ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE GRAPH

E. Murugan* and J. Paulraj Joseph

Abstract

For a given graph $G=(V, E)$, a dominating set is a subset V^{\prime} of the vertex set V so that each vertex in $V \backslash V^{\prime}$ is adjacent to a vertex in V^{\prime}. The minimum cardinality of a dominating set of G is called the domination number of G and is denoted by $\gamma(G)$. For an integer $k \geq 1$, the k-th power G^{k} of a graph G with $V\left(G^{k}\right)=V(G)$ for which $u v \in E\left(G^{k}\right)$ if and only if $1 \leq d_{G}(u, v) \leq k$. Note that G^{2} is the square graph of a graph G. In this paper, we obtain some tight bounds for the sum of the domination numbers of a graph and its square graph in terms of the order, order and size, and maximum degree of the graph G. Also, we characterize such extremal graphs.

1. Introduction

By a graph, we mean a finite, simple and connected graph. For a graph G, its vertex set and edge set are denoted by $V(G)$ and $E(G)$, respectively. The number of vertices $|V(G)|$ of a graph G is called the order of G and is denoted by $n=n(G)$ and the number of edges $|E(G)|$ of a graph G is called the size of G and is denoted by $m=m(G)$. The neighborhood $N(v)=N_{G}(v)$ of a vertex v consists of the vertices adjacent to v and $|N(v)|$ is called the degree of v and is denoted by $d_{G}(v)$ or $d(v)$. The k-neighborhood $N_{G}^{k}[v]$ of a vertex $v \in V(G)$ is the set of all vertices at distance at most k from v. The minimum degree and maximum degree of the graph G is denoted by $\delta(G)$ and $\Delta(G)$ respectively. A vertex of degree one is called a pendant vertex and a vertex which is adjacent to a pendant vertex is called a support vertex. If U is a proper subset of V, then $G \backslash U$ denotes the subgraph of G with vertex set $V \backslash U$ and whose edges are all those of G which are not incident with any vertex in U. For a subset S of V, the subgraph induced by S is denoted by $G\langle S\rangle$. Let C_{n} denote the cycle on n vertices, K_{n} denotes the complete graph of order n, and $K_{p, q}$ denote the complete bipartite graph. Note that $K_{1, q}$ is called a star. A graph G is said to be connected if there exists a path between any two vertices of G. For two vertices u and v in a connected graph G, the distance $d(u, v)$ between u and v is the length of a shortest $u-v$ path in G. The diameter of G is defined as $\max \{d(u, v): u, v \in V(G)\}$ and is denoted by $\operatorname{diam}(G)$. For a vertex v of G, its eccentricity $e(v)$ is defined by $e(v)=\max \{d(u, v): u \in V(G)\}$. A forest is an acyclic graph. A galaxy is a forest in which each component is a star. A tree is a connected acyclic graph. A path is a tree on n vertices with maximum degree is two and is denoted by P_{n}. A bistar is a tree of diameter three. A graph is called unicyclic if G contain exactly one cycle. A subset S of V is called an independent set of G if no two

[^0]vertices of S are adjacent in G.
The complement \bar{G} of a graph G is the graph with vertex set $V(G)$ such that two vertices are adjacent in \bar{G} if and only if they are not adjacent in G. The Corona of two graphs G_{1} and G_{2}, denoted by $G_{1} \circ G_{2}$, is the graph obtained by taking one copy of G_{1} and $\left|V\left(G_{1}\right)\right|$ copies of G_{2} in which the $i^{\text {th }}$ vertex of G_{1} is joined to every vertex in the $i^{\text {th }}$ copy of G_{2}. The Cartesian Product of simple graphs G and H is the simple graph $G \times H$ with vertex set $V(G) \times V(H)$, in which (u, v) is adjacent to $\left(u^{\prime}, v^{\prime}\right)$ if and only if either $u=u^{\prime}$ and $v v^{\prime} \in E(H)$ or $v=v^{\prime}$ and $u u^{\prime} \in E(G)$. The line graph $L(G)$ of a graph G is a graph whose vertex set is $E(G)$ and two vertices of $L(G)$ are adjacent if and only if the corresponding edges share a common end in G.

If $\alpha(G)$ is a graph parameter, then the lower and upper bounds on the sum $\alpha(G)+\alpha(\bar{G})$ in terms of n are of prime importance in graph theory. The first of its kind with reference to chromatic number $\chi(G)$ of G was studied by Nordhaus and Gaddum on complementary graphs (a graph and its complement) and published in American Mathematical Monthly in 1956. They proved lower and upper bounds on the sum and on the product of $\chi(G)$ and $\chi(\bar{G})$ in terms of the order n of G. The original relations presented by Nordhaus and Gaddum [15] in 1956 are as follows.

Theorem 1.1. [15] If G is a graph of order n, then

$$
\begin{gathered}
2 \sqrt{n} \leq \chi(G)+\chi(\bar{G}) \leq n+1 \text { and } \\
n \leq \chi(G) \cdot \chi(\bar{G}) \leq \frac{(n+1)^{2}}{4} .
\end{gathered}
$$

Furthermore, these bounds are best possible for infinitely many values of n.
Since then, any bound on the sum and / or the product of an invariant in a graph G and the same invariant in the complement \bar{G} of G is called a Nordhaus-Gaddum type inequality or relation. The theory of domination is one of the fast growing research areas in graph theory. The concept of dominating set was introduced by C. Berge [2] and by Ore [16] in 1962. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to some vertex in S. The domination number of G is the minimum cardinality taken over all dominating sets of G and is denoted by $\gamma(G)$. A dominating set S of minimum cardinality is called a γ-set of G. The Nordhaus-Gaddum type for domination number proved by Jaeger and Payan [8] in 1972 are as follows.

Theorem 1.2. [8] For any graph G with at least two vertices,

$$
\begin{gathered}
3 \leq \gamma(G)+\gamma(\bar{G}) \leq n+1 \text { and } \\
2 \leq \gamma(G) \cdot \gamma(\bar{G}) \leq n .
\end{gathered}
$$

This has been extended to other graph theoretic parameters. A survey of these results is published in [1]. Like \bar{G}, there are several derived graphs in the literature. In [11-14], the authors obtained similar results for line graphs, total graphs, shadow graphs and block graphs. Since power graph is one of the derived graphs, we extend the Nordhaus-Gaddum type result to square graph for the parameter domination number.

