
Korean J. Math. 30 (2022), No. 2, pp. 391–402
http://dx.doi.org/10.11568/kjm.2022.30.2.391

ON THE DOMINATION NUMBER OF A GRAPH AND ITS SQUARE

GRAPH

E. Murugan∗ and J. Paulraj Joseph

Abstract. For a given graph G = (V,E), a dominating set is a subset V ′ of the vertex
set V so that each vertex in V \V ′ is adjacent to a vertex in V ′. The minimum cardinality
of a dominating set of G is called the domination number of G and is denoted by γ(G).
For an integer k ≥ 1, the k-th power Gk of a graph G with V (Gk) = V (G) for which
uv ∈ E(Gk) if and only if 1 ≤ dG(u, v) ≤ k. Note that G2 is the square graph of a graph
G. In this paper, we obtain some tight bounds for the sum of the domination numbers of
a graph and its square graph in terms of the order, order and size, and maximum degree
of the graph G. Also, we characterize such extremal graphs.

1. Introduction

By a graph, we mean a finite, simple and connected graph. For a graph G, its vertex set
and edge set are denoted by V (G) and E(G), respectively. The number of vertices |V (G)|
of a graph G is called the order of G and is denoted by n = n(G) and the number of edges
|E(G)| of a graph G is called the size of G and is denoted by m = m(G). The neighborhood
N(v) = NG(v) of a vertex v consists of the vertices adjacent to v and |N(v)| is called the
degree of v and is denoted by dG(v) or d(v). The k-neighborhood Nk

G[v] of a vertex v ∈ V (G)
is the set of all vertices at distance at most k from v. The minimum degree and maximum
degree of the graph G is denoted by δ(G) and ∆(G) respectively. A vertex of degree one
is called a pendant vertex and a vertex which is adjacent to a pendant vertex is called a
support vertex. If U is a proper subset of V, then G \ U denotes the subgraph of G with
vertex set V \U and whose edges are all those of G which are not incident with any vertex
in U. For a subset S of V, the subgraph induced by S is denoted by G〈S〉. Let Cn denote
the cycle on n vertices, Kn denotes the complete graph of order n, and Kp,q denote the
complete bipartite graph. Note that K1,q is called a star. A graph G is said to be connected
if there exists a path between any two vertices of G. For two vertices u and v in a connected
graph G, the distance d(u, v) between u and v is the length of a shortest u-v path in G.
The diameter of G is defined as max{d(u, v) : u, v ∈ V (G)} and is denoted by diam(G).
For a vertex v of G, its eccentricity e(v) is defined by e(v) =max{d(u, v) : u ∈ V (G)}. A
forest is an acyclic graph. A galaxy is a forest in which each component is a star. A tree
is a connected acyclic graph. A path is a tree on n vertices with maximum degree is two
and is denoted by Pn. A bistar is a tree of diameter three. A graph is called unicyclic if
G contain exactly one cycle. A subset S of V is called an independent set of G if no two
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vertices of S are adjacent in G.
The complement G of a graph G is the graph with vertex set V (G) such that two vertices

are adjacent in G if and only if they are not adjacent in G. The Corona of two graphs G1

and G2, denoted by G1 ◦ G2, is the graph obtained by taking one copy of G1 and |V (G1)|
copies of G2 in which the ith vertex of G1 is joined to every vertex in the ith copy of G2.
The Cartesian Product of simple graphs G and H is the simple graph G ×H with vertex
set V (G) × V (H), in which (u, v) is adjacent to (u′, v′) if and only if either u = u′ and
vv′ ∈ E(H) or v = v′ and uu′ ∈ E(G). The line graph L(G) of a graph G is a graph whose
vertex set is E(G) and two vertices of L(G) are adjacent if and only if the corresponding
edges share a common end in G.

If α(G) is a graph parameter, then the lower and upper bounds on the sum α(G)+α(G)
in terms of n are of prime importance in graph theory. The first of its kind with reference
to chromatic number χ(G) of G was studied by Nordhaus and Gaddum on complementary
graphs (a graph and its complement) and published in American Mathematical Monthly
in 1956. They proved lower and upper bounds on the sum and on the product of χ(G)
and χ(G) in terms of the order n of G. The original relations presented by Nordhaus and
Gaddum [15] in 1956 are as follows.

Theorem 1.1. [15] If G is a graph of order n, then
2
√
n ≤ χ(G) + χ(G) ≤ n+ 1 and

n ≤ χ(G).χ(G) ≤ (n+1)2

4 .
Furthermore, these bounds are best possible for infinitely many values of n.

