and Wu [5] gave a partial solution for

tree of order n with `-leaves such that every non-leaf vertex has degree at

least 4. In this paper, we give a new upper bound on the [1, 2]-domination
number of tree which extends the result of Yang and Wu. In addition,

we design a polynomial time algorithm for solving the open question. By

using this algorithm, we give a characterization on the [1, 2]-domination
number for trees of order n with ` leaves satisfying n − `. Thereby, the

open question posed by Chellai et al. is solved.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G =
(V,E) be a graph with |V | = n. The neighborhood and closed neighborhood
of a vertex v in the graph G are denoted by N(v) and N [v] = N(v) ∪ {v},
respectively. The graph induced by S ⊆ V is denoted by G[S]. Let G − S
denote the induced subgraph G[V − S]. A tree is a connected graph that
contains no cycles. A leaf of a tree T is a vertex of degree 1. We denote the
set of leaves in tree T by L(T ).

A subset D ⊆ V in a graph G = (V,E) is a [1, 2]-set if, for every vertex
v ∈ V \D, 1 ≤ |N(v) ∩D| ≤ 2. A [1, 2]-set D is a dominating set. The [1, 2]-
domination number γ[1,2](G) of G is the minimum cardinality of all [1, 2]-sets
in G. The notions of [1, 2]-set and [1, 2]-domination were first investigated by
Dejter [4]. For any two integers j and k, a subset D ⊆ V in a graph G = (V,E)
is a [j, k]-set if, for every vertex v ∈ V \D, j ≤ |N(v) ∩D| ≤ k. For j ≥ 1, a
[j, k]-set D is a dominating set. The notions of [j, k]-set and [j, k]-domination
were recently introduced by Chellali et al. [3]. For more general concepts, called
set-restricted dominating set and set-restricted domination number, we refer
to Amin and Slater [1, 2].

Chellali et al. [3] gave the following open question.
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Question 1.1. If T is a tree of order n with ` leaves, then γ[1,2](T ) ≤ n − `.
For which trees is this bound sharp?

Yang and Wu [5] gave the following result.

Theorem 1.1. Let T be a tree of order n with ` leaves such that every non-leaf
vertex has degree at least 4. Then γ[1,2](T ) = n− `.

In this paper, we give a new upper bound on the [1, 2]-domination number
of tree which extends the result of Yang and Wu. In addition, we design
a polynomial time algorithm for solving the open question. By using this
algorithm, we give a characterization on the [1, 2]-domination number for trees
of order n with ` leaves satisfying n− `. Thereby, the open question posed by
Chellai et al. is solved.

2. Main results

View T as the rooted tree at vertex t. For a vertex v in a rooted tree T , let
C(v) and D(v) denote the sets of children and descendants of v, respectively.
Let Tv = T [D(v)∪{v}]. Let T be a tree. For 1 ≤ i ≤ ∆(T ), let Si(T ) = {v | v ∈
V (T ), d(v) = i}. If T has ` leaves, then |S1(T )| = |L(T )| = `. Let S(T ) denote
the set of support vertices of T . Let I(T ) = V (T )−S1(T ). By the definition of
[1, 2]-dominating set of T , if v ∈ S(T ) and |N(v) ∩ S1(T )| ≥ 3, then v belongs
to every γ[1,2]-set of T . A new upper bound on the [1, 2]-domination number
of tree is given in the following.

Theorem 2.1. Let T be a tree with ` leaves. If S2(T ) \ S(T ) 6= ∅, then
γ[1,2](T ) ≤ n− `− d 23 |S2(T ) \ S(T )|e.

Proof. Let T1, T2, . . . , Tj be the components of T [S2(T ) \ S(T )]. Then each Ti
is a path. Assume v1, v2, . . . , vai denote the vertices of Ti. Define

STi
=


{v3k+1, v3k+2|k = 0, 1, . . . , ai−3

3 } if ai ≡ 0 (mod 3),
{v3k+1, v3k+2|k = 0, 1, . . . , ai−4

3 } ∪ {vai} if ai ≡ 1 (mod 3),
{v3k+1, v3k+2|k = 0, 1, . . . , ai−5

3 } ∪ {vai−1, vai
} if ai ≡ 2 (mod 3).