The paper proceeds as follows. In Section 2, first we collect some results which will be used in our investigations. In Section 3, we obtain lower and upper bounds for the sum $\gamma(G)+\gamma\left(G^{2}\right)$ in terms of order n where G^{2} is the square graph of a graph G. In Section 4, we obtain similar results in terms of order n and size m. In Section 5 , we obtain the similar for planar graphs. Finally, in Section 6, we present the same type of results in terms of order n and maximum degree $\Delta(G)$.

2. Preliminary results

The following results will be used in our investigations.

Theorem 2.1. [16] If a graph G of order n and has no isolated vertices, then $\gamma(G) \leq n / 2$.
Theorem 2.2. [5,17] For a graph G with even order n and no isolated vertices, $\gamma(G)=$ $n / 2$ if and only if the components of G are the cycle C_{4} or the corona $H \circ K_{1}$ for any connected graph H.

Figure 1. Graphs in the family \mathcal{A}.

Figure 2. Graphs in the family \mathcal{B}.
In [4, 18] E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi, B. Randerath and L. Volkmann defined six classes of graphs using the following families of graphs which were useful for characterize the connected graphs for which $\gamma(G)=\lfloor n / 2\rfloor$. Let

$$
\begin{gathered}
\mathcal{G}_{1}=\left\{C_{4}\right\} \cup\left\{G: G=H \circ K_{1} \text { where } H \text { is connected }\right\} \\
\mathcal{G}_{2}=\mathcal{A} \cup \mathcal{B}-\left\{C_{4}\right\} .
\end{gathered}
$$

and
For any graph H, let $\mathcal{S}(H)$ denote the set of connected graphs, each of which can be formed from $H \circ K_{1}$ by adding a new vertex x and edges joining x to one or more vertices of H. Then define

$$
\mathcal{G}_{3}=\bigcup_{H} \mathcal{S}(H),
$$

where the union is taken over all graphs H. Let y be a vertex of a copy of C_{4} and, for $G \in \mathcal{G}_{3}$, let $\theta(G)$ be the graph obtained by joining G to C_{4} with the single edge $x y$, where x is the new vertex added in forming G. Then define

$$
\mathcal{G}_{4}=\left\{\theta(G): G \in \mathcal{G}_{3}\right\}
$$

Next, let u, v, w be a vertex sequence of a path P_{3} or a cycle C_{3}. For any graph H, let $\mathcal{P}(H)$ be the set of connected graphs which formed from $H \circ K_{1}$ by joining at least one of u and w to one or more vertices of H. Then define

$$
\mathcal{G}_{5}=\bigcup_{H} \mathcal{P}(H) .
$$

Let H be a graph and $X \in \mathcal{B}$. Let $\mathcal{R}(H, X)$ be the set of connected graphs which may be formed from $H \circ K_{1}$ by joining each vertex of $U \subset V(X)$ to one or more vertices of H such that no set with fewer than $\gamma(X)$ vertices of X dominates $V(X)-U$. Then define

$$
\mathcal{G}_{6}=\bigcup_{H, X} \mathcal{R}(H, X) .
$$

Theorem 2.3. [4, 18] A connected graph G of order n satisfies $\gamma(G)=\left\lfloor\frac{n}{2}\right\rfloor$ if and only if $G \in \mathcal{G}=\bigcup_{i=1}^{6} \mathcal{G}_{i}$.

Theorem 2.4. [2] For any graph G of order n and size m,

$$
n-m \leq \gamma(G) \leq n+1-\sqrt{1+2 m}
$$

Furthermore, $\gamma(G)=n-m$ if and only if G is a galaxy.
Theorem 2.5. [7] For any connected graph $G,\left\lceil\frac{\operatorname{diam}(G)+1}{3}\right\rceil \leq \gamma(G)$.
Theorem 2.6. [2, 19] For any graph G of order n and maximum degree $\Delta(G)$, $\left\lceil\frac{n}{1+\Delta(G)}\right\rceil \leq \gamma(G) \leq n-\Delta(G)$.

THEOREM 2.7. [10] If G is a 3-regular planar graph with diameter 2 , then G is isomorphic to the cartesian product $K_{2} \times K_{3}$.

Theorem 2.8. [10] If G is a 4-regular planar graph with diameter two, then G is isomorphic to any one of the graphs given in Figure 3.

Figure 3. 4-regular Planar Graphs of diameter 2.

Theorem 2.9. [10] There exist no 5-regular planar graphs with diameter 2.
Definition 2.10. A graph obtained by joining at least one new isolated vertices S to each pendant vertex of a graph G is denoted by $G(S)$. In this notation, $P_{2}(S)$ is a bistar.

Lemma 2.11. For any tree $G, \gamma(G)=2$ if and only if $G \cong P_{2}(S)$ or $P_{3}(S)$ or $P_{4}(S)$.
Proof. Assume that $\gamma(G)=2$. Clearly $\operatorname{diam}(G)=3$ or 4 or 5 . If $\operatorname{diam}(G)=3$, then G is bistar. Suppose $\operatorname{diam}(G)=4$, let $v_{1} v_{2} v_{3} v_{4} v_{5}$ be a diametrical path in G. Clearly $d\left(v_{1}\right)=d\left(v_{5}\right)=1$ and v_{2}, v_{4} are support vertices. Since any dominating set of G must contain v_{2} and $v_{4}, d\left(v_{3}\right)=2$. Hence $G \cong P_{3}(S)$. If $\operatorname{diam}(G)=5$, then by a similar argument, $G \cong P_{4}(S)$. The converse is obvious.