Since then, any bound on the sum and / or the product of an invariant in a graph G and
the same invariant in the complement G of G is called a Nordhaus-Gaddum type inequality
or relation. The theory of domination is one of the fast growing research areas in graph
theory. The concept of dominating set was introduced by C. Berge [2] and by Ore [16] in
1962. A subset S of V is called a dominating set of G if every vertex not in S is adjacent to
some vertex in S. The domination number of G is the minimum cardinality taken over all
dominating sets of G and is denoted by γ(G). A dominating set S of minimum cardinality is
called a γ-set of G. The Nordhaus-Gaddum type for domination number proved by Jaeger
and Payan [8] in 1972 are as follows.

Theorem 1.2. [8] For any graph G with at least two vertices,
3 ≤ γ(G) + γ(G) ≤ n + 1 and

2 ≤ γ(G).γ(G) ≤ n.

This has been extended to other graph theoretic parameters. A survey of these results
is published in [1]. Like G, there are several derived graphs in the literature. In [11–14],
the authors obtained similar results for line graphs, total graphs, shadow graphs and block
graphs. Since power graph is one of the derived graphs, we extend the Nordhaus-Gaddum
type result to square graph for the parameter domination number.

The paper proceeds as follows. In Section 2, first we collect some results which will be
used in our investigations. In Section 3, we obtain lower and upper bounds for the sum
γ(G) + γ(G2) in terms of order n where G2 is the square graph of a graph G. In Section 4,
we obtain similar results in terms of order n and size m. In Section 5, we obtain the similar
for planar graphs. Finally, in Section 6, we present the same type of results in terms of
order n and maximum degree ∆(G).

2. Preliminary results

The following results will be used in our investigations.
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Theorem 2.1. [16] If a graphG of order n and has no isolated vertices, then γ(G) ≤ n/2.

Theorem 2.2. [5,17] For a graph G with even order n and no isolated vertices, γ(G) =
n/2 if and only if the components of G are the cycle C4 or the corona H ◦ K1 for any
connected graph H.

Figure 1. Graphs in the family A.

B1 B2 B3 B4 B5

Figure 2. Graphs in the family B.

In [4, 18] E. J. Cockayne, T. W. Haynes, S. T. Hedetniemi, B. Randerath and L. Volk-
mann defined six classes of graphs using the following families of graphs which were useful
for characterize the connected graphs for which γ(G) = *n/2+ . Let

G1 = {C4} ∪ {G : G = H ◦K1 where H is connected}
and G2 = A ∪ B − {C4}.
For any graph H, let S(H) denote the set of connected graphs, each of which can be formed
from H ◦ K1 by adding a new vertex x and edges joining x to one or more vertices of H.
Then define

G3 =
⋃
H
S(H),

where the union is taken over all graphs H. Let y be a vertex of a copy of C4 and, for
G ∈ G3, let θ(G) be the graph obtained by joining G to C4 with the single edge xy, where
x is the new vertex added in forming G. Then define

G4 = {θ(G) : G ∈ G3} .
Next, let u, v, w be a vertex sequence of a path P3 or a cycle C3. For any graph H, let P(H)
be the set of connected graphs which formed from H ◦K1 by joining at least one of u and
w to one or more vertices of H. Then define

G5 =
⋃
H
P(H).

Let H be a graph and X ∈ B. Let R(H,X) be the set of connected graphs which may be
formed from H ◦K1 by joining each vertex of U ⊂ V (X) to one or more vertices of H such
that no set with fewer than γ(X) vertices of X dominates V (X)− U. Then define

G6 =
⋃
H,X

R(H,X).

Theorem 2.3. [4, 18] A connected graph G of order n satisfies γ(G) = *n
2 + if and only

if G ∈ G =
6⋃

i=1
Gi.
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Theorem 2.4. [2] For any graph G of order n and size m,
n−m ≤ γ(G) ≤ n+ 1−

√
1 + 2m.

Furthermore, γ(G) = n−m if and only if G is a galaxy.

Theorem 2.5. [7] For any connected graph G, /diam(G)+1
3 0 ≤ γ(G).

Theorem 2.6. [2, 19] For any graph G of order n and maximum degree ∆(G),
/ n
1+∆(G)0 ≤ γ(G) ≤ n−∆(G).

Theorem 2.7. [10] IfG is a 3-regular planar graph with diameter 2, thenG is isomorphic
to the cartesian product K2 ×K3.

