Commun. Korean Math. Soc. **33** (2018), No. 2, pp. 631–638 https://doi.org/10.4134/CKMS.c170174 pISSN: 1225-1763 / eISSN: 2234-3024

ON [1,2]-DOMINATION IN TREES

Xue-Gang Chen and Moo Young Sohn

ABSTRACT. Chellai et al. [3] gave an upper bound on the [1, 2]-domination number of tree and posed an open question "how to classify trees satisfying the sharp bound?". Yang and Wu [5] gave a partial solution for tree of order n with ℓ -leaves such that every non-leaf vertex has degree at least 4. In this paper, we give a new upper bound on the [1, 2]-domination number of tree which extends the result of Yang and Wu. In addition, we design a polynomial time algorithm for solving the open question. By using this algorithm, we give a characterization on the [1, 2]-domination number for trees of order n with ℓ leaves satisfying $n - \ell$. Thereby, the open question posed by Chellai et al. is solved.

1. Introduction

Graph theory terminology not presented here can be found in [3]. Let G = (V, E) be a graph with |V| = n. The neighborhood and closed neighborhood of a vertex v in the graph G are denoted by N(v) and $N[v] = N(v) \cup \{v\}$, respectively. The graph induced by $S \subseteq V$ is denoted by G[S]. Let G - S denote the induced subgraph G[V - S]. A tree is a connected graph that contains no cycles. A *leaf* of a tree T is a vertex of degree 1. We denote the set of leaves in tree T by L(T).

A subset $D \subseteq V$ in a graph G = (V, E) is a [1, 2]-set if, for every vertex $v \in V \setminus D$, $1 \leq |N(v) \cap D| \leq 2$. A [1, 2]-set D is a dominating set. The [1, 2]-domination number $\gamma_{[1,2]}(G)$ of G is the minimum cardinality of all [1, 2]-sets in G. The notions of [1, 2]-set and [1, 2]-domination were first investigated by Dejter [4]. For any two integers j and k, a subset $D \subseteq V$ in a graph G = (V, E) is a [j, k]-set if, for every vertex $v \in V \setminus D$, $j \leq |N(v) \cap D| \leq k$. For $j \geq 1$, a [j, k]-set D is a dominating set. The notions of [j, k]-set and [j, k]-domination were recently introduced by Chellali et al. [3]. For more general concepts, called set-restricted dominating set and set-restricted domination number, we refer to Amin and Slater [1, 2].

Chellali et al. [3] gave the following open question.

©2018 Korean Mathematical Society

Received April 26, 2017; Accepted November 7, 2017.

²⁰¹⁰ Mathematics Subject Classification. 05C69, 05C85.

Key words and phrases. [1,2]-domination number, tree, polynomial algorithm.

Question 1.1. If T is a tree of order n with ℓ leaves, then $\gamma_{[1,2]}(T) \leq n - \ell$. For which trees is this bound sharp?

Yang and Wu [5] gave the following result.

Theorem 1.1. Let T be a tree of order n with ℓ leaves such that every non-leaf vertex has degree at least 4. Then $\gamma_{[1,2]}(T) = n - \ell$.

In this paper, we give a new upper bound on the [1,2]-domination number of tree which extends the result of Yang and Wu. In addition, we design a polynomial time algorithm for solving the open question. By using this algorithm, we give a characterization on the [1,2]-domination number for trees of order n with ℓ leaves satisfying $n - \ell$. Thereby, the open question posed by Chellai et al. is solved.

2. Main results

View T as the rooted tree at vertex t. For a vertex v in a rooted tree T, let C(v) and D(v) denote the sets of children and descendants of v, respectively. Let $T_v = T[D(v) \cup \{v\}]$. Let T be a tree. For $1 \leq i \leq \Delta(T)$, let $S_i(T) = \{v \mid v \in V(T), d(v) = i\}$. If T has ℓ leaves, then $|S_1(T)| = |L(T)| = \ell$. Let S(T) denote the set of support vertices of T. Let $I(T) = V(T) - S_1(T)$. By the definition of [1, 2]-dominating set of T, if $v \in S(T)$ and $|N(v) \cap S_1(T)| \geq 3$, then v belongs to every $\gamma_{[1,2]}$ -set of T. A new upper bound on the [1, 2]-domination number of tree is given in the following.