3. Bounds in terms of order

In this section, we obtain lower and upper bounds for the sum $\gamma(G)+\gamma\left(G^{2}\right)$ in terms of order n where G^{2} is the square of a graph G for which has no isolated vertices. Since any dominating set of G is also a dominating set of the square graph G^{2},

$$
\begin{equation*}
\gamma\left(G^{2}\right) \leq \gamma(G) \tag{3.1}
\end{equation*}
$$

and hence by Theorem 2.1,

$$
\begin{equation*}
1 \leq \gamma\left(G^{2}\right) \leq \frac{n}{2} \tag{3.2}
\end{equation*}
$$

Some properties for square graphs in domination theory using Eqs.(3.1) and (3.2) are listed in the following:
(3) For all connected graphs G of order at most $5, \gamma\left(G^{2}\right)=1$.
(4) $\gamma\left(G^{2}\right)=1$ if and only if $e(v) \leq 2$ for some $v \in V(G)$.
(5) $\gamma\left(G^{2}\right)=\frac{n}{2}$ if and only if $G \cong K_{2}$.
(6) $\gamma\left(G^{2}\right)=\frac{n-1}{2}$ if and only if $G \cong P_{3}$ or C_{3}.
(7) $2 \leq \gamma(G)+\gamma\left(G^{2}\right) \leq n$ and the lower bound is attained if and only if $\Delta(G)=n-1$ and the upper bound is attained if and only if $G \cong K_{2}$.
Proposition 3.1. If H^{\prime} is an induced subgraph of G, then $\gamma\left(G^{2}\right) \leq \gamma\left(H^{\prime 2}\right)+\gamma\left(\left[G \backslash H^{\prime}\right]^{2}\right)$.
Proof. Let H^{\prime} be an induced subgraph of G. Then $G \backslash H^{\prime}$ is also a subgraph of G which is disjoint from H^{\prime}. If S_{1}, S_{2} are γ-sets of $H^{\prime 2}$ and $\left(G \backslash H^{\prime}\right)^{2}$ respectively, then $S_{1} \cup S_{2}$ is a dominating set of G^{2}.

$$
\text { Therefore } \begin{aligned}
\gamma\left(G^{2}\right) & \leq\left|S_{1} \cup S_{2}\right| \\
& =\left|S_{1}\right|+\left|S_{2}\right|-\left|S_{1} \cap S_{2}\right| \\
& \leq\left|S_{1}\right|+\left|S_{2}\right| \\
& =\gamma\left(H^{\prime 2}\right)+\gamma\left(\left[G \backslash H^{\prime}\right]^{2}\right) .
\end{aligned}
$$

Theorem 3.2. For any connected graph G of even order $n \geq 6, \gamma\left(G^{2}\right) \leq \frac{n-2}{2}$ and the equality holds if and only if G is either P_{6} or C_{6}.

Proof. The required upper bound follows from Eq.(3.2), Properties 3, 5 and 6. Assume that $\gamma\left(G^{2}\right)=\frac{n-2}{2}$. We claim that $\Delta(G)=2$. If $\Delta(G) \geq 3$, then there is a vertex v of degree at least three in G. Clearly, $\left|N_{G}^{2}[v]\right| \geq 5$ and let $G^{\prime}=G^{2} \backslash N_{G}^{2}[v]$. If $G_{1}^{\prime}, G_{2}^{\prime}, \ldots, G_{s}^{\prime}$ are the components of G^{\prime} with $\left|V\left(G_{i}^{\prime}\right)\right|=l_{i}, 1 \leq i \leq s$, then it is clear that $\sum\left|V\left(G_{i}^{\prime}\right)\right| \leq n-5$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 1+\frac{n-5}{2}=\frac{n-3}{2}$, a contradiction. Hence G is either P_{n} or C_{n}. Since $\gamma\left(P_{n}\right)=\gamma\left(C_{n}\right)=\left\lceil\frac{n}{3}\right\rceil$, by Eq.(3.1) and hypothesis $n=6$. Hence G is either P_{6} or C_{6}. Converse is obvious by verification.

Theorem 3.3. If G is any connected graph of even order n at least 4, then $\gamma(G)+\gamma\left(G^{2}\right)=$ $n-1$ if and only if $G \cong C_{4}$ or P_{4}.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=n-1$. Since n is even, by Theorem 2.1, Eqs.(3.1) and (3.2),

$$
\begin{equation*}
\gamma(G)=\frac{n}{2} \text { and } \gamma\left(G^{2}\right)=\frac{n-2}{2} . \tag{3.3}
\end{equation*}
$$

By Theorem 2.2, $G \cong C_{4}$ or $H \circ K_{1}$. If $G \cong P_{4}$ or C_{4}, then $\gamma\left(G^{2}\right)=1=\frac{n-2}{2}$. Hence G satisfies Eq.(3.3). Otherwise, $G \cong H \circ K_{1}$ with $|V(H)| \geq 3$. Then $|V(G)| \geq 6$ and hence by Theorem 3.2, $G \cong P_{6}$ or C_{6} which are not corona for any connected graph H. Hence $G \cong C_{4}$ or P_{4}. Converse is obvious by verification.

Theorem 3.4. For any connected graph G of odd order n and with at least three vertices, then $\gamma(G)+\gamma\left(G^{2}\right)=n-1$ if and only if G is either P_{3} or C_{3}.

Proof. It follows from Theorems 2.1, Eqs.(3.1), (3.2) and Property 6.
Lemma 3.5. Let $G \cong H \circ K_{1}$. If $\Delta(H) \geq 3$, then $\gamma\left(G^{2}\right) \leq \frac{n-6}{2}$.
Proof. Assume that $\Delta(H) \geq 3$. Then there exists a vertex v of degree at least three in H. Clearly, v is adjacent to at least eight vertices in G^{2}, that is $\left|N_{G}^{2}[v]\right| \geq 8$. Let $H^{\prime}=G\langle N[v]\rangle$. Clearly, $\gamma\left(H^{\prime 2}\right)=1$. Hence by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 1+\frac{n-8}{2}=\frac{n-6}{2}$.

Proposition 3.6. (i) For any path $P_{k}(k \geq 3), \gamma\left(\left[P_{k} \circ K_{1}\right]^{2}\right)=\left\lceil\frac{k}{3}\right\rceil$.
(ii) For any cycle $C_{k}, \gamma\left(\left[C_{k} \circ K_{1}\right]^{2}\right)=\left\lceil\frac{k}{3}\right\rceil$.