Theorem 2.8. [10] If G is a 4-regular planar graph with diameter two, then G is
isomorphic to any one of the graphs given in Figure 3.

Shrikhande graph L(C6) Octahedron

Figure 3. 4-regular Planar Graphs of diameter 2.

Theorem 2.9. [10] There exist no 5-regular planar graphs with diameter 2.

Definition 2.10. A graph obtained by joining at least one new isolated vertices S to
each pendant vertex of a graph G is denoted by G(S). In this notation, P2(S) is a bistar.

Lemma 2.11. For any tree G, γ(G) = 2 if and only if G ∼= P2(S) or P3(S) or P4(S).

Proof. Assume that γ(G) = 2. Clearly diam(G) = 3 or 4or 5. If diam(G) = 3, then
G is bistar. Suppose diam(G) = 4, let v1v2v3v4v5 be a diametrical path in G. Clearly
d(v1) = d(v5) = 1 and v2, v4 are support vertices. Since any dominating set of G must
contain v2 and v4, d(v3) = 2. Hence G ∼= P3(S). If diam(G) = 5, then by a similar argument,
G ∼= P4(S). The converse is obvious.

3. Bounds in terms of order

In this section, we obtain lower and upper bounds for the sum γ(G) + γ(G2) in terms
of order n where G2 is the square of a graph G for which has no isolated vertices. Since
any dominating set of G is also a dominating set of the square graph G2,

γ(G2) ≤ γ(G) (3.1)
and hence by Theorem 2.1,

1 ≤ γ(G2) ≤ n
2 . (3.2)

Some properties for square graphs in domination theory using Eqs.(3.1) and (3.2) are listed
in the following:
(3) For all connected graphs G of order at most 5, γ(G2) = 1.
(4) γ(G2) = 1 if and only if e(v) ≤ 2 for some v ∈ V (G).
(5) γ(G2) = n

2 if and only if G ∼= K2.
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(6) γ(G2) = n−1
2 if and only if G ∼= P3 or C3.

(7) 2 ≤ γ(G) + γ(G2) ≤ n and the lower bound is attained if and only if
∆(G) = n− 1 and the upper bound is attained if and only if G ∼= K2.

Proposition 3.1. IfH ′ is an induced subgraph of G, then γ(G2) ≤ γ(H ′2)+γ([G\H ′]2).

Proof. Let H ′ be an induced subgraph of G. Then G \H ′ is also a subgraph of G which
is disjoint from H ′. If S1, S2 are γ-sets of H ′2 and (G \H ′)2 respectively, then S1 ∪ S2 is a
dominating set of G2.

Therefore γ(G2) ≤ |S1 ∪ S2|
= |S1|+ |S2|− |S1 ∩ S2|
≤ |S1|+ |S2|
= γ(H ′2) + γ([G \H ′]2).

Theorem 3.2. For any connected graph G of even order n ≥ 6, γ(G2) ≤ n−2
2 and the

equality holds if and only if G is either P6 or C6.

Proof. The required upper bound follows from Eq.(3.2), Properties 3, 5 and 6. Assume
that γ(G2) = n−2

2 . We claim that ∆(G) = 2. If ∆(G) ≥ 3, then there is a vertex v of degree
at least three in G. Clearly, |N2

G[v]| ≥ 5 and let G′ = G2 \N2
G[v]. If G

′
1, G

′
2, . . . , G

′
s are the

components of G′ with |V (G′
i)| = li, 1 ≤ i ≤ s, then it is clear that

∑
|V (G′

i)| ≤ n− 5 and
by Proposition 3.1, γ(G2) ≤ 1 + n−5

2 = n−3
2 , a contradiction. Hence G is either Pn or Cn.

Since γ(Pn) = γ(Cn) = /n
3 0, by Eq.(3.1) and hypothesis n = 6. Hence G is either P6 or C6.

Converse is obvious by verification.

Theorem 3.3. IfG is any connected graph of even order n at least 4, then γ(G)+γ(G2) =
n− 1 if and only if G ∼= C4 or P4.

Proof. Assume that γ(G) + γ(G2) = n − 1. Since n is even, by Theorem 2.1, Eqs.(3.1)
and (3.2),

γ(G) = n
2 and γ(G2) = n−2

2 . (3.3)
By Theorem 2.2, G ∼= C4 or H ◦ K1. If G ∼= P4 or C4, then γ(G2) = 1 = n−2

2 . Hence G
satisfies Eq.(3.3). Otherwise, G ∼= H ◦ K1 with |V (H)| ≥ 3. Then |V (G)| ≥ 6 and hence
by Theorem 3.2, G ∼= P6 or C6 which are not corona for any connected graph H. Hence
G ∼= C4 or P4. Converse is obvious by verification.

