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STRONG PRESERVERS OF SYMMETRIC ARCTIC RANK

OF NONNEGATIVE REAL MATRICES

LeRoy B. Beasley, Luis Hernandez Encinas, and Seok-Zun Song

Abstract. A rank 1 matrix has a factorization as uvt for vectors u and
v of some orders. The arctic rank of a rank 1 matrix is the half number

of nonzero entries in u and v. A matrix of rank k can be expressed as

the sum of k rank 1 matrices, a rank 1 decomposition. The arctic rank
of a matrix A of rank k is the minimum of the sums of arctic ranks of

the rank 1 matrices over all rank 1 decomposition of A. In this paper we
obtain characterizations of the linear operators that strongly preserve the

symmetric arctic ranks of symmetric matrices over nonnegative reals.

1. Introduction

Lately there have been many articles on the theory of quantum mechan-
ics. In the quantum theory, operators are defined by completely positive op-
erators with additional properties. As an example, a quantum channel is a
completely positive mapping which preserves trace acting on spaces of opera-
tors. So the study on operators that preserve properties of completely positive
matrices is interesting and important. The definition of completely positive
mapping was originated in the study of quadratic forms. A quadratic form
P =

∑n
i,j=1 ai,jxixj is completely positive if and only if P is a sum of squares

of linear forms qi =
∑n

k=1 c(i,k)xk, which is equivalent that P = q21+q22+· · ·+q2r
for some r. In [7] it was shown that the operator P is completely positive if
and only if there is some n × r matrix Q with nonnegative entries such that
P = (pi,j) = QQt. The symmetric arctic rank of a completely positive matrix
P is the minimum number of nonzero entries in Q for a completely positive fac-
torization of P = QQt. In [9] the linear operator that preserves the completely
positive rank of a completely positive matrix was determined.
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In this paper, we investigate the symmetric arctic rank and characterize
the strong linear preservers of sets of completely positive matrices defined by
symmetric arctic rank of nonnegative matrices.

In Section 2 we shall give definitions, some basic properties of matrices with
various symmetric arctic ranks. In Section 3 we characterize strong linear
preservers of sets of nonnegative symmetric matrices defined by symmetric
arctic ranks.

2. Preliminaries

Let R+ denote the set of nonnegative real numbers. Then (R+,+, ·) is a
semidomain, which is a commutative semiring with a multiplicative identity 1
different from 0 and without zero divisors.

Let Mm,n(R+) denote the set of all m × n matrices with entries in R+. If
m = n, we use the notation Mn(R+) instead of Mn,n(R+). The matrix In is
the n × n identity matrix, Jm,n is the m × n matrix of all ones, Om,n is the
m × n zero matrix, and we write Jn for Jn,n and On for On,n. We omit the
subscripts when the order is obvious from the context and we write I, J and
O, respectively. For matrices A and B, A⊕B is the direct sum of A and B so
that A⊕B = [ A O

O B ].
Consider a subset N of matrices inMm,n(R+). If N is closed under addition

and scalar multiplication, then it is a semimodule and hence has a basis B, a set
of matrices such that any member A ∈ N is a linear combination of elements
of B and no member of B is a linear combination of the remaining members of
B. Since R+ is antinegative, that is only 0 has an additive inverse, any member
of N is a unique linear combination of elements of any specified basis. The
elements of a basis are called base elements ([2]).

A matrix in Mm,n(R+) is called a cell ([4]) if it has exactly one nonzero
entry, that being a 1. We denote the cell whose nonzero entry is in the (i, j)th

position by Ei,j . We also call wEi,j a weighted cell ([4]) for any nonzero w ∈ R+.
Let E = {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then, E is a basis for Mm,n(R+).

We let Sn(R+) denote the set of all n×n symmetric matrices with entries in
R+. For 1 ≤ i < j ≤ n let Di,j = Ei,j +Ej,i. The matrix Di,j is called a digon
([5]). InMm,n(R+) a basis consists of all the cells in E , but in Sn(R+) a basis
consists of all digons and diagonal cells. We occasionally use Di,i to represent
Ei,i.