Proof. i) Let $G=P_{k} \circ K_{1}$ with $P_{k}=\left(v_{1} v_{2} \ldots v_{k-1} v_{k}\right)$ and v_{i}^{\prime} be the pendant vertex adjacent to $v_{i}, 1 \leq i \leq k$ in G. If $k \equiv 0(\bmod 3)$, let $S_{1}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{k-1}\right\}$. If $k \equiv 1(\bmod 3)$, let $S_{2}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{k-2}\right\} \cup\left\{v_{k}^{\prime}\right\}$. If $k \equiv 2(\bmod 3)$, let $S_{3}=\left\{v_{2}, v_{5}, v_{8}, \ldots, v_{k-3}\right\} \cup\left\{v_{k}\right\}$. In all cases, $\left|S_{i}\right|=\left\lceil\frac{k}{3}\right\rceil$, and each is a dominating set in G^{2} so that $\gamma\left(G^{2}\right) \leq\left\lceil\frac{k}{3}\right\rceil$. If we remove one vertex from S_{i}, then it is evident that S_{i} is not a dominating set of G^{2}. Hence $\gamma\left(G^{2}\right)=\left\lceil\frac{k}{3}\right\rceil$. Proof of (ii) is similar.

Theorem 3.7. If G is any connected graph of even order $n \geq 6$, then $\gamma(G)+\gamma\left(G^{2}\right)=n-2$ if and only if G is isomorphic to $P_{3} \circ K_{1}, C_{3} \circ K_{1}, P_{4} \circ K_{1}, C_{4} \circ K_{1}, P_{6}$ or C_{6}.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=n-2$. Since G is of even order, by Theorem 2.1 and Eqs.(3.1), (3.2),

$$
\begin{align*}
& \gamma(G)=\frac{n}{2} \text { and } \gamma\left(G^{2}\right)=\frac{n-4}{2} \tag{3.4}\\
& \text { (or) } \gamma(G)=\frac{n-2}{2} \text { and } \gamma\left(G^{2}\right)=\frac{n-2}{2} . \tag{3.5}
\end{align*}
$$

When (3.4) is satisfied, by Theorem 2.2 and hypothesis, $G \cong H \circ K_{1}$. By Lemma 3.5, H is either a path or a cycle. We claim that $|V(H)|$ is 3 or 4 . If $|V(H)| \geq 5$, then by Proposition 3.6, it is easy to see that $\gamma\left(\left(H \circ K_{1}\right)^{2}\right) \neq \frac{n-4}{2}$ and hence H is either P_{3}, P_{4}, C_{3} or C_{4}. When (3.5) is satisfied, by Theorem 3.2, G is either P_{6} or C_{6}. The converse can be easily verified.

THEOREM 3.8. If G is any connected graph of odd order $n \geq 5$, then $\gamma(G)+\gamma\left(G^{2}\right)=n-2$ if and only if $G \cong P_{5}, P_{7}, C_{7}$ or any one of the graphs in $\mathcal{B} \backslash\left\{C_{3}\right\}$ and Figure 4.

Figure 4. Graphs satisfying $\gamma(G)+\gamma\left(G^{2}\right)=n-2$.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=n-2$. Since G is of odd order, from Eqs.(3.1),(3.2) and Theorem 2.1,

$$
\begin{equation*}
\gamma(G)=\frac{n-1}{2} \text { and } \gamma\left(G^{2}\right)=\frac{n-3}{2} \tag{3.6}
\end{equation*}
$$