Theorem 2.1. Let T be a tree with ℓ leaves. If $S_2(T) \setminus S(T) \neq \emptyset$, then $\gamma_{[1,2]}(T) \leq n - \ell - \lceil \frac{2}{3} |S_2(T) \setminus S(T)| \rceil$.

Proof. Let T_1, T_2, \ldots, T_j be the components of $T[S_2(T) \setminus S(T)]$. Then each T_i is a path. Assume $v_1, v_2, \ldots, v_{a_i}$ denote the vertices of T_i . Define

$$S_{T_i} = \begin{cases} \{v_{3k+1}, v_{3k+2} | k = 0, 1, \dots, \frac{a_i - 3}{3}\} & \text{if } a_i \equiv 0 \pmod{3}, \\ \{v_{3k+1}, v_{3k+2} | k = 0, 1, \dots, \frac{a_i - 4}{3}\} \cup \{v_{a_i}\} & \text{if } a_i \equiv 1 \pmod{3}, \\ \{v_{3k+1}, v_{3k+2} | k = 0, 1, \dots, \frac{a_i - 5}{3}\} \cup \{v_{a_i - 1}, v_{a_i}\} & \text{if } a_i \equiv 2 \pmod{3}. \end{cases}$$

Then $I(T) \setminus (\bigcup_{i=1}^{j} S_{T_i})$ is a [1, 2]-dominating set of T. It is obvious that $|S_{T_i}| = \lceil \frac{2a_i}{3} \rceil$. Hence, $\gamma_{[1,2]}(T) \leq |I(T) \setminus (\bigcup_{i=1}^{j} S_{T_i})| = |I(T)| - |(\bigcup_{i=1}^{j} S_{T_i})| = n - \ell - \sum_{i=1}^{j} |S_{T_i}| = n - \ell - \sum_{i=1}^{j} \lceil \frac{2a_i}{3} \rceil \leq n - \ell - \lceil \frac{2}{3} |S_2(T) \setminus S(T)| \rceil$.

Corollary 2.1. Let T be a tree with ℓ leaves. If $S_2(T) \setminus S(T) \neq \emptyset$, then $\gamma_{[1,2]}(T) < n - \ell$.

By Corollary 2.1, we will assume that $S_2(T) \setminus S(T) = \emptyset$. Theorem 1.1 is extended by the following result.

Theorem 2.2. Let T be a tree of order n with ℓ leaves and $S_2(T) \setminus S(T) = \emptyset$. If $|S_2(T) \cup S_3(T)| \leq 1$, then $\gamma_{[1,2]}(T) = n - \ell$.

Proof. By Theorem 1.1, if $|S_2(T) \cup S_3(T)| = 0$, then the theorem holds. So, we can assume that $|S_2(T) \cup S_3(T)| = 1$. Suppose that $\gamma_{[1,2]}(T) < n - \ell$. Among all $\gamma_{[1,2]}$ -sets of T, let D be a $\gamma_{[1,2]}$ -set of T such that $|D \cap I(T)|$ is maximized. Since $\gamma_{[1,2]}(T) < n - \ell = |I(T)|$, it follows that there exists a vertex $u \in I(T)$ such that $u \in V(T) - D$. Set $W = \{w \mid w \text{ is reachable by a path from } u$, all vertices of which belong to V(T) - D.

Case 1. |W| = 1. Then $W = \{u\}$. Since D is a $\gamma_{[1,2]}$ -set of T and $u \in I(T)$, it follows that d(u) = 2. Since $S_2(T) \setminus S(T) = \emptyset$, it follows that $u \in S(T)$. Say $v \in N(u) \cap S_1(T)$. Let $D' = (D \setminus \{v\}) \cup \{u\}$. Then D' is a $\gamma_{[1,2]}$ -set of T such that $|D' \cap I(G)| > |D \cap I(G)|$, which is a contradiction.