For A, B ∈ Mm,n(R+), A dominates B, written A w B, if bi,j 6= 0 implies
ai,j 6= 0 for all i and j. If A w B, then A \ B = C is the matrix such that
ci,j = ai,j if bi,j = 0 and is 0 otherwise.

We now let B = {Di,j | 1 ≤ i ≤ j ≤ n} be a basis for Sn(R+) and the term
“base element” shall refer to members of B.

For X ∈ Mm,n(R+), let |X| denote the number of nonzero entries in X.
That is | · | : Mm,n → Z+ is the function such that |X| is the number of
nonzero entries in X, where Z+ is the set of nonnegative integers.
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For X ∈ Sn(R+), we let #(X) denote the number of base elements of Sn(R+)
that X dominates. That is, # : Sn(R+)→ Z+ is the function such that #(X)
is the number of base elements of Sn(R+) that X dominates. Note that if X
is not symmetric, then #(X) is undefined.

Example 2.1. For a digon D1,2 ∈ Sn(R+), D1,2 = E1,2 +E2,1. Thus we have
that |D1,2| = 2 but #(D1,2) = 1 since D1,2 is a base element of Sn(R+).

For A = (ai,j), B = (bi,j) ∈Mm,n(R+) the Hadamard or Schur product ([8])
of A and B is the matrix C = (ci,j) if the (i, j)th entry ci,j of C is ai,jbi,j , and
we write A ◦B = C.

The rank ([10]), r(A) of a nonzero A ∈ Mm,n(R+) is defined to be the
smallest integer h for which there exist B ∈ Mm,h(R+) and C ∈ Mh,n(R+)
such that A = BC. The rank of the zero matrix is zero.

The rank of A ∈ Mm,n(R+) is 1 if and only if there exist nonzero vectors

b ∈ Rm
+ =Mm,1(R+) and c ∈ Rn

+ =Mn,1(R+) such that A = bct. It is clear
that these vectors b and c are uniquely determined by A up to scalar multiples.
That is, if A = bct = det, then d = xb and e = yc with xy = 1. We have
from [3] that r(A) is the least h such that A is the sum of h matrices of rank
1, which is called a rank-1 decomposition. It follows that 0 < r(A) ≤ m for all
nonzero A ∈Mm,n(R+).

The binary Boolean algebra ([2]) consists of the set B = {0, 1} equipped with
two binary operations, addition and multiplication. The operations are defined
as usual except that 1 + 1 = 1. We also use the Boolean arithmetic extended
in a usual way to vector and matrix arguments. We write Mm,n(B) for the
set of all m× n Boolean matrices with entries in B. The Boolean rank, rB(A),
of a nonzero A ∈ Mm,n(B) is the minimal number of rank-1 matrices needed
to obtain A as the Boolean sum. Thus for A ∈ Mm,n(B), rB(A) = h if and
only if there is the least integer h for which there exist C ∈ Mm,h(B) and
D ∈Mh,n(B) such that A = CD. The Boolean rank of the zero matrix is zero.

The arctic rank of a Boolean rank-1 matrix A = bct ∈Mm,n(B), arct(A), is
1
2 (|b|+ |c|). Beasley et al. ([1]) defined the arctic rank of any Boolean matrix
and proved that this artic rank gives an upper bound for many other ranks
including the Boolean rank (aka. Kapronov rank or Boolean factor rank) and
term rank of a given Boolean matrix. The tropical rank (see [6]) gives a lower
bound on many ranks of matrices inMm,n(B) and thus, the name “arctic rank”
is an appropriate name.

For a rank-r matrix A ∈ Mm,n(R+) with a rank-1 decomposition A =
A1+A2+· · ·+Ar, the arctic rank of this rank-1 decomposition is the sum of the
arctic rank of the rank-1 summands. The arctic rank of matrix A ∈Mm,n(R+)
of rank r is defined to be the minimum arctic rank of a rank-1 decomposition
over all rank-1 decompositions of A ([5]).