Then I(T )\(
⋃j

i=1 STi
) is a [1, 2]-dominating set of T . It is obvious that |STi

| =
d 2ai

3 e. Hence, γ[1,2](T ) ≤ |I(T ) \ (
⋃j

i=1 STi
)| = |I(T )| − |(

⋃j
i=1 STi

)| = n− `−∑j
i=1 |STi

| = n− `−
∑j

i=1d
2ai

3 e ≤ n− `− d
2
3 |S2(T ) \ S(T )|e. �

Corollary 2.1. Let T be a tree with ` leaves. If S2(T ) \ S(T ) 6= ∅, then
γ[1,2](T ) < n− `.

By Corollary 2.1, we will assume that S2(T ) \ S(T ) = ∅. Theorem 1.1 is
extended by the following result.

Theorem 2.2. Let T be a tree of order n with ` leaves and S2(T ) \ S(T ) = ∅.
If |S2(T ) ∪ S3(T )| ≤ 1, then γ[1,2](T ) = n− `.
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Proof. By Theorem 1.1, if |S2(T )∪S3(T )| = 0, then the theorem holds. So, we
can assume that |S2(T ) ∪ S3(T )| = 1. Suppose that γ[1,2](T ) < n− `. Among
all γ[1,2]-sets of T , let D be a γ[1,2]-set of T such that |D ∩ I(T )| is maximized.
Since γ[1,2](T ) < n − ` = |I(T )|, it follows that there exists a vertex u ∈ I(T )
such that u ∈ V (T ) − D. Set W = {w |w is reachable by a path from u, all
vertices of which belong to V (T )−D}.

Case 1. |W | = 1. Then W = {u}. Since D is a γ[1,2]-set of T and u ∈ I(T ),
it follows that d(u) = 2. Since S2(T ) \ S(T ) = ∅, it follows that u ∈ S(T ). Say

v ∈ N(u) ∩ S1(T ). Let D
′

= (D \ {v}) ∪ {u}. Then D
′

is a γ[1,2]-set of T such
that |D′ ∩ I(G)| > |D ∩ I(G)|, which is a contradiction.

Case 2. |W | ≥ 2. Then T [W ] is a subtree of T with at least two leaves.
Let v and t be two leaves of T [W ]. Then d(v) ≥ 2 and d(t) ≥ 2. Since
|S2(T ) ∪ S3(T )| = 1, it follows that d(v) ≥ 4 or d(t) ≥ 4. Without loss of
generality, we can assume that d(v) ≥ 4. Then v is dominated by D at least
three times, a contradiction. �

Lemma 2.1. Let T be a tree with ` leaves. Suppose that v ∈ S(T ) and |N(v)∩
S1(T )| ≥ 3. Say N(v) \ S1(T ) = {v1, v2, . . . , vk}. For i = 1, 2, . . . , k, let Ti
denote the component of T − v containing vi, and let T

′

i = T −
⋃k

j=1,j 6=i Tj.
Then
γ[1,2](T ) = n−` if and only if γ[1,2](T

′

i ) = n(T
′

i )−|S1(T
′

i )| for i = 1, 2, . . . , k.

Proof. It is obvious that
⋂k

j=1(I(T
′

j )) = {v} and
⋃k

j=1(I(T
′

j )) = I(T ). Suppose

that γ[1,2](T ) = n − ` = |I(T )|. Then I(T ) is a γ[1,2]-set of T . If there exists

i such that γ[1,2](T
′

i ) < n(T
′

i ) − |S1(T
′

i )|, assume that D
′

i is a γ[1,2]-set of T
′

i ,

then |D′

i| < |I(T
′

i )|. Since v is adjacent to at least three leaves in T
′

i , v ∈ D′

i.

Hence, D
′

i ∪
⋃k

j=1,j 6=i I(T
′

j ) is a [1, 2]-dominating set of T with cardinality less

than γ[1,2](T ), which is a contradiction. Hence, γ[1,2](T
′

i ) = n(T
′

i )− |S1(T
′

i )|.
Conversely, let D be a γ[1,2]-set of T . It is obvious that v ∈ D. Then

D ∩ V (T
′

i ) is a [1, 2]-dominating set of T
′

i . If γ[1,2](T ) < n − `, there exists i

such that |D ∩ V (T
′

i )| < |I(T
′

i )|. Then γ[1,2](T
′

i ) < n(T
′

i )− |S1(T
′

i )|, which is a
contradiction. �

Lemma 2.2. Let T be a tree of order n. Assume that |N(u)∩L(T )| ≥ 4. Say
w ∈ N(u) ∩ L(T ). Let T ′ = T − w. Then

γ[1,2](T ) = |V (T )| − |L(T )| if and only if γ[1,2](T
′) = |V (T ′)| − |L(T ′)|.