Case 2. $|W| \ge 2$. Then T[W] is a subtree of T with at least two leaves. Let v and t be two leaves of T[W]. Then $d(v) \ge 2$ and $d(t) \ge 2$. Since $|S_2(T) \cup S_3(T)| = 1$, it follows that $d(v) \ge 4$ or $d(t) \ge 4$. Without loss of generality, we can assume that $d(v) \ge 4$. Then v is dominated by D at least three times, a contradiction.

Lemma 2.1. Let T be a tree with ℓ leaves. Suppose that $v \in S(T)$ and $|N(v) \cap S_1(T)| \geq 3$. Say $N(v) \setminus S_1(T) = \{v_1, v_2, \dots, v_k\}$. For $i = 1, 2, \dots, k$, let T_i denote the component of T - v containing v_i , and let $T'_i = T - \bigcup_{j=1, j \neq i}^k T_j$. Then

 $\gamma_{[1,2]}(T) = n - \ell \quad \text{if and only if} \quad \gamma_{[1,2]}(T_i^{'}) = n(T_i^{'}) - |S_1(T_i^{'})| \text{ for } i = 1, 2, \dots, k.$

Proof. It is obvious that $\bigcap_{j=1}^{k}(I(T'_{j})) = \{v\}$ and $\bigcup_{j=1}^{k}(I(T'_{j})) = I(T)$. Suppose that $\gamma_{[1,2]}(T) = n - \ell = |I(T)|$. Then I(T) is a $\gamma_{[1,2]}$ -set of T. If there exists i such that $\gamma_{[1,2]}(T'_{i}) < n(T'_{i}) - |S_{1}(T'_{i})|$, assume that D'_{i} is a $\gamma_{[1,2]}$ -set of T'_{i} , then $|D'_{i}| < |I(T'_{i})|$. Since v is adjacent to at least three leaves in T'_{i} , $v \in D'_{i}$. Hence, $D'_{i} \cup \bigcup_{j=1, j \neq i}^{k} I(T'_{j})$ is a [1, 2]-dominating set of T with cardinality less than $\gamma_{[1,2]}(T)$, which is a contradiction. Hence, $\gamma_{[1,2]}(T'_{i}) = n(T'_{i}) - |S_{1}(T'_{i})|$.

Conversely, let D be a $\gamma_{[1,2]}$ -set of T. It is obvious that $v \in D$. Then $D \cap V(T_i^{'})$ is a [1,2]-dominating set of $T_i^{'}$. If $\gamma_{[1,2]}(T) < n - \ell$, there exists i such that $|D \cap V(T_i^{'})| < |I(T_i^{'})|$. Then $\gamma_{[1,2]}(T_i^{'}) < n(T_i^{'}) - |S_1(T_i^{'})|$, which is a contradiction.

Lemma 2.2. Let T be a tree of order n. Assume that $|N(u) \cap L(T)| \ge 4$. Say $w \in N(u) \cap L(T)$. Let T' = T - w. Then

 $\gamma_{[1,2]}(T) = |V(T)| - |L(T)|$ if and only if $\gamma_{[1,2]}(T') = |V(T')| - |L(T')|$.

Let T be a tree with $n \geq 3$. If diam(T) = 2, 3, it is obvious that $\gamma_{[1,2]}(T) = |V(T)| - |L(T)|$. So we can assume that $diam(T) \geq 4$. By Corollary 2.1, Lemma 2.1 and Lemma 2.2, in order to give a characterization of tree with $\gamma_{[1,2]}(T) = n - \ell$, we define a family of trees. Let Γ' be a family of trees T satisfying the following properties.

(1) $diam(T) \ge 4$.

(2) For each vertex $u \in I(T) \setminus S(T), d(u) \ge 3$.