and from Theorem 2.3, $G \in \mathcal{G}=\bigcup_{i=2}^{6} \mathcal{G}_{i}$. Then we have the following cases.
Case 1: $G \in \mathcal{G}_{2}$
For every graph $G \in \mathcal{A} \backslash\left\{C_{4}, C_{7}\right\}, \gamma\left(G^{2}\right)=1<2=\frac{n-3}{2}$. Further, it is easy to verify that for every graph $G \in \mathcal{B} \backslash\left\{C_{3}\right\}, \gamma\left(G^{2}\right)=1=\frac{n-3}{2}$.
Case 2: $G \in \mathcal{G}_{3}$
Let $n=2 k+1$. Since $n \geq 5,|V(H)|=k \geq 2$. Let $H_{1}, H_{2}, \ldots, H_{s}$ be the components of H such that $\left|V\left(H_{i}\right)\right|=k_{i}, 1 \leq i \leq s$. Clearly, $\sum\left|V\left(H_{i}\right)\right|=k, 1 \leq i \leq s$. We claim that $\operatorname{diam}\left(H_{i}\right) \leq 1$. Suppose H_{i} contains a P_{3} as an induced subgraph (say $v_{1} v_{2} v_{3}$). Let $v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}$ be the pendant vertices corresponding to v_{1}, v_{2}, v_{3} respectively. Let $H_{i}^{\prime}=G\left\langle\left\{v_{1}, v_{2}, v_{3}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\}\right\rangle$. Then clearly $\gamma\left(H_{i}^{\prime 2}\right)=1$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq$ $1+\frac{n-6}{2}=\frac{n-4}{2}<\frac{n-3}{2}$ which is a contradiction. Hence $\operatorname{diam}\left(H_{i}\right) \leq 1$. Now we show that
$|V(H)| \leq 3$. Suppose H contains at least 4 vertices, say $u_{1}, u_{2}, u_{3}, u_{4}$. Let $u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}$ be their pendant vertices. Let $H^{\prime}=G\left\langle\left\{u_{1}, u_{2}, u_{3}, u_{4}, u_{1}^{\prime}, u_{2}^{\prime}, u_{3}^{\prime}, u_{4}^{\prime}, x\right\}\right\rangle$. Then clearly $\gamma\left(H^{\prime 2}\right) \leq 2$. Then by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 2+\frac{n-9}{2}=\frac{n-5}{2}$, a contradiction. Hence $|V(H)| \leq 3$. If $\operatorname{diam}\left(H_{i}\right)=0$, then H is a totally disconnected graph. Further by definition of \mathcal{G}_{3} and hypothesis, k must be 2 . Hence $G \cong P_{5}$. If $\operatorname{diam}\left(H_{i}\right)=1$, then clearly $|V(H)|=2$. Hence $G \cong G_{1}$ or G_{2}. Suppose H contains p copies of K_{1} and q copies of K_{2}. Since $|V(H)| \leq 3, p=q=1$. Hence $H=K_{1} \cup K_{2}$. If x is adjacent to every vertex of H, then $\gamma\left(G^{2}\right)=1 \neq 2=\frac{n-3}{2}$. If x is adjacent to exactly one vertex of each copy of H, then $\gamma\left(G^{2}\right)=2=\frac{n-3}{2}$. Hence $G \cong G_{3}$.
Case 3: $G \in \mathcal{G}_{4}$
Let $n=2 k+1$. Let $H_{1}, H_{2}, \ldots, H_{s}$ be the components of H. By definition of $\mathcal{G}_{4},|V(H)|=$ $\frac{2 k-4}{2}$. We claim that $\operatorname{diam}\left(H_{i}\right)=0$ for every $1 \leq i \leq s$. Suppose H_{i} contains a P_{2} as an induced subgraph (say $u_{1} u_{2}$). Let $u_{1}^{\prime}, u_{2}^{\prime}$ be the pendant vertices corresponding to u_{1}, u_{2} respectively. Let $H^{\prime}=G\left\langle\left\{u_{1}, u_{2}, u_{1}^{\prime}, u_{2}^{\prime}\right\} \cup\{x\} \cup\left\{C_{4}\right\}\right\rangle$. Then clearly $\gamma\left(H^{\prime 2}\right)=2$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 2+\frac{n-9}{2}=\frac{n-5}{2}<\frac{n-3}{2}$ which is a contradiction. Hence H is a totally disconnected graph. Further by definition of \mathcal{G}_{4} and hypothesis, k must be 3 . Hence $G \cong G_{4}$.
Case 4: $G \in \mathcal{G}_{5}$
Let $n=2 k+1$. Let $H_{1}, H_{2}, \ldots, H_{s}$ be the components of H. By definition of \mathcal{G}_{5}, let u, v, w be a sequence of path P_{3} in G. We claim that $\operatorname{diam}\left(H_{i}\right) \leq 1$. Suppose H_{i} contains a P_{3} as an induced subgraph (say $w_{1} w_{2} w_{3}$). Let $w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}$ be the pendant vertices corresponding to w_{1}, w_{2}, w_{3} respectively. Let $H_{i}^{\prime}=G\langle\{u, v, w\} \cup$
$\left.\left\{w_{1}, w_{2}, w_{3}, w_{1}^{\prime}, w_{2}^{\prime}, w_{3}^{\prime}\right\}\right\rangle$. Then clearly $\gamma\left(H_{i}^{\prime 2}\right) \leq 2$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 2+\frac{n-9}{2}=$ $\frac{n-5}{2}<\frac{n-3}{2}$ which is a contradiction. Hence $\operatorname{diam}\left(H_{i}\right) \leq 1$. Now we show that $|V(H)| \leq 2$. Suppose $|V(H)| \geq 3$. Then by a similar argument, $\gamma\left(G^{2}\right) \leq 2+\frac{n-9}{2}=\frac{n-5}{2}$, a contradiction. Hence $|V(H)| \leq 2$. By hypothesis, $|V(G)|=5$ or 7 . From definition of $\mathcal{G}_{5},\langle\{u, v, w\}\rangle$ is either P_{3} or C_{3} in G.
Subcase 4.1: $|V(G)|=5$
Then H must be K_{1}. If $\langle\{u, v, w\}\rangle \cong P_{3}$, then $G \cong P_{5}$ or G_{5}. If $\langle\{u, v, w\}\rangle \cong C_{3}$, then $G \cong G_{7}$ or G_{9}.
Subcase 4.2: $|V(G)|=7$
Then H must be either K_{2} or $K_{1} \cup K_{1}$. Suppose $\langle\{u, v, w\}\rangle \cong C_{3}$. If $H=K_{2}$, then $\gamma\left(G^{2}\right)=1 \neq \frac{n-3}{2}$. If $H=K_{1} \cup K_{1}$, then $G \cong G_{8}$. Suppose $\langle\{u, v, w\}\rangle \cong P_{3}$. If $H=K_{2}$, then $G \cong G_{6}$. If $H=K_{1} \cup K_{1}$, then $G \cong P_{7}$.
Case 5: $G \in \mathcal{G}_{6}$
Let $H_{1}, H_{2}, \ldots, H_{s}$ be the components of H. We claim that $\operatorname{diam}\left(H_{i}\right)=0$ for every $1 \leq i \leq s$. Suppose H_{i} contains a P_{2} as an induced subgraph (say $x_{1} x_{2}$). Let $x_{1}^{\prime}, x_{2}^{\prime}$ be the pendant vertices corresponding to x_{1}, x_{2} respectively. Let $X \in \mathcal{B}$ (See Figure. 2) and $H^{\prime}=G\left\langle\left\{x_{1}, x_{2}, x_{1}^{\prime}, x_{2}^{\prime}\right\} \cup V(X)\right\rangle$. Then clearly $\gamma\left(H^{\prime 2}\right) \leq 2$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq \frac{n-5}{2}$, a contradiction. Hence H is a totally disconnected graph.
Subcase 5.1: $X=B_{1}$
We claim that $|V(H)| \leq 2$. If H has three vertices, let $H^{\prime}=G\left\langle H \circ K_{1} \cup V(X)\right\rangle$. Then clearly $\gamma\left(H^{\prime 2}\right) \leq 2$ and by Proposition 3.1, $\gamma\left(G^{2}\right) \leq 2+\frac{n-9}{2}=\frac{n-5}{2}$, a contradiction. Hence $|V(H)| \leq 2$. If $|V(H)|=1$, then by definition of $\mathcal{G}_{6}, G \cong G_{7}$ or G_{9}. Suppose $|V(H)|=2$. If $H=K_{1} \cup K_{1}$, then $G \cong G_{8}$.
Subcase 5.2: $X \in \mathcal{B} \backslash\left\{C_{3}\right\}$
If H is non-empty, then $|V(H)| \geq 1$, say z. Let z^{\prime} be the pendant vertex corresponding to z. By definition of \mathcal{G}_{6}, note that at least one vertex of X is adjacent to a vertex z in H. Let $H^{\prime}=G\left\langle\left\{z, z^{\prime}\right\} \cup X\right\rangle$. Since $X^{2}=K_{5}, \gamma\left(X^{2}\right)=1$. Then clearly, $\gamma\left(H^{\prime 2}\right)=1$ and by

Proposition 3.1, $\gamma\left(G^{2}\right) \leq 1+\frac{n-7}{2}=\frac{n-5}{2}$. Hence no graph exists in this case. Converse can be easily verified.