Let T be a tree with n ≥ 3. If diam(T ) = 2, 3, it is obvious that γ[1,2](T ) =
|V (T )| − |L(T )|. So we can assume that diam(T ) ≥ 4. By Corollary 2.1,
Lemma 2.1 and Lemma 2.2, in order to give a characterization of tree with
γ[1,2](T ) = n − `, we define a family of trees. Let Γ′ be a family of trees T
satisfying the following properties.

(1) diam(T ) ≥ 4.
(2) For each vertex u ∈ I(T ) \ S(T ), d(u) ≥ 3.
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(3) For each vertex u ∈ V (T ), |N(v) ∩ L(T )| ≤ 3.
(4) If |N(v) ∩ L(T )| = 3, then |N(v) ∩ I(T )| = 1.
If |N(v) ∩ L(T )| = 3, v is called a strong support vertex. Define A(T ) =

{u | |N(u)∩L(T )| = 3}. Let P be the longest path in T . Let t denote the third
vertex in the path P . View T as a tree rooted at t. For i = 0, 1, 2, . . . , diam(T )−
2, define Li = {u | d(u, t) = i, u ∈ V (T )}. For each v ∈ V (T ), define

h(v) =


1 if |N(v) ∩ L(T )| = 2,
0 if|N(v) ∩ L(T )| = 1,
−1 if |N(v) ∩ L(T )| = 0,
+∞ if v ∈ A(T ) ∪ L(T ).

Algorithm 1:
Input: A tree T ∈ Γ′ and a root vertex t.
Output: γ[1,2](T ) < n− ` or γ[1,2](T ) = n− `.
Step 0: For each vertex v ∈ {u|u ∈ S(T ), C(u) ⊆ L(T )} ∪ L(T ), define
g(v) = 0 and label v with (h(v), g(v)).

Step 1: while there exists a vertex v ∈ I(T )\{t} such that v is unlabeled
do

Choose an unlabeled vertex v ∈ V (T ) such that each vertex of C(v)
has been labeled. Say C(v) = {v1, v2, . . . , vdv−1} and h(v1) + g(v1) ≥
h(v2) + g(v2) ≥ · · · ≥ h(vdv−1) + g(vdv−1).
(1) Case 1. |C(v) ∩ (A(T ) ∪ L(T ))| = 2.

(a) Define g(v) =
∑

w∈C(v)\(A(T )∪L(T ))(h(w) + g(w)).

(b) Label v with (h(v), g(v)).
(2) Case 2. |C(v) ∩ (A(T ) ∪ L(T ))| ≤ 1.

If h(v)+
∑

w∈C(v)(h(w)+g(w)) < 0 or h(v)+
∑

w∈C(v)\{v1}(h(w)+

g(w)) < 0 then output r[1,2](T ) < n− ` else
g(v) =

∑
w∈C(v)\{v1,v2}(h(w) + g(w)) (// If d(v) = 3, then g(v) =

0.)
Label v with (h(v), g(v)).
End-while

Step 2: Suppose that every vertex v ∈ I(T ) \ {t} has been labeled. Say
C(t) = {v1, v2, . . . , vdt} and h(v1) + g(v1) ≥ h(v2) + g(v2) ≥ · · · ≥
h(vdt) + g(vdt).
If h(t) +

∑
w∈C(t)\{v1}(h(w) + g(w)) < 0 or

h(t) +
∑

w∈C(v)\{v1,v2}(h(w) + g(w)) < 0 then output r[1,2](T ) <

n− ` else
(a) Define g(t) =

∑
w∈C(t)\{v1,v2}(h(w) + g(w))

(b) Label t with (h(t), g(t)).

Theorem 2.3. Let T be the input tree of Algorithm 1. If there exists v ∈ I(T )\
{t} with |C(v)∩(A(T )∪L(T ))| ≤ 1 such that h(v)+

∑
w∈C(v)(h(w)+g(w)) < 0

or h(v) +
∑

w∈C(v)\{v1}(h(w) + g(w)) < 0, then r[1,2](T ) < n− `.
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Proof. In order to prove this Theorem, we design Algorithm 2 as follows.

Algorithm 2:
Input: Tree T and a root vertex t.
Output: S ⊆ V (T )
Step 0: Say v ∈ Li. Define S = {v}.
Step 1: If h(v) +

∑
w∈C(v)(h(w) + g(w)) < 0, S = S ∪ C(v); If h(v) +∑

w∈C(v)\{v1}(h(w)+g(w)) < 0, S = (S∪(C(v)\{v1}))∪({v1}∩L(T )).