Theorem 3.4. For any connected graphG of odd order n and with at least three vertices,
then γ(G) + γ(G2) = n− 1 if and only if G is either P3 or C3.

Proof. It follows from Theorems 2.1, Eqs.(3.1), (3.2) and Property 6.

Lemma 3.5. Let G ∼= H ◦K1. If ∆(H) ≥ 3, then γ(G2) ≤ n−6
2 .

Proof. Assume that ∆(H) ≥ 3. Then there exists a vertex v of degree at least three in H.
Clearly, v is adjacent to at least eight vertices in G2, that is |N2

G[v]| ≥ 8. Let H ′ = G 〈N [v]〉 .
Clearly, γ(H ′2) = 1. Hence by Proposition 3.1, γ(G2) ≤ 1 + n−8

2 = n−6
2 .

Proposition 3.6. (i) For any path Pk(k ≥ 3), γ([Pk ◦K1]2) = /k
30.

(ii) For any cycle Ck, γ([Ck ◦K1]2) = /k
30.

Proof. i) Let G = Pk ◦K1 with Pk = (v1v2 . . . vk−1vk) and v′i be the pendant vertex adja-
cent to vi, 1 ≤ i ≤ k in G. If k ≡ 0(mod 3), let S1 = {v2, v5, v8, . . . , vk−1}. If k ≡ 1(mod 3),
let S2 = {v2, v5, v8, . . . , vk−2} ∪ {v′k}. If k ≡ 2(mod 3), let S3 = {v2, v5, v8, . . . , vk−3} ∪ {vk}.
In all cases, |Si| = /k

30, and each is a dominating set in G2 so that γ(G2) ≤ /k
30. If we

remove one vertex from Si, then it is evident that Si is not a dominating set of G2. Hence
γ(G2) = /k

30. Proof of (ii) is similar.



396 E. Murugan and J. Paulraj Joseph

Theorem 3.7. IfG is any connected graph of even order n ≥ 6, then γ(G)+γ(G2) = n−2
if and only if G is isomorphic to P3 ◦K1, C3 ◦K1, P4 ◦K1, C4 ◦K1, P6 or C6.

Proof. Assume that γ(G)+ γ(G2) = n−2. Since G is of even order, by Theorem 2.1 and
Eqs.(3.1), (3.2),

γ(G) = n
2 and γ(G2) = n−4

2 (3.4)
(or) γ(G) = n−2

2 and γ(G2) = n−2
2 . (3.5)

When (3.4) is satisfied, by Theorem 2.2 and hypothesis, G ∼= H ◦ K1. By Lemma 3.5,
H is either a path or a cycle. We claim that |V (H)| is 3 or 4. If |V (H)| ≥ 5, then by
Proposition 3.6, it is easy to see that γ((H ◦K1)2) 4= n−4

2 and hence H is either P3, P4, C3

or C4. When (3.5) is satisfied, by Theorem 3.2, G is either P6 or C6. The converse can be
easily verified.

Theorem 3.8. If G is any connected graph of odd order n ≥ 5, then γ(G)+γ(G2) = n−2
if and only if G ∼= P5, P7, C7 or any one of the graphs in B \ {C3} and Figure 4.

G1 G2 G3

G4
G5 G6

G7 G8 G9

Figure 4. Graphs satisfying γ(G) + γ(G2) = n− 2.

Proof. Assume that γ(G) + γ(G2) = n− 2. Since G is of odd order, from Eqs.(3.1),(3.2)
and Theorem 2.1,

γ(G) = n−1
2 and γ(G2) = n−3

2 (3.6)

and from Theorem 2.3, G ∈ G =
6⋃

i=2
Gi. Then we have the following cases.

Case 1: G ∈ G2

For every graph G ∈ A \ {C4, C7}, γ(G2) = 1 < 2 = n−3
2 . Further, it is easy to verify

that for every graph G ∈ B \ {C3}, γ(G2) = 1 = n−3
2 .

Case 2: G ∈ G3

Let n = 2k + 1. Since n ≥ 5, |V (H)| = k ≥ 2. Let H1, H2, . . . , Hs be the compo-
nents of H such that |V (Hi)| = ki, 1 ≤ i ≤ s. Clearly,

∑
|V (Hi)| = k, 1 ≤ i ≤ s.