4. Bounds in terms of order and size

In [2], C. Berge gave the lower bound for the domination number of a graph G in terms of its order n and size m and noted that $\gamma\left(G^{2}\right)$ is also a lower bound for the domination number of a graph. By this motivation, we have the following

Theorem 4.1. Let G be a connected graph of order n and size m. Then $\gamma\left(G^{2}\right) \geq n-m$ and the equality holds if and only if G is a tree with diameter at most 4.

Proof. Since $n-m \leq 1$, by definition of domination number $\gamma\left(G^{2}\right) \geq 1 \geq n-m$. Assume that $\gamma\left(G^{2}\right)=n-m$. We claim that G is a tree. Suppose G contains a cycle. Then $m \geq n$ and hence by the assumption, $\gamma\left(G^{2}\right) \leq 0$, which is a contradiction. Hence G is a tree. Next we claim that $\operatorname{diam}(G) \leq 4$. Suppose $\operatorname{diam}(G) \geq 5$. Then $\gamma\left(G^{2}\right) \geq 2$ and hence, $n-m \geq 2$ which implies G is disconnected, a contradiction. Hence $\operatorname{diam}(G) \leq 4$.

Conversely, assume that G is a tree with diameter at most 4 . Then by Property 4 mentioned in section $3, \gamma\left(G^{2}\right)=1=n-(n-1)=n-m$.

Theorem 4.2. Let G be a connected graph of order n and size m. Then $\gamma(G)+\gamma\left(G^{2}\right) \geq$ $2(n-m)$ and the equality holds if and only if G is a star.

Proof. It follows from Theorem 4.1 and Theorem 2.4.
Theorem 4.3. Let G be a connected graph of order n and size m. Then $\gamma(G)+\gamma\left(G^{2}\right)=$ $2 n-2 m+1$ if and only if G is either a bistar or $P_{3}(S)$.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=2 n-2 m+1$. Then by Eq.(3.1),

$$
\begin{equation*}
\gamma(G)=n-m+1 \text { and } \gamma\left(G^{2}\right)=n-m \tag{4.1}
\end{equation*}
$$

By Theorem 4.1, G is a tree with diameter at most 4. Then by Eq. $(4.1), \gamma(G)=2$ and $\gamma\left(G^{2}\right)=1$. Hence the required graphs follows from Lemma 2.11. Converse can be easily verified.

Theorem 4.4. Let G be a connected graph of order n and size m. Then $\gamma(G)+\gamma\left(G^{2}\right)=$ $2 n-2 m+2$ if and only if G is either C_{3} or $P_{4}(S)$ or any one of the graphs given in Figure 5.

Figure 5. Graphs satisfying $\gamma(G)+\gamma\left(G^{2}\right)=2 n-2 m+2$.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=2 n-2 m+2$. Then by Eq.(3.1)

$$
\begin{equation*}
\gamma(G)=n-m+2 \text { and } \gamma\left(G^{2}\right)=n-m \tag{4.2}
\end{equation*}
$$

$$
\begin{equation*}
\text { (or) } \gamma(G)=n-m+1 \text { and } \gamma\left(G^{2}\right)=n-m+1 \tag{4.3}
\end{equation*}
$$

From Eq.(4.2) and Lemma 4.1, G is a tree with diameter at most 4. Then $\gamma(G)=3$ and
$\gamma\left(G^{2}\right)=1$. Hence $\operatorname{diam}(G) \neq 2,3$. If $\operatorname{diam}(G)=4$, let $v_{1} v_{2} v_{3} v_{4} v_{5}$ be a diametral path in G with $d\left(v_{1}\right)=d\left(v_{5}\right)=1$ and v_{2}, v_{4} are support vertices. Clearly $d\left(v_{3}\right) \geq 3$. If v_{3} is a support vertex, then $G \cong F_{1}$. Otherwise, it is adjacent to a support vertex in which case $G \cong F_{2}$. From Eq.(4.3), m is either $n-1$ or n. If $m=n-1$, then G is a tree with $\gamma(G)=\gamma\left(G^{2}\right)=2$. By Lemma 2.11, $G \cong P_{4}(S)$. If $m=n$, then G contains a unique cycle $C=\left(v_{1} v_{2} \ldots v_{k} v_{1}\right)$ in G with $\gamma(G)=\gamma\left(G^{2}\right)=1$. Since $\gamma(G)=1, \Delta(G)=n-1$ and hence $k=3$. If G has no pendant vertices, then $G \cong C_{3}$. Otherwise, $G \cong F_{3}$. Converse can be easily verified.

5. Bounds for planar graphs

Definition 5.1. A graph is said to be planar if it can be drawn in the plane so that its edges intersect only at their ends.

In [9], MacGillivray and Seyffarth established the following Results.
Theorem 5.2. [9] If G is a planar graph with $\operatorname{diam}(G)=2$, then $\gamma(G) \leq 3$.
Theorem 5.3. [6] If G is a planar graph with $\operatorname{diam}(G)=2$, then $\gamma(G) \leq 2$ or G is isomorphic to P where P is the graph of Figure 6.

Figure 6. A planar graph P of diameter 2 with domination number 3.

Corollary 5.4. If G is a planar graph with $\operatorname{diam}(G)=2$, then $\gamma(G)+\gamma\left(G^{2}\right) \leq 4$ and the equality holds if and only if $G \cong P$ given in Figure 6 .

Theorem 5.5. If $G \neq P$ is a planar graph with $\operatorname{diam}(G)=2$, then $\gamma(G)+\gamma\left(G^{2}\right) \leq 3$ and the equality holds for regular graphs if and only if $G \cong C_{4}, C_{5}, K_{2} \times K_{3}$ or any one of the graphs given in Figure 3.

Proof. The required upper bound follows from Theorems 5.3 and Corollary 5.4. If $\gamma(G)+$ $\gamma\left(G^{2}\right)=3$, then $\gamma(G)=2$ and $\gamma\left(G^{2}\right)=1$. Since G is planar and regular, $\Delta(G) \leq 5$. If $\Delta(G)=2$, then $G \cong C_{n}$ and by hypothesis, $G \cong C_{4}$ or C_{5}. If $\Delta(G)=3$, then by Theorem 2.7, G is isomorphic to the Cartesian product $K_{2} \times K_{3}$. If $\Delta(G)=4$, then by Theorem 2.8, G is isomorphic to one of the three graphs given in Figure 3. If $\Delta(G)=5$, then by Theorem 2.9, no graph exists. Converse can be easily verified.

