• 제목/요약/키워드: (U,V)-operator

검색결과 36건 처리시간 0.03초

Singular Representation and Finite Element Methods

  • 김석찬
    • 한국전산응용수학회:학술대회논문집
    • /
    • 한국전산응용수학회 2003년도 KSCAM 학술발표회 프로그램 및 초록집
    • /
    • pp.9-9
    • /
    • 2003
  • Let $\Omega$ be a bounded, open, and polygonal domain in $R^2$ with re-entrant corners. We consider the following Partial Differential Equations: $$(I-\nabla\nabla\cdot+\nabla^{\bot}\nabla\times)u\;=\;f\;in\;\Omega$$, $$n\cdotu\;0\;0\;on\;{\Gamma}_{N}$$, $${\nabla}{\times}u\;=\;0\;on\;{\Gamma}_{N}$$, $$\tau{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$, $$\nabla{\cdot}u\;=\;0\;on\;{\Gamma}_{D}$$ where the symbol $\nabla\cdot$ and $\nabla$ stand for the divergence and gradient operators, respectively; $f{\in}L^2(\Omega)^2$ is a given vector function, $\partial\Omega=\Gamma_{D}\cup\Gamma_{N}$ is the partition of the boundary of $\Omega$; nis the outward unit vector normal to the boundary and $\tau$represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both $\Gamma_{D}$ and $\Gamma_{N}$ are nonempty. Denote the curl operator in $R^2$ by $$\nabla\times\;=\;(-{\partial}_2,{\partial}_1$$ and its formal adjoint by $${\nabla}^{\bot}\;=\;({-{\partial}_1}^{{\partial}_2}$$ Consider a weak formulation(WF): Find $u\;\in\;V$ such that $$a(u,v):=(u,v)+(\nabla{\cdot}u,\nabla{\cdot}v)+(\nabla{\times}u,\nabla{\times}V)=(f,v),\;A\;v{\in}V$$. (2) We assume there is only one singular corner. There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.

  • PDF

EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A CLASS OF HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM

  • Nguyen Viet Tuan
    • 대한수학회논문집
    • /
    • 제38권3호
    • /
    • pp.741-754
    • /
    • 2023
  • In this paper, we study the existence and nonexistence of solutions for a class of Hamiltonian strongly degenerate elliptic system with subcritical growth $$\left{\array{-{\Delta}_{\lambda}u-{\mu}v={\mid}v{\mid}^{p-1}v&&\text{in }{\Omega},\\-{\Delta}_{\lambda}v-{\mu}u={\mid}u{\mid}^{q-1}u&&\text{in }{\Omega},\\u=v=0&&\text{ on }{\partial}{\Omega},}$$ where p, q > 1 and Ω is a smooth bounded domain in ℝN, N ≥ 3. Here Δλ is the strongly degenerate elliptic operator. The existence of at least a nontrivial solution is obtained by variational methods while the nonexistence of positive solutions are proven by a contradiction argument.

Factor Rank and Its Preservers of Integer Matrices

  • Song, Seok-Zun;Kang, Kyung-Tae
    • Kyungpook Mathematical Journal
    • /
    • 제46권4호
    • /
    • pp.581-589
    • /
    • 2006
  • We characterize the linear operators which preserve the factor rank of integer matrices. That is, if $\mathcal{M}$ is the set of all $m{\times}n$ matrices with entries in the integers and min($m,n$) > 1, then a linear operator T on $\mathcal{M}$ preserves the factor rank of all matrices in $\mathcal{M}$ if and only if T has the form either T(X) = UXV for all $X{\in}\mathcal{M}$, or $m=n$ and T(X)=$UX^tV$ for all $X{\in}\mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

  • PDF

BI-ROTATIONAL HYPERSURFACE SATISFYING ∆IIIx =𝒜x IN 4-SPACE

  • Guler, Erhan;Yayli, Yusuf;Hacisalihoglu, Hasan Hilmi
    • 호남수학학술지
    • /
    • 제44권2호
    • /
    • pp.219-230
    • /
    • 2022
  • We examine the bi-rotational hypersurface x = x(u, v, w) with the third Laplace-Beltrami operator in the four dimensional Euclidean space 𝔼4. Giving the i-th curvatures of the hypersurface x, we obtain the third Laplace-Beltrami operator of the bi-rotational hypersurface satisfying ∆IIIx =𝒜x for some 4 × 4 matrix 𝒜.