We claim that diam(Hi) ≤ 1. Suppose Hi contains a P3 as an induced subgraph (say
v1v2v3). Let v′1, v

′
2, v

′
3 be the pendant vertices corresponding to v1, v2, v3 respectively. Let

H ′
i = G〈{v1, v2, v3, v′1, v′2, v′3}〉. Then clearly γ(H ′2

i ) = 1 and by Proposition 3.1, γ(G2) ≤
1 + n−6

2 = n−4
2 < n−3

2 which is a contradiction. Hence diam(Hi) ≤ 1. Now we show that
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|V (H)| ≤ 3. Suppose H contains at least 4 vertices, say u1, u2, u3, u4. Let u′
1, u

′
2, u

′
3, u

′
4

be their pendant vertices. Let H ′ = G 〈{u1, u2, u3, u4, u′
1, u

′
2, u

′
3, u

′
4, x}〉 . Then clearly

γ(H ′2) ≤ 2. Then by Proposition 3.1, γ(G2) ≤ 2 + n−9
2 = n−5

2 , a contradiction. Hence
|V (H)| ≤ 3. If diam(Hi) = 0, then H is a totally disconnected graph. Further by defi-
nition of G3 and hypothesis, k must be 2. Hence G ∼= P5. If diam(Hi) = 1, then clearly
|V (H)| = 2. Hence G ∼= G1 or G2. Suppose H contains p copies of K1 and q copies of K2.
Since |V (H)| ≤ 3, p = q = 1. Hence H = K1 ∪K2. If x is adjacent to every vertex of H,
then γ(G2) = 1 4= 2 = n−3

2 . If x is adjacent to exactly one vertex of each copy of H, then
γ(G2) = 2 = n−3

2 . Hence G ∼= G3.
Case 3: G ∈ G4

Let n = 2k+1. Let H1, H2, . . . , Hs be the components of H. By definition of G4, |V (H)| =
2k−4
2 . We claim that diam(Hi) = 0 for every 1 ≤ i ≤ s. Suppose Hi contains a P2 as an

induced subgraph (say u1u2). Let u′
1, u

′
2 be the pendant vertices corresponding to u1, u2

respectively. Let H ′ = G〈{u1, u2, u′
1, u

′
2} ∪ {x} ∪ {C4}〉. Then clearly γ(H ′2) = 2 and by

Proposition 3.1, γ(G2) ≤ 2 + n−9
2 = n−5

2 < n−3
2 which is a contradiction. Hence H is a

totally disconnected graph. Further by definition of G4 and hypothesis, k must be 3. Hence
G ∼= G4.
Case 4: G ∈ G5

Let n = 2k+ 1. Let H1, H2, . . . , Hs be the components of H. By definition of G5, let u, v, w
be a sequence of path P3 in G. We claim that diam(Hi) ≤ 1. Suppose Hi contains a P3 as
an induced subgraph (say w1w2w3). Let w′

1, w
′
2, w

′
3 be the pendant vertices corresponding

to w1, w2, w3 respectively. Let H ′
i = G〈{u, v, w} ∪

{w1, w2, w3, w′
1, w

′
2, w

′
3}〉. Then clearly γ(H ′2

i ) ≤ 2 and by Proposition 3.1, γ(G2) ≤ 2+n−9
2 =

n−5
2 < n−3

2 which is a contradiction. Hence diam(Hi) ≤ 1. Now we show that |V (H)| ≤ 2.
Suppose |V (H)| ≥ 3. Then by a similar argument, γ(G2) ≤ 2+ n−9

2 = n−5
2 , a contradiction.

Hence |V (H)| ≤ 2. By hypothesis, |V (G)| = 5 or 7. From definition of G5, 〈{u, v, w}〉 is
either P3 or C3 in G.
Subcase 4.1: |V (G)| = 5
Then H must be K1. If 〈{u, v, w}〉 ∼= P3, then G ∼= P5 or G5. If 〈{u, v, w}〉 ∼= C3, then
G ∼= G7 or G9.
Subcase 4.2: |V (G)| = 7
Then H must be either K2 or K1 ∪ K1. Suppose 〈{u, v, w}〉 ∼= C3. If H = K2, then
γ(G2) = 1 4= n−3