(3) For each vertex $u \in V(T)$, $|N(v) \cap L(T)| \le 3$.

(4) If $|N(v) \cap L(T)| = 3$, then $|N(v) \cap I(T)| = 1$.

If $|N(v) \cap L(T)| = 3$, v is called a strong support vertex. Define A(T) = $\{u \mid |N(u) \cap L(T)| = 3\}$. Let P be the longest path in T. Let t denote the third vertex in the path P. View T as a tree rooted at t. For $i = 0, 1, 2, \ldots, diam(T) - diam(T)$ 2, define $L_i = \{u \mid d(u, t) = i, u \in V(T)\}$. For each $v \in V(T)$, define

$$h(v) = \begin{cases} 1 & \text{if } |N(v) \cap L(T)| = 2, \\ 0 & \text{if} |N(v) \cap L(T)| = 1, \\ -1 & \text{if } |N(v) \cap L(T)| = 0, \\ +\infty & \text{if } v \in A(T) \cup L(T). \end{cases}$$

Algorithm 1:

Input: A tree $T \in \Gamma'$ and a root vertex t.

Output: $\gamma_{[1,2]}(T) < n - \ell$ or $\gamma_{[1,2]}(T) = n - \ell$.

Step 0: For each vertex $v \in \{u | u \in S(T), C(u) \subseteq L(T)\} \cup L(T)$, define g(v) = 0 and label v with (h(v), g(v)).

Step 1: while there exists a vertex $v \in I(T) \setminus \{t\}$ such that v is unlabeled do

Choose an unlabeled vertex $v \in V(T)$ such that each vertex of C(v)has been labeled. Say $C(v) = \{v_1, v_2, \dots, v_{d_v-1}\}$ and $h(v_1) + g(v_1) \ge 1$ $h(v_2) + g(v_2) \ge \dots \ge h(v_{d_v-1}) + g(v_{d_v-1}).$

(1)

- Case 1. $|C(v) \cap (A(T) \cup L(T))| = 2.$ (a) Define $g(v) = \sum_{w \in C(v) \setminus (A(T) \cup L(T))} (h(w) + g(w)).$ (b) Label v with (h(v), g(v)).
- Case 2. $|C(v) \cap (A(T) \cup L(T))| \le 1$. (2)If $h(v) + \sum_{w \in C(v)} (h(w) + g(w)) < 0$ or $h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) < 0$ g(w)) < 0 then output $r_{[1,2]}(T) < n - \ell$ else $g(v) = \sum_{w \in C(v) \setminus \{v_1, v_2\}} (h(w) + g(w)) (// \text{ If } d(v) = 3, \text{ then } g(v) = 0$ (0.)Label v with (h(v), g(v)).

End-while

Step 2: Suppose that every vertex $v \in I(T) \setminus \{t\}$ has been labeled. Say $C(t) = \{v_1, v_2, \dots, v_{d_t}\}$ and $h(v_1) + g(v_1) \ge h(v_2) + g(v_2) \ge \dots \ge$ $h(v_{d_t}) + g(v_{d_t}).$
$$\begin{split} & \text{If } h(t) + \sum_{w \in C(t) \setminus \{v_1\}}^{v_{t_1}} (h(w) + g(w)) < 0 \text{ or} \\ h(t) + \sum_{w \in C(v) \setminus \{v_1, v_2\}} (h(w) + g(w)) < 0 \text{ then output } r_{[1,2]}(T) < 0 \end{split}$$

 $n-\ell$ else

(a) Define $g(t) = \sum_{w \in C(t) \setminus \{v_1, v_2\}} (h(w) + g(w))$

(b) Label t with (h(t), g(t)).