For A ∈ Mm,n(R+), let F(A) be the set of ordered pairs of matrices that
factor A. That is,

F(A) = {(B,C) | B ∈Mm,h, C ∈Mh,n for some h such that A = BC}.
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Then, arct(A) = min(B,C)∈F(A)
1
2{|B|+ |C|}. Then it is clear that every ma-

trix in Mm,n(R+) whose arctic rank is 1 is a weighted cell.
For A = (ai,j) ∈ Sn(R+), we say that A has a symmetric factorization if

there exist r ∈ Z+ and B ∈ Mn,r such that A = BBt. Let Fsym denote the
matrices in Sn(R+) that have a symmetric factorization, that is

Fsym = {A ∈ Sn(R+) | A = BBt for some B ∈Mn,r(R+), r ∈ Z+}.

In this case, A = b1b
t
1 + b2b

t
2 + · · · + brb

t
r where bj is the jth column of B.

Then, the symmetric arctic rank of A, s ·arct(A), is the minimum number, |B|,
over all symmetric factorizations of A = BBt ([5]).

We can check that not all members of Sn(R+) have a symmetric factor-
ization. For example, [ 0 1

1 0 ] has rank two, but the sum of any two symmetric
rank-1 matrices cannot be [ 0 1

1 0 ]. If A has a nonzero entry, then AAt has a
nonzero entry on the main diagonal. Thus the product of any 2× 2 symmetric
matrix and its transpose cannot equal [ 0 1

1 0 ]. If B does not have symmetric
factorization, then we put s · arct(B) =∞.

Let Σh = {A ∈ Fsym | s · arct(A) = h or X w A w X for some X with
s · arct(X) = h} and

Σ∞ = {A ∈ Sn(R+) | A does not have symmetric factorization}.

That is, if A ∈ Σh, then s · arct(A) = h or s · arct(A ◦ X) = h for some
X = (xi,j) ∈ Sn(R+) with all nonzero entries.

Example 2.2. Consider A = [ 1 2
2 8 ] . Then we have

A =

[
1 0
2 2

] [
1 0
2 2

]t
=

[
1
2

] [
1
2

]t
+

[
0
2

] [
0
2

]t
.

Thus A has a symmetric factorization and has rank 2 over R+. Moreover
s · arct(A) = 3.

Let A ∈ Sn(R+). If s · arct(A) = 1, then A is a weighted diagonal cell. That
is, Σ1 is the set of all weighted diagonal cells;

If s · arct(A) = 2, then up to permutational similarity, there are nonzero

a, b ∈ R+ such that A = [ ab ] [ ab ]
t ⊕On−2 or A = [ a 0

0 b ] [ a 0
0 b ]

t ⊕On−2; and
If s · arct(A) = 3, then up to permutational similarity, there are nonzero

a, b, c ∈ R+ such that

A1 =

 a
b
c

 a
b
c

t

⊕On−3,

A2 =

 a 0
b 0
0 c

 a 0
b 0
0 c

t

⊕On−3,
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A3 =

 a 0 0
0 b 0
0 0 c

 a 0 0
0 b 0
0 0 c

t

⊕On−3, or

A4 =

 a b
0 c
0 0

 a b
0 c
0 0

t

⊕On−3 =

 a2 + b2 bc 0
bc c2 0
0 0 0

⊕On−3.

It is clear that when s · arct(A) = 3, we have #(A) = 3, 4 or 6 only.
A mapping T : Sn(R+)→ Sn(R+) is said a linear operator if T (αX+βY ) =

αT (X) + βT (Y ) for all X,Y ∈ Sn(R+). A linear operator T : Sn(R+) →
Sn(R+) is said a (P, P t, B)-operator if there exist a permutation matrix P and
a matrix B = (bi,j) ∈ Sn(R+) with all bi,j 6= 0 such that T (A) = P (A ◦ B)P t

for all A ∈ Sn(R+).
A linear operator T is said to preserve Σh if X ∈ Σh implies T (X) ∈ Σh.

Also, T strongly preserves Σh if X ∈ Σh if and only if T (X) ∈ Σh.
There have been many papers on linear operators that preserve some special

subsets of matrices ([2–5], [8–10]). For an excellent survey, see [8]. In [5], the
bijective linear operators that preserve sets of matrices defined by symmetric
arctic ranks over semirings were characterized. In this article we investigate
the linear operators that strongly preserve symmetric arctic rank of symmetric
matrices over the nonnegative reals, R+.