2 . If H = K1 ∪ K1, then G ∼= G8. Suppose 〈{u, v, w}〉 ∼= P3. If H = K2,
then G ∼= G6. If H = K1 ∪K1, then G ∼= P7.
Case 5: G ∈ G6

Let H1, H2, . . . , Hs be the components of H. We claim that diam(Hi) = 0 for every
1 ≤ i ≤ s. Suppose Hi contains a P2 as an induced subgraph (say x1x2). Let x′

1, x
′
2 be

the pendant vertices corresponding to x1, x2 respectively. Let X ∈ B (See Figure. 2)
and H ′ = G〈{x1, x2, x′

1, x
′
2} ∪ V (X)〉. Then clearly γ(H ′2) ≤ 2 and by Proposition 3.1,

γ(G2) ≤ n−5
2 , a contradiction. Hence H is a totally disconnected graph.

Subcase 5.1: X = B1

We claim that |V (H)| ≤ 2. If H has three vertices, let H ′ = G〈H ◦ K1 ∪ V (X)〉. Then
clearly γ(H ′2) ≤ 2 and by Proposition 3.1, γ(G2) ≤ 2 + n−9

2 = n−5
2 , a contradiction. Hence

|V (H)| ≤ 2. If |V (H)| = 1, then by definition of G6, G ∼= G7 or G9. Suppose |V (H)| = 2.
If H = K1 ∪K1, then G ∼= G8.
Subcase 5.2: X ∈ B \ {C3}
If H is non-empty, then |V (H)| ≥ 1, say z. Let z′ be the pendant vertex corresponding to
z. By definition of G6, note that at least one vertex of X is adjacent to a vertex z in H.
Let H ′ = G 〈{z, z′} ∪X〉 . Since X2 = K5, γ(X2) = 1. Then clearly, γ(H ′2) = 1 and by
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Proposition 3.1, γ(G2) ≤ 1 + n−7
2 = n−5

2 . Hence no graph exists in this case. Converse can
be easily verified.

4. Bounds in terms of order and size

In [2], C. Berge gave the lower bound for the domination number of a graph G in terms
of its order n and size m and noted that γ(G2) is also a lower bound for the domination
number of a graph. By this motivation, we have the following

Theorem 4.1. Let G be a connected graph of order n and size m. Then γ(G2) ≥ n−m
and the equality holds if and only if G is a tree with diameter at most 4.

Proof. Since n−m ≤ 1, by definition of domination number γ(G2) ≥ 1 ≥ n−m. Assume
that γ(G2) = n−m. We claim that G is a tree. Suppose G contains a cycle. Then m ≥ n
and hence by the assumption, γ(G2) ≤ 0, which is a contradiction. Hence G is a tree. Next
we claim that diam(G) ≤ 4. Suppose diam(G) ≥ 5. Then γ(G2) ≥ 2 and hence, n−m ≥ 2
which implies G is disconnected, a contradiction. Hence diam(G) ≤ 4.

Conversely, assume that G is a tree with diameter at most 4. Then by Property 4
mentioned in section 3, γ(G2) = 1 = n− (n− 1) = n−m.

Theorem 4.2. Let G be a connected graph of order n and size m. Then γ(G)+γ(G2) ≥
2(n−m) and the equality holds if and only if G is a star.

Proof. It follows from Theorem 4.1 and Theorem 2.4.

Theorem 4.3. Let G be a connected graph of order n and size m. Then γ(G)+γ(G2) =
2n− 2m+ 1 if and only if G is either a bistar or P3(S).

Proof. Assume that γ(G) + γ(G2) = 2n− 2m+ 1. Then by Eq.(3.1),
γ(G) = n−m+1 and γ(G2) = n−m. (4.1)

By Theorem 4.1, G is a tree with diameter at most 4. Then by Eq.(4.1), γ(G) = 2 and
γ(G2) = 1. Hence the required graphs follows from Lemma 2.11. Converse can be easily
verified.

Theorem 4.4. Let G be a connected graph of order n and size m. Then γ(G)+γ(G2) =
2n− 2m+ 2 if and only if G is either C3 or P4(S) or any one of the graphs given in Figure
5.

F1 F2
F3

Figure 5. Graphs satisfying γ(G) + γ(G2) = 2n− 2m+ 2.