Theorem 2.3. Let T be the input tree of Algorithm 1. If there exists $v \in I(T) \setminus$ $\begin{array}{l} \{t\} \ with \ |C(v) \cap (A(T) \cup L(T))| \leq 1 \ such \ that \ h(v) + \sum_{w \in C(v)} (h(w) + g(w)) < 0 \\ or \ h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) < 0, \ then \ r_{[1,2]}(T) < n - \ell. \end{array}$ $\begin{array}{l} \mbox{Algorithm 2:} \\ \hline \mbox{Input: Tree T and a root vertex t.} \\ \hline \mbox{Output: $S \subseteq V(T)$} \\ \mbox{Step 0: Say $v \in L_i$. Define $S = {v}.$} \\ \mbox{Step 1: If $h(v) + \sum_{w \in C(v)} (h(w) + g(w)) < 0, $S = S \cup C(v)$; If $h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) < 0, $S = (S \cup (C(v) \setminus \{v_1\})) \cup (\{v_1\} \cap L(T))$.} \\ \mbox{Step 2: For $j = i + 1$ to $diam(T) - 3$} \\ \mbox{For each $v \in S \cap (L_j \setminus L(T))$} \\ \mbox{Say $C(v) = \{v_1, v_2, \dots, v_{d_v-1}\}$ and $h(v_1) + g(v_1) \ge h(v_2) + g(v_2) \ge \dots \ge h(v_{d_v-1}) + g(v_{d_v-1})$.} \\ \mbox{If $g(v) = \sum_{w \in C(v) \setminus (v_1, v_2)} (h(w) + g(w))$ then $S = (S \cup (C(v) \setminus \{v_1, v_2\})) \cup (C(v) \cap L(T))$} \\ \mbox{End-for $End-for $End-for $} \end{array}$

By Algorithm 2, we have a subset $S \subseteq V(T)$.

It is easy to prove that T[S] is a subtree of T_v . Furthermore, $|V(T[S]) \cap L(T)| - |V(T[S]) \cap I(T)| = h(v) + \sum_{w \in C(v)} (h(w) + g(w)) < 0$ or $|V(T[S]) \cap L(T)| - |V(T[S]) \cap I(T)| = h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) < 0$. It is obvious that $(I(T) \setminus (V(T[S]) \cap I(T))) \cup (V(T[S]) \cap L(T))$ is a [1, 2]-dominating set of T. Hence, $r_{[1,2]}(T) \leq |(I(T) \setminus (V(T[S]) \cap I(T))) \cup (V(T[S]) \cap L(T))| = |I(T)| - |(V(T[S]) \cap I(T))| + |(V(T[S]) \cap L(T))| < I(T) = n - \ell$.

By a similar proof as above, the following result holds.

Theorem 2.4. Let T be the input tree of Algorithm 1. Suppose that every vertex $v \in I(T) \setminus \{t\}$ has been labeled. If $h(t) + \sum_{w \in C(t) \setminus \{v_1\}} (h(w) + g(w)) < 0$ or $h(t) + \sum_{w \in C(v) \setminus \{v_1, v_2\}} (h(w) + g(w)) < 0$, then $r_{[1,2]}(T) < n - \ell$.

Theorem 2.5. Suppose that t is labeled by Algorithm 1. Let S be a $\gamma_{[1,2]}$ -set of T. Define $|A(w)| = |S \cap V(T_w)| - |I(T) \cap V(T_w)|$ for any $w \in V(T)$. For any $v \in I(T)$, we have

- (1) If $v \notin S$, then $|A(v)| \ge h(v) + g(v)$.
- (2) If $v \in S$, then $|A(v)| \ge 0$.

Proof. Suppose $v \in L_i$. We will prove it by induction on *i*.

Suppose that i = diam(T) - 3. If $v \notin S$, then $v \notin A(T)$ and $C(v) \subseteq S$. By Algorithm 1, g(v) = 0. Then |A(v)| = h(v) + g(v). If $v \in S$, then it is obvious that |A(v)| = 0.

Suppose that the two results hold for $i = diam(T) - 3, \ldots, \ell + 1$. We will prove that the theorem holds for i = l. We will discuss it from the following two cases.