3. Strong preservers of symmetric arctic ranks over nonnegative
matrices

In this section we shall classify linear operators on Sn(R+) that strongly
preserve the set of matrices of symmetric arctic rank k ≥ 3.

If a linear operator T : Sn(R+) → Sn(R+) preserves Σ1, then it is obvious
that the image of a diagonal cell is a weighted diagonal cell.

From now on, the set of distinct weighted base elements means a set of
weighted base elements, no two of which are of the same base element.

We begin this section with an example.

Example 3.1. Consider a map T : Sn(R+) → Sn(R+) which is defined by
T (Ej,j) = Ej,j , T (Dj,k) = Ej,j + Ek,k and extend linearly. Then T strongly
preserves Σ1, T preserves Σ2, but T does not preserve any Σh, 3 ≤ h ≤ n,
since, if we consider B = [ 2 2

2 4 ]⊕ Ih−3 ⊕On−h+1 = [ 1 1
0 2 ] [ 1 0

1 2 ]⊕ Ih−3 ⊕On−h+1,
then s · arct(B) = h while s · arct(T (B)) = h− 1, since T (B) = [ 4 0

0 6 ]⊕ Ih−3 ⊕
On−h+1.

Lemma 3.2. If a linear operator T : Sn(R+) → Sn(R+) strongly preserves
Σ1, then T maps the set of diagonal cells bijectively onto a set of n distinct
weighted diagonal cells. That is T is a bijective linear mapping from Σ1 onto
Σ1.

Proof. Since T strongly preserves Σ1, the image of a diagonal cell is a weighted
diagonal cell. Suppose that the images of two distinct diagonal cells are the
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weighted diagonal cells of the same diagonal cell. We may assume without loss
of generality that T (E1,1) = w1Eq,q and T (E2,2) = w2Eq,q. Then T (E1,1 +
E2,2) = (w1 + w2)Eq,q ∈ Σ1 while E1,1 + E2,2 ∈ Σ2, which is a contradiction,
since T strongly preserves Σ1.

Let ∆ = {(k, k) : k = 1, . . . , n} and define a map g : ∆ → ∆ by g(k, k) =
(j, j) if and only if T (Ek,k) = wEj,j for some w ∈ R+. Then we have that g
is injective by above paragraph and moreover g is bijective since ∆ is finite.
Thus, T is a bijective linear mapping from Σ1 onto Σ1. �

Lemma 3.3. (1) Let X = {(Jh−1 ⊕ O1) + (O1 ⊕ Jh−1)} ⊕ On−h for some
3 ≤ h ≤ n. Then s · arct(X) = 2h− 2 and hence X /∈ Σh.

(2) Let Di,j v (Jh ⊕ On−h) for some 3 ≤ h ≤ n. Then Y = (Jh ⊕ On−h) \
Di,j + µDr,s /∈ Σh for any µ ∈ R+.

Proof. (1) We have s · arct(X) = s · arct[{(Jh−1⊕O1)+(O1⊕Jh−1)}⊕On−h] =
s · arct[([1 1 · · · 1]t[1 1 · · · 1]⊕O1) + (O1⊕ [1 1 · · · 1]t[1 1 · · · 1])⊕On−h] =
(h− 1) + (h− 1) = 2h− 2 6= h for h ≥ 3. Thus by definition of Σh, X /∈ Σh.

(2) If Di,j is a diagonal cell or Dr,s is a digon, then Y = (Jh ⊕ On−h) \
Di,j + µDr,s cannot have a symmetric factorization. If Di,j is a digon and
Dr,s is a diagonal cell, then we may assume that Di,j = D1,h and Dr,s = Ei,i

without loss of generality. Then we choose X = [{(Jh−1⊕O1)+(O1⊕Jh−1)}⊕
On−h] + Ei,i. Then X v (Jh ⊕ On−h) \D1,h + µEi,i v X. But s · arct(X) =
2(h−1) + 1 = 2h−1 6= h for h ≥ 2. Therefore (Jh⊕On−h)\D1,h +µEi,i /∈ Σh

by definition of Σh. �

Lemma 3.4. If a linear operator T : Sn(R+) → Sn(R+) strongly preserves
Σh for some 3 ≤ h ≤ n, then we have (Jh ⊕ On−h) \ Di,j /∈ Σh for any
1 ≤ i ≤ j ≤ h.