Proof. Assume that γ(G) + γ(G2) = 2n− 2m+ 2. Then by Eq.(3.1)
γ(G) = n−m+2 and γ(G2) = n−m (4.2)

(or) γ(G) = n−m+1 and γ(G2) = n−m+1. (4.3)
From Eq.(4.2) and Lemma 4.1, G is a tree with diameter at most 4. Then γ(G) = 3 and
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γ(G2) = 1. Hence diam(G) 4= 2, 3. If diam(G) = 4, let v1v2v3v4v5 be a diametral path in G
with d(v1) = d(v5) = 1 and v2, v4 are support vertices. Clearly d(v3) ≥ 3. If v3 is a support
vertex, then G ∼= F1. Otherwise, it is adjacent to a support vertex in which case G ∼= F2.
From Eq.(4.3), m is either n−1 or n. If m = n−1, then G is a tree with γ(G) = γ(G2) = 2.
By Lemma 2.11, G ∼= P4(S). If m = n, then G contains a unique cycle C = (v1v2 . . . vkv1)
in G with γ(G) = γ(G2) = 1. Since γ(G) = 1, ∆(G) = n− 1 and hence k = 3. If G has no
pendant vertices, then G ∼= C3. Otherwise, G ∼= F3. Converse can be easily verified.

5. Bounds for planar graphs

Definition 5.1. A graph is said to be planar if it can be drawn in the plane so that its
edges intersect only at their ends.

In [9], MacGillivray and Seyffarth established the following Results.

Theorem 5.2. [9] If G is a planar graph with diam(G) = 2, then γ(G) ≤ 3.

Theorem 5.3. [6] If G is a planar graph with diam(G) = 2, then γ(G) ≤ 2 or G is
isomorphic to P where P is the graph of Figure 6.

Figure 6. A planar graph P of diameter 2 with domination number 3.

Corollary 5.4. If G is a planar graph with diam(G) = 2, then γ(G) + γ(G2) ≤ 4 and
the equality holds if and only if G ∼= P given in Figure 6.

Theorem 5.5. If G 4= P is a planar graph with diam(G) = 2, then γ(G) + γ(G2) ≤ 3
and the equality holds for regular graphs if and only if G ∼= C4, C5, K2×K3 or any one of
the graphs given in Figure 3.

Proof. The required upper bound follows from Theorems 5.3 and Corollary 5.4. If γ(G)+
γ(G2) = 3, then γ(G) = 2 and γ(G2) = 1. Since G is planar and regular, ∆(G) ≤ 5. If
∆(G) = 2, then G ∼= Cn and by hypothesis, G ∼= C4 or C5. If ∆(G) = 3, then by Theorem
2.7, G is isomorphic to the Cartesian product K2 × K3. If ∆(G) = 4, then by Theorem
2.8, G is isomorphic to one of the three graphs given in Figure 3. If ∆(G) = 5, then by
Theorem 2.9, no graph exists. Converse can be easily verified.

6. Bounds in terms of order and maximum degree

In this section, we obtain the upper bound for the sum γ(G) + γ(G2) in terms of the
order and the maximum degree ∆(G) of a graph G and characterize the extremal graphs.

Theorem 6.1. If G is a connected graph of order n with maximum degree ∆(G), then
γ(G) + γ(G2) ≤ 2(n−∆(G)).

Proof. The required upper bound follows from Eq.(3.1) and Theorem 2.6.
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Theorem 6.2. If G is a connected graph of order n, then γ(G) + γ(G2) = 2n− 4 if and
only if G ∼= P3 or C3.

Proof. If γ(G) + γ(G2) = 2n− 4, then by Theorem 2.6 and Eq.(3.1),
γ(G) = γ(G2) = n− 2. (6.1)

By Theorem 2.1, n ≤ 4. If n = 3, then P3 and C3 satisfy Eq.(6.1). If n = 4, then by
Property 3, γ(G2) = 1 = n− 3 4= n− 2. Converse is obvious.

Theorem 6.3. If G is a connected graph of order n, then γ(G) + γ(G2) = 2n− 5 if and
only if G ∼= P4 or C4.

Proof. If γ(G) + γ(G2) = 2n− 5, then by Theorem 2.6 and Eq.(3.1),
γ(G) = n−2 and γ(G2) = n−3. (6.2)

By Theorems 2.1 and 6.2, n = 4. Then by Property 3 and Theorem 2.2, G ∼= P4 or C4

which satisfy Eq.(6.2). Converse is obvious.

Theorem 6.4. If G is a connected graph of order n, then γ(G) + γ(G2) = 2n− 6 if and
only if G is either K4, K4 − e, K1,3 or K1,3 + e.