Case 1 $v \notin S$. Then

$$|A(v)| = (-1) + \sum_{w \in C(v) \cap S} |A(w)| + \sum_{w \in C(v) \setminus S} |A(w)|$$

X.-G. CHEN AND M. Y. SOHN

$$= (-1) + \sum_{w \in (C(v) \cap S) \cap L(T)} |A(w)| + \sum_{w \in (C(v) \cap S) \setminus L(T)} |A(w)|$$
$$+ \sum_{w \in C(v) \setminus S} |A(w)|$$
$$= h(v) + \sum_{w \in (C(v) \cap S) \setminus L(T)} |A(w)| + \sum_{w \in C(v) \setminus S} |A(w)|.$$

Since $w \in C(v)$ and $v \in L_i$, it follows that $w \in L_{i+1}$. By inductive hypothesis, it follows that

$$\sum_{w \in C(v) \backslash S} |A(w)| \geq \sum_{w \in C(v) \backslash S} (h(w) + g(w))$$

and

$$\sum_{w \in (C(v) \cap S) \setminus L(T)} |A(w)| \ge \sum_{w \in (C(v) \cap S) \setminus L(T)} 0 = 0.$$

Hence,

$$|A(v)| \ge h(v) + \sum_{w \in C(v) \setminus S} (h(w) + g(w)).$$

Since S is a $\gamma_{[1,2]}$ -set of T, it follows that $|C(v) \cap S| \leq 2$. That is $|C(v) \setminus S| \geq 2$ |C(v)| - 2.

Suppose that
$$|C(v) \cap (L(T) \cup A(T))| = 2$$
. Then $\sum_{w \in C(v) \setminus S} (h(w) + g(w)) = g(v)$.

Hence, $|A(v)| \ge h(v) + g(v)$.

Hence, $|A(v)| \ge h(v) + g(v)$. Suppose that $|C(v) \cap (L(T) \cup A(T))| = 1$. Then $h(v) \le 0$. By Algorithm 1, $h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) \ge 0$. So, $h(v_2) + g(v_2) \ge 0$. Hence, $|A(v)| \ge h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) \ge h(v) + \sum_{w \in C(v) \setminus \{v_1, v_2\}} (h(w) + g(w)) = h(v) + g(v)$. Suppose that $|C(v) \cap (L(T) \cup A(T))| = 0$. Then h(v) = -1. By Algorithm 1, $h(v) + \sum_{w \in C(v)} (h(w) + g(w)) \ge 0$ and $h(v) + \sum_{w \in C(v) \setminus \{v_1\}} (h(w) + g(w)) \ge 0$. So, $h(v_1) + g(v_1) \ge 0$ and $h(v_2) + g(v_2) \ge 0$. Hence, $h(v) + \sum_{w \in C(v) \setminus S} (h(w) + g(w)) \ge h(v) + g(v)$.

 $h(v) + \sum_{w \in C(v) \setminus \{v_1, v_2\}} (h(w) + g(w)) = h(v) + g(v).$ $\begin{array}{l} \underset{w \in C(v) \setminus \{v_1, v_2\}}{\text{Hence, if } v \notin S, \text{ then } |A(v)| \ge h(v) + g(v). \\ \text{Case } 2 \ v \in S. \text{ Then } |A(v)| = 0 + \sum_{w \in C(v) \cap S} |A(w)| + \sum_{w \in C(v) \setminus S} |A(w)|. \\ \end{array}$

Since $w \in C(v)$ and $v \in L_i$, it follows that $w \in L_{i+1}$. By inductive hypothesis, it follows that $\sum_{w \in C(v) \cap S} |A(w)| \ge \sum_{w \in C(v) \cap S} 0 = 0.$