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Beasley, LeRoy B.;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제54권4호
    • /
    • pp.1317-1329
    • /
    • 2017
  • A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK OF NONNEGATIVE REAL MATRICES

  • Beasley, LeRoy B.;Encinas, Luis Hernandez;Song, Seok-Zun
    • 대한수학회지
    • /
    • 제56권6호
    • /
    • pp.1503-1514
    • /
    • 2019
  • A rank 1 matrix has a factorization as $uv^t$ for vectors u and v of some orders. The arctic rank of a rank 1 matrix is the half number of nonzero entries in u and v. A matrix of rank k can be expressed as the sum of k rank 1 matrices, a rank 1 decomposition. The arctic rank of a matrix A of rank k is the minimum of the sums of arctic ranks of the rank 1 matrices over all rank 1 decomposition of A. In this paper we obtain characterizations of the linear operators that strongly preserve the symmetric arctic ranks of symmetric matrices over nonnegative reals.

ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, In Hyoun;Kim, Yun-Ho;Park, Kisoeb
    • 대한수학회보
    • /
    • 제55권6호
    • /
    • pp.1869-1889
    • /
    • 2018
  • We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.

EXISTENCE OF GLOBAL SOLUTIONS TO SOME NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

  • Chang, Yanxun;Zhang, Xiaoxiao
    • 대한수학회지
    • /
    • 제58권3호
    • /
    • pp.703-722
    • /
    • 2021
  • Let G = (V, E) be a connected locally finite and weighted graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear equation -∆pu + h|u|p-2u = f(x, u) on G, where p > 2, h, f satisfy certain assumptions. Grigor'yan-Lin-Yang [24] proved the existence of the solution to the above nonlinear equation in a bounded domain Ω ⊂ V. In this paper, we show that there exists a strictly positive solution on the infinite set V to the above nonlinear equation by modifying some conditions in [24]. To the m-order differential operator 𝓛m,p, we also prove the existence of the nontrivial solution to the analogous nonlinear equation.

NCV-|v1 >라이브러리의 새로운 쌍대 구조와 응용 (For new Duality Structure and its Application in the NCV-|v1 > Library)

  • 박동영;정연만
    • 한국전자통신학회논문지
    • /
    • 제11권2호
    • /
    • pp.165-170
    • /
    • 2016
  • 본 논문은 $NCV-{\mid}v_1$ > 라이브러리의 새로운 쌍대 구조의 특성과 그 응용에 대한 연구이다. 상태벡터가 고유벡터인 임의 n개 qudit 상의 모든 유니터리 연산은 1개와 2개의 $NCV-{\mid}v_1$ > 라이브러리 들의 합성으로 표현할 수 있다. 본 연구는 입력 상태벡터가 PP로 제한적인 Barenco의 n비트 U(2n) 연산자를 전역 극성의 입력 상태벡터로 확장 실현하는 것이다. 이와 같이 보강된 확장 실현은 유니터리 연산자의 제어게이트 합성 시에 $NCV-{\mid}v_1$ > 과 이의 쌍대인 $NCV^{\dag}-{\mid}v_1$ > 라이브러리 모두를 사용할 경우에 이들이 대칭적 쌍대 성질을 갖고 있어 모든 극성의 상태벡터 입력에 대해 AND 지배적 종속 합성이 가능하기 때문이다.

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF p(x)-TRIHARMONIC PROBLEM

  • Belakhdar, Adnane;Belaouidel, Hassan;Filali, Mohammed;Tsouli, Najib
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권2호
    • /
    • pp.349-361
    • /
    • 2022
  • In this paper, we study the following nonlinear problem: $$\{-\Delta_{p}^{3}(x)u\;=\;{\lambda}V_{1}(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u\;=\;{\Delta}u\;{\Delta}^{2}u\;=\;0\;on\;{\partial}\Omega, $$ under adequate conditions on the exponent functions p, q and the weight function V1. We prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier boundary value conditions on a bounded domain in ℝN. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.