Proof. If γ(G) + γ(G2) = 2n− 6, then by Theorem 2.6 and Eq.(3.1),
γ(G) = n−2 and γ(G2) = n−4 (6.3)

(or) γ(G) = γ(G2) = n− 3 . (6.4)
Eq.(6.3) is not possible by Theorem 2.1. From Eq. (6.4) and Theorem 2.1, n ≤ 6. If n = 4,
then γ(G) = γ(G2) = 1 and hence G is either K4 − e or K4 or K1,3 or K1,3 + e. If n = 5 or
6, then by Properties 3 and 5, no graph exists. Converse follows by verification.

Theorem 6.5. If G is a connected graph of order n, then γ(G) + γ(G2) = 2n− 7 if and
only if G is either P5, C5, G1, G2, G5, G7, G9, B3, B4 or B5.

Proof. If γ(G) + γ(G2) = 2n− 7, then by Theorem 2.6 and Eq.(3.1),
γ(G) = n−2 and γ(G2) = n−5 (6.5)

(or) γ(G) = n−3 and γ(G2) = n−4. (6.6)
Eq.(6.5) is not possible by Theorem 2.1. From Eq.(6.6) and Theorem 2.1, n ≤ 6. If n = 5,
then γ(G2) = 1 and γ(G) = 2.Clearly∆(G) 4= 4. HenceG ∼= P5, C5, G1, G2, G5, G7, B3, B4,
B5 or G9. If n = 6, then γ(G) = 3 and γ(G2) = 2. By Theorem 2.2 and Property 4, no such
graph exists. The converse follows by verification.

Theorem 6.6. If G is a connected graph of order n, then γ(G) + γ(G2) = 2n− 8 if and
only if G is either P3 ◦ K1, C3 ◦ K1, P6, C6 or a graph on 5 vertices having a vertex of
degree 4.

Proof. Assume that γ(G)+γ(G2) = 2n−8. Then by Theorem 2.6 and Eq.(3.1), we have
three cases.

γ(G) = n−2 and γ(G2) = n−6 (6.7)
(or) γ(G) = n−3 and γ(G2) = n−5 (6.8)
(or) γ(G) = n−4 and γ(G2) = n−4. (6.9)

Clearly Eq.(6.7) is not possible. From Eq.(6.8) and Theorem 2.1, n = 6. Then γ(G) = 3
and γ(G2) = 1. Hence by Theorem 2.2 and Property 4, G ∼= P3◦K1, C3◦K1. From Eq.(6.9)
and Theorem 2.1, n ≤ 8. If n = 5, then γ(G) = γ(G2) = 1. Hence G is a graph on 5 vertices
having a vertex of degree 4. If n = 6, then γ(G) = γ(G2) = 2. By Theorem 3.2, G ∼= P6

or C6. If n = 7, then γ(G) = γ(G2) = 3. By Property 6, no graph exists. If n = 8, then
γ(G) = γ(G2) = 4. By Theorem 2.2, G ∼= H ◦ K1 where |V (H)| = 4 and H is connected
for which γ(G2) ≤ 2, a contradiction. The converse is obvious.
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Theorem 6.7. For any connected graph G of order n, γ(G) + γ(G2) = 2n − 9 if and
only if G is either C7, P7, G3, G4, G6, G8 or a graph on 6 vertices having ∆(G) = 3 or 4
except P3 ◦K1, C3 ◦K1.

Proof. Assume that γ(G) + γ(G2) = 2n − 9. Clearly the two cases γ(G) = n − 2 and
γ(G2) = n − 7, γ(G) = n − 3 and γ(G2) = n − 6 are not possible. Now we consider the
remaining case

γ(G) = n−4 and γ(G2) = n−5. (6.10)
By Theorem 2.1, n ≤ 8. If n = 6, then γ(G) = 2 and γ(G2) = 1. Clearly ∆(G) 4= 2, 5. From
our choice of n and Theorem 2.2, G 4= P3 ◦K1, C3 ◦K1. Hence G is a graph on 6 vertices
having ∆(G) = 3 or 4 except P3 ◦K1, C3 ◦K1 which are satisfy Eq.(6.10). If n = 7, then
γ(G) = 3 and γ(G2) = 2. By Theorem 3.8, G ∼= C7, P7, G3, G4, G6, G8. If n = 8, then
γ(G) = 4 and γ(G2) = 3. By Theorem 2.2, G ∼= H ◦K1 where |V (H)| = 4 and by Theorem
3.2, no such graph exists. The converse can be easily verified.
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