Hence,

$$|A(v)| \ge \sum_{w \in C(v) \backslash S} |A(w)|$$

ON [1,2]-DOMINATION IN TREES

$$= \sum_{w \in C(v) \setminus (S \cup L(T))} [(-1) + \sum_{w' \in C(w) \cap S} |A(w')| + \sum_{w' \in C(w) \setminus S} |A(w')|]$$

$$= \sum_{w \in C(v) \setminus (S \cup L(T))} [h(w) + \sum_{w' \in (C(w) \cap S) \setminus L(T)} |A(w')| + \sum_{w' \in C(w) \setminus S} |A(w')|].$$

By inductive hypothesis, $|A(w')| \ge 0$ for any $w' \in (C(w) \cap S) \setminus L(T)$ and $|A(w')| \ge h(w') + g(w')$ for any $w' \in C(w) \setminus S$. So

$$|A(v)| \ge \sum_{w \in C(v) \setminus (S \cup L(T))} [h(w) + \sum_{w' \in C(w) \setminus S} (h(w') + g(w'))].$$

Since $v \in S$ and $w \notin S$, it follows that $|C(w) \cap (A(T) \cup L(T))| \leq 1$ and $|C(w) \setminus S| \geq |C(w)| - 1$. Since t is labeled by Algorithm 1, it follows that $h(w) + \sum_{w' \in C(w) \setminus S} (h(w') + g(w')) \geq 0$. So $|A(v)| \geq \sum_{w \in C(v) \setminus S} 0 \geq 0$.

Hence, if $v \in S$, then $|A(v)| \ge 0$.

Theorem 2.6. Let $T \in \Gamma'$ be the tree rooted at vertex t. Then $\gamma_{[1,2]}(T) = n - \ell$ if and only if vertex t is labeled by Algorithm 1.

Proof. Suppose that $\gamma_{12}(T) = n - \ell$. By Theorem 2.3, Theorem 2.4 and Algorithm 1, vertex t is labeled by Algorithm 1.

Conversely, we assume that vertex t is labeled by Algorithm 1. Let S be a $\gamma_{[1,2]}$ -set of T. Suppose that $t \in S$. By Theorem 2.5, it follows that $|A(T)| = |S \cap V(T_t)| - |I(T) \cap V(T_t)| \ge 0$. Since $|S \cap V(T_t)| = |S|$ and $|I(T) \cap V(T_t)| = |I(T)|$, it follows that $|S| \ge |I(T)|$. Suppose that $t \notin S$. By Theorem 2.5, it follows that $|A(T)| \ge h(t) + g(t)$. Since vertex t is labeled by Algorithm 1, it follows that $h(t) + g(t) \ge 0$. So $|A(T)| = |S \cap V(T_t)| - |I(T) \cap V(T_t)| \ge 0$. That is $|S| \ge |I(T)|$.

Therefore, for any cases, we have $|S| \ge |I(T)|$. It is obvious that $|S| \le |I(T)|$. Hence $\gamma_{[1,2]}(T) = |S| = |I(T)| = n - \ell$.

Acknowledgments. This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (2017R1D1A3B03029912).

References

- A. T. Amin and P. J. Slater, Neighborhood domination with parity restrictions in graphs, Congr. Numer. 91 (1992), 19–30.
- [2] _____, All parity realizable trees, J. Combin. Math. Combin. Comput. 20 (1996), 53–63.
 [3] M. Chellali, T. W. Haynes, and S. T. Hedetniemi, [1,2]-sets in graphs, Discrete Appl. Math. 161 (2013), no. 18, 2885–2893.
- [4] I. J. Dejter, Quasiperfect domination in triangular lattices, Discuss. Math. Graph Theory 29 (2009), no. 1, 179–198.
- [5] X. Yang and B. Wu, [1,2]-domination in graphs, Discrete Appl. Math. 175 (2014), 79-86.

XUE-GANG CHEN DEPARTMENT OF MATHEMATICS NORTH CHINA ELECTRIC POWER UNIVERSITY BEIJING 102206, P. R. CHINA *Email address:* gxcxdm@163.com

Moo Young Sohn Department of Mathematics Changwon National University Changwon 641-773, Korea Email address: mysohn@changwon.ac.kr