Step 2: For j = i+ 1 to diam(T )− 3
For each v ∈ S ∩ (Lj \ L(T ))
Say C(v) = {v1, v2, . . . , vdv−1} and h(v1) + g(v1) ≥ h(v2) + g(v2) ≥

· · · ≥ h(vdv−1) + g(vdv−1).
If g(v) =

∑
w∈C(v)\(v1,v2)

(h(w) + g(w)) then S = (S ∪ (C(v) \
{v1, v2})) ∪ (C(v) ∩ L(T )) else S = S ∪ (C(v) ∩ L(T ))
End-for
End-for

By Algorithm 2, we have a subset S ⊆ V (T ).
It is easy to prove that T [S] is a subtree of Tv. Furthermore, |V (T [S]) ∩

L(T )| − |V (T [S]) ∩ I(T )| = h(v) +
∑

w∈C(v)(h(w) + g(w)) < 0 or |V (T [S]) ∩
L(T )| − |V (T [S]) ∩ I(T )| = h(v) +

∑
w∈C(v)\{v1}(h(w) + g(w)) < 0. It is

obvious that (I(T )\ (V (T [S])∩I(T )))∪ (V (T [S])∩L(T )) is a [1, 2]-dominating
set of T . Hence, r[1,2](T ) ≤ |(I(T ) \ (V (T [S]) ∩ I(T ))) ∪ (V (T [S]) ∩ L(T ))| =
|I(T )| − |(V (T [S]) ∩ I(T ))|+ |(V (T [S]) ∩ L(T ))| < I(T ) = n− `. �

By a similar proof as above, the following result holds.

Theorem 2.4. Let T be the input tree of Algorithm 1. Suppose that every
vertex v ∈ I(T ) \ {t} has been labeled. If h(t) +

∑
w∈C(t)\{v1}(h(w) + g(w)) < 0

or h(t) +
∑

w∈C(v)\{v1,v2}(h(w) + g(w)) < 0, then r[1,2](T ) < n− `.

Theorem 2.5. Suppose that t is labeled by Algorithm 1. Let S be a γ[1,2]-set
of T . Define |A(w)| = |S ∩ V (Tw)| − |I(T ) ∩ V (Tw)| for any w ∈ V (T ).
For any v ∈ I(T ), we have

(1) If v /∈ S, then |A(v)| ≥ h(v) + g(v).
(2) If v ∈ S, then |A(v)| ≥ 0.

Proof. Suppose v ∈ Li. We will prove it by induction on i.
Suppose that i = diam(T )− 3. If v /∈ S, then v /∈ A(T ) and C(v) ⊆ S. By

Algorithm 1, g(v) = 0. Then |A(v)| = h(v) + g(v). If v ∈ S, then it is obvious
that |A(v)| = 0.

Suppose that the two results hold for i = diam(T ) − 3, . . . , ` + 1. We will
prove that the theorem holds for i = l. We will discuss it from the following
two cases.

Case 1 v /∈ S. Then

|A(v)| = (−1) +
∑

w∈C(v)∩S

|A(w)|+
∑

w∈C(v)\S

|A(w)|
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= (−1) +
∑

w∈(C(v)∩S)∩L(T )

|A(w)|+
∑

w∈(C(v)∩S)\L(T )

|A(w)|

+
∑

w∈C(v)\S

|A(w)|

= h(v) +
∑

w∈(C(v)∩S)\L(T )

|A(w)|+
∑

w∈C(v)\S

|A(w)|.

Since w ∈ C(v) and v ∈ Li, it follows that w ∈ Li+1. By inductive hypoth-
esis, it follows that ∑

w∈C(v)\S

|A(w)| ≥
∑

w∈C(v)\S

(h(w) + g(w))

and ∑
w∈(C(v)∩S)\L(T )

|A(w)| ≥
∑

w∈(C(v)∩S)\L(T )

0 = 0.

Hence,

|A(v)| ≥ h(v) +
∑

w∈C(v)\S

(h(w) + g(w)).

Since S is a γ[1,2]-set of T , it follows that |C(v) ∩ S| ≤ 2. That is |C(v) \ S| ≥
|C(v)| − 2.

Suppose that |C(v)∩(L(T )∪A(T ))| = 2. Then
∑

w∈C(v)\S
(h(w)+g(w)) = g(v).