6. Bounds in terms of order and maximum degree

In this section, we obtain the upper bound for the sum $\gamma(G)+\gamma\left(G^{2}\right)$ in terms of the order and the maximum degree $\Delta(G)$ of a graph G and characterize the extremal graphs.

THEOREM 6.1. If G is a connected graph of order n with maximum degree $\Delta(G)$, then $\gamma(G)+\gamma\left(G^{2}\right) \leq 2(n-\Delta(G))$.

Proof. The required upper bound follows from Eq.(3.1) and Theorem 2.6.

Theorem 6.2. If G is a connected graph of order n, then $\gamma(G)+\gamma\left(G^{2}\right)=2 n-4$ if and only if $G \cong P_{3}$ or C_{3}.

Proof. If $\gamma(G)+\gamma\left(G^{2}\right)=2 n-4$, then by Theorem 2.6 and Eq.(3.1),

$$
\begin{equation*}
\gamma(G)=\gamma\left(G^{2}\right)=n-2 \tag{6.1}
\end{equation*}
$$

By Theorem 2.1, $n \leq 4$. If $n=3$, then P_{3} and C_{3} satisfy Eq.(6.1). If $n=4$, then by Property $3, \gamma\left(G^{2}\right)=1=n-3 \neq n-2$. Converse is obvious.

Theorem 6.3. If G is a connected graph of order n, then $\gamma(G)+\gamma\left(G^{2}\right)=2 n-5$ if and only if $G \cong P_{4}$ or C_{4}.

Proof. If $\gamma(G)+\gamma\left(G^{2}\right)=2 n-5$, then by Theorem 2.6 and Eq.(3.1),

$$
\begin{equation*}
\gamma(G)=n-2 \text { and } \gamma\left(G^{2}\right)=n-3 \tag{6.2}
\end{equation*}
$$

By Theorems 2.1 and $6.2, n=4$. Then by Property 3 and Theorem $2.2, G \cong P_{4}$ or C_{4} which satisfy Eq.(6.2). Converse is obvious.

Theorem 6.4. If G is a connected graph of order n, then $\gamma(G)+\gamma\left(G^{2}\right)=2 n-6$ if and only if G is either $K_{4}, K_{4}-e, K_{1,3}$ or $K_{1,3}+e$.

Proof. If $\gamma(G)+\gamma\left(G^{2}\right)=2 n-6$, then by Theorem 2.6 and Eq.(3.1),

$$
\begin{align*}
& \gamma(G)=n-2 \text { and } \gamma\left(G^{2}\right)=n-4 \tag{6.3}\\
& \text { (or) } \gamma(G)=\gamma\left(G^{2}\right)=n-3 . \tag{6.4}
\end{align*}
$$

Eq.(6.3) is not possible by Theorem 2.1. From Eq. (6.4) and Theorem 2.1, $n \leq 6$. If $n=4$, then $\gamma(G)=\gamma\left(G^{2}\right)=1$ and hence G is either $K_{4}-e$ or K_{4} or $K_{1,3}$ or $K_{1,3}+e$. If $n=5$ or 6 , then by Properties 3 and 5 , no graph exists. Converse follows by verification.

Theorem 6.5. If G is a connected graph of order n, then $\gamma(G)+\gamma\left(G^{2}\right)=2 n-7$ if and only if G is either $P_{5}, C_{5}, G_{1}, G_{2}, G_{5}, G_{7}, G_{9}, B_{3}, B_{4}$ or B_{5}.

Proof. If $\gamma(G)+\gamma\left(G^{2}\right)=2 n-7$, then by Theorem 2.6 and Eq.(3.1),

$$
\begin{gather*}
\gamma(G)=n-2 \text { and } \gamma\left(G^{2}\right)=n-5 \tag{6.5}\\
\text { (or) } \gamma(G)=n-3 \text { and } \gamma\left(G^{2}\right)=n-4 . \tag{6.6}
\end{gather*}
$$

Eq.(6.5) is not possible by Theorem 2.1. From Eq.(6.6) and Theorem 2.1, $n \leq 6$. If $n=5$, then $\gamma\left(G^{2}\right)=1$ and $\gamma(G)=2$. Clearly $\Delta(G) \neq 4$. Hence $G \cong P_{5}, C_{5}, G_{1}, G_{2}, G_{5}, G_{7}, B_{3}, B_{4}$, B_{5} or G_{9}. If $n=6$, then $\gamma(G)=3$ and $\gamma\left(G^{2}\right)=2$. By Theorem 2.2 and Property 4, no such graph exists. The converse follows by verification.

Theorem 6.6. If G is a connected graph of order n, then $\gamma(G)+\gamma\left(G^{2}\right)=2 n-8$ if and only if G is either $P_{3} \circ K_{1}, C_{3} \circ K_{1}, P_{6}, C_{6}$ or a graph on 5 vertices having a vertex of degree 4.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=2 n-8$. Then by Theorem 2.6 and Eq.(3.1), we have three cases.

$$
\begin{align*}
& \gamma(G)=n-2 \text { and } \gamma\left(G^{2}\right)=n-6 \tag{6.7}\\
& \text { (or) } \gamma(G)=n-3 \text { and } \gamma\left(G^{2}\right)=n-5 \tag{6.8}\\
& \text { (or) } \gamma(G)=n-4 \text { and } \gamma\left(G^{2}\right)=n-4 . \tag{6.9}
\end{align*}
$$

Clearly Eq.(6.7) is not possible. From Eq.(6.8) and Theorem 2.1, $n=6$. Then $\gamma(G)=3$ and $\gamma\left(G^{2}\right)=1$. Hence by Theorem 2.2 and Property $4, G \cong P_{3} \circ K_{1}, C_{3} \circ K_{1}$. From Eq.(6.9) and Theorem 2.1, $n \leq 8$. If $n=5$, then $\gamma(G)=\gamma\left(G^{2}\right)=1$. Hence G is a graph on 5 vertices having a vertex of degree 4. If $n=6$, then $\gamma(G)=\gamma\left(G^{2}\right)=2$. By Theorem 3.2, $G \cong P_{6}$ or C_{6}. If $n=7$, then $\gamma(G)=\gamma\left(G^{2}\right)=3$. By Property 6 , no graph exists. If $n=8$, then $\gamma(G)=\gamma\left(G^{2}\right)=4$. By Theorem 2.2, $G \cong H \circ K_{1}$ where $|V(H)|=4$ and H is connected for which $\gamma\left(G^{2}\right) \leq 2$, a contradiction. The converse is obvious.