Hence, |A(v)| ≥ h(v) + g(v).
Suppose that |C(v) ∩ (L(T ) ∪A(T ))| = 1. Then h(v) ≤ 0. By Algorithm 1,

h(v) +
∑

w∈C(v)\{v1}
(h(w) + g(w)) ≥ 0. So, h(v2) + g(v2) ≥ 0. Hence, |A(v)| ≥

h(v)+
∑

w∈C(v)\S
(h(w)+g(w)) ≥ h(v)+

∑
w∈C(v)\{v1,v2}

(h(w)+g(w)) = h(v)+g(v).

Suppose that |C(v)∩(L(T )∪A(T ))| = 0. Then h(v) = −1. By Algorithm 1,
h(v) +

∑
w∈C(v)

(h(w) + g(w)) ≥ 0 and h(v) +
∑

w∈C(v)\{v1}
(h(w) + g(w)) ≥ 0. So,

h(v1)+g(v1) ≥ 0 and h(v2)+g(v2) ≥ 0. Hence, h(v)+
∑

w∈C(v)\S
(h(w)+g(w)) ≥

h(v) +
∑

w∈C(v)\{v1,v2}
(h(w) + g(w)) = h(v) + g(v).

Hence, if v /∈ S, then |A(v)| ≥ h(v) + g(v).
Case 2 v ∈ S. Then |A(v)| = 0 +

∑
w∈C(v)∩S

|A(w)|+
∑

w∈C(v)\S
|A(w)|.

Since w ∈ C(v) and v ∈ Li, it follows that w ∈ Li+1. By inductive hypoth-
esis, it follows that

∑
w∈C(v)∩S

|A(w)| ≥
∑

w∈C(v)∩S
0 = 0.

Hence,

|A(v)| ≥
∑

w∈C(v)\S

|A(w)|
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=
∑

w∈C(v)\(S∪L(T ))

[(−1) +
∑

w′∈C(w)∩S

|A(w′)|+
∑

w′∈C(w)\S

|A(w′)|]

=
∑

w∈C(v)\(S∪L(T ))

[h(w) +
∑

w′∈(C(w)∩S)\L(T )

|A(w′)|+
∑

w′∈C(w)\S

|A(w′)|].

By inductive hypothesis, |A(w′)| ≥ 0 for any w′ ∈ (C(w) ∩ S) \ L(T ) and
|A(w′)| ≥ h(w′) + g(w′) for any w′ ∈ C(w) \ S. So

|A(v)| ≥
∑

w∈C(v)\(S∪L(T ))

[h(w) +
∑

w′∈C(w)\S

(h(w′) + g(w′))].

Since v ∈ S and w /∈ S, it follows that |C(w) ∩ (A(T ) ∪ L(T ))| ≤ 1 and
|C(w) \ S| ≥ |C(w)| − 1. Since t is labeled by Algorithm 1, it follows that
h(w) +

∑
w′∈C(w)\S

(h(w′) + g(w′)) ≥ 0. So |A(v)| ≥
∑

w∈C(v)\S
0 ≥ 0.

Hence, if v ∈ S, then |A(v)| ≥ 0. �

Theorem 2.6. Let T ∈ Γ′ be the tree rooted at vertex t. Then γ[1,2](T ) = n−`
if and only if vertex t is labeled by Algorithm 1.

Proof. Suppose that γ12(T ) = n− `. By Theorem 2.3, Theorem 2.4 and Algo-
rithm 1, vertex t is labeled by Algorithm 1.

Conversely, we assume that vertex t is labeled by Algorithm 1. Let S be a
γ[1,2]-set of T . Suppose that t ∈ S. By Theorem 2.5, it follows that |A(T )| =
|S ∩ V (Tt)| − |I(T )∩ V (Tt)| ≥ 0. Since |S ∩ V (Tt)| = |S| and |I(T )∩ V (Tt)| =
|I(T )|, it follows that |S| ≥ |I(T )|. Suppose that t /∈ S. By Theorem 2.5, it
follows that |A(T )| ≥ h(t) + g(t). Since vertex t is labeled by Algorithm 1, it
follows that h(t)+g(t) ≥ 0. So |A(T )| = |S∩V (Tt)|− |I(T )∩V (Tt)| ≥ 0. That
is |S| ≥ |I(T )|.

Therefore, for any cases, we have |S| ≥ |I(T )|. It is obvious that |S| ≤ |I(T )|.
Hence γ[1,2](T ) = |S| = |I(T )| = n− `. �
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