Theorem 6.7. For any connected graph G of order $n, \gamma(G)+\gamma\left(G^{2}\right)=2 n-9$ if and only if G is either $C_{7}, P_{7}, G_{3}, G_{4}, G_{6}, G_{8}$ or a graph on 6 vertices having $\Delta(G)=3$ or 4 except $P_{3} \circ K_{1}, C_{3} \circ K_{1}$.

Proof. Assume that $\gamma(G)+\gamma\left(G^{2}\right)=2 n-9$. Clearly the two cases $\gamma(G)=n-2$ and $\gamma\left(G^{2}\right)=n-7, \gamma(G)=n-3$ and $\gamma\left(G^{2}\right)=n-6$ are not possible. Now we consider the remaining case

$$
\begin{equation*}
\gamma(G)=n-4 \text { and } \gamma\left(G^{2}\right)=n-5 . \tag{6.10}
\end{equation*}
$$

By Theorem 2.1, $n \leq 8$. If $n=6$, then $\gamma(G)=2$ and $\gamma\left(G^{2}\right)=1$. Clearly $\Delta(G) \neq 2,5$. From our choice of n and Theorem 2.2, $G \neq P_{3} \circ K_{1}, C_{3} \circ K_{1}$. Hence G is a graph on 6 vertices having $\Delta(G)=3$ or 4 except $P_{3} \circ K_{1}, C_{3} \circ K_{1}$ which are satisfy Eq.(6.10). If $n=7$, then $\gamma(G)=3$ and $\gamma\left(G^{2}\right)=2$. By Theorem 3.8, $G \cong C_{7}, P_{7}, G_{3}, G_{4}, G_{6}, G_{8}$. If $n=8$, then $\gamma(G)=4$ and $\gamma\left(G^{2}\right)=3$. By Theorem 2.2, $G \cong H \circ K_{1}$ where $|V(H)|=4$ and by Theorem 3.2 , no such graph exists. The converse can be easily verified.

References

[1] M. Aouchiche and P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Applied Mathematics, 161(4-5) (2013), 466-546.
[2] C. Berge, Theory of Graphs and Its Applications, Hethuen, London, 1962.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory, Spinger, 2008.
[4] E. J. Cockayne, T. W. Haynes and S. T. Hedetniemi, Extremal graphs for inequalities involving domination parameters, Discrete. Math, 216 (2000), 1-10.
[5] J. F. Frank, M. S. Jacobson, L. F. Kinch and J. Roberts, On graphs having domination number half their order, Period. Math. Hungar, 16 287-293.
[6] W. Goddard and M. A. Henning, Domination in planar graphs with small diameter, J. Graph Theory, 40 (2002) 1-25.
[7] T. W. Haynes, S. T. Hedetnimi and P. J. Slater, Fundamentals of domination in graphs, New York, Marcel Dekkar, Inc., 1998.
[8] F. Jaeger and C. Payan, Relations due Type Nordhaus-Gaddum pour le Nombre d'Absorption d'un Graphe Simple, C. R. Acad. Sci. Paris Ser. A, 274 (1972), 728-730.
[9] G. MacGillivray, K. Seyffarth, Domination numbers of planar graphs, J. Graph Theory, 22 (1996), 213-229.
[10] Moo Young SOHN, Sang Bum KIM, Young Soo KWON and Rong Quan FENG, Classification of Regular Planar Graphs with Diameter Two, Acta Mathematica Sinica English Series, 23 (3), (2007), 411-416.
[11] E. Murugan and J. Paulraj Joseph, On the domination number of a graph and its line graph, International Journal of Mathematical Combinatorics, Special Issue 1, 2018, pages 170-181.
[12] E. Murugan and J. Paulraj Joseph, On the Domination Number of a Graph and its Total Graph, Discrete Mathematics, Algorithms and Applications, 12(5) (2020), 2050068.
[13] E. Murugan and G. R. Sivaprakash, On the Domination Number of a Graph and its Shadow Graph, Discrete Mathematics, Algorithms and Applications, 13 (6) (2021), 2150074.
[14] E. Murugan and J. Paulraj Joseph, On the Domination Number of a Graph and its Block Graph, Discrete Mathematics, Algorithms and Applications, (Accepted) 2021.
[15] E. A. Nordhaus and J. Gaddum, On complementary graphs, Amer. Math. Monthly, 63 (1956), 177-182.
[16] O. Ore, Theory of Graphs, Am. Math. SOC. Colloq. Publ, 38, Providence, RI, 1962.
[17] C. Payan and N. H. Xuong, Domination-balanced graphs, J. Graph Theory, 6 (1982), 23-32.
[18] B. Randerath and L. Volkmann, Characterization of graphs with equal domination and covering number, Discrete. Math, 191 (1998), 173-179.
[19] H. B. Walikar, B. D. Acharya and E. Sampathkumar, Recent developements in the theory of domination in graphs, In MRI Lecture Notes in Math, Mahta Research Instit, Allahabad, 01, 1979.

E. Murugan

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India.
E-mail: mujosparvisa@gmail.com

J. Paulraj Joseph

Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli - 627 012, Tamil Nadu, India.
E-mail: prof.jpaulraj@gmail.com

[^0]: Received May 8, 2021. Accepted February 20, 2022. Publicated May 2, 2022.
 2010 Mathematics Subject Classification: 05C69, 05C70.
 Key words and phrases: domination number, square graph, order and size, planar graphs.

 * Corresponding author.
 (C) The Kangwon-Kyungki Mathematical Society, 2022.

 This is an Open Access article distributed under the terms of the Creative commons Attribution NonCommercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution and reproduction in any medium, provided the original work is properly cited.