Proof. If i = j, then (Jh ⊕ On−h) \ Di,i has a 0 in (i, i)-entry but the other
entries in the ith row and column are not zero. This implies that it cannot
have a symmetric factorization. Hence s · arct((Jh ⊕ On−h) \ Di,i) = ∞ and
(Jh ⊕On−h) \Di,i /∈ Σh.

If i < j, then we may assume that i = 1, j = k by permuting. That
is, P t(Jh ⊕ On−h) \ Di,j)P = (Jh ⊕ On−h) \ D1,h). Then we choose X =
{(Jh−1⊕O1) + (O1⊕ Jh−1)}⊕On−h with X v (Jh⊕On−h) \D1,h) v X. But
s · arct(X) = 2h− 2 6= h for h ≥ 3 by Lemma 3.3(1). Therefore (Jh ⊕On−h) \
D1,h /∈ Σh by definition of Σh. �

Lemma 3.5. For a linear operator T : Sn(R+) → Sn(R+), if T strongly
preserves Σh for some 3 ≤ h ≤ n, then T maps the set of base elements
bijectively onto a set of weighted base elements.

Proof. Suppose that T (Di,j) = O for some i ≤ j. We may assume without loss
of generality that 1 ≤ i, j ≤ 2. Then, T ((Jh⊕On−h) \Di,j) = T (Jh⊕On−h),
which contradicts that T strongly preserves Σh since (Jh ⊕ On−h) ∈ Σh but
(Jh ⊕On−h) \Di,j /∈ Σh by Lemma 3.4. Therefore T is nonsingular.
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Suppose that #(T (Di,j)) ≥ 2 for some i ≤ j. Without loss of generality,
assume that 1 ≤ i ≤ j ≤ h. Then, there is a base element Dr,s( 6= Di,j)
such that T (Jh ⊕ On−h) w T ((Jh ⊕ On−h) \ Dr,s) w T (Jh ⊕ On−h). Since
(Jh⊕On−h) ∈ Σh, we have T (Jh⊕On−h) ∈ Σh since T strongly preserves Σh.
By definition of Σh, T ((Jh⊕On−h) \Dr,s) ∈ Σh but ((Jh⊕On−h) \Dr,s) /∈ Σh

by Lemma 3.4. So we have a contradiction, since T strongly preserves Σh.
Therefore T maps each base element to a weighted base elements.

Suppose that Da,b and Dc,d are distinct base elements and T (Da,b) =
µT (Dc,d). If for some permutation matrix P, (Da,b +Dc,d) v P t(Jh⊕On−h)P ,
then

T (P t(Jh ⊕On−h)P ) = T ((P t(Jh ⊕On−h)P \Da,b) +Da,b)

= T (P t(Jh ⊕On−h)P \Da,b) + T (Da,b)

= T (P t(Jh ⊕On−h)P \Da,b) + µT (Dc,d)

= T ((P t(Jh ⊕On−h)P \Da,b + µDc,d)

v T (P t(Jh ⊕On−h)P \Da,b)

v T (P t(Jh ⊕On−h)P ),

which is a contradiction since T (P t(Jh ⊕On−h)P ) ∈ Σh and hence T (P t(Jh ⊕
On−h)P \Da,b) ∈ Σh by definition of Σh but P t(Jh ⊕On−h)P \Da,b /∈ Σh by
Lemma 3.4.

Note that if h > 3, then we can always find such a permutation matrix P .
Hence if we cannot find a permutation matrix P such that P (Da,b +Dc,d)P t

v (Jh ⊕ On−h), then h < 4. But, there is a permutation P such that Da,b v
P t(Jh ⊕On−h)P . In this case, as above we have that

T (P t(Jh ⊕On−h)P ) = T ((P t(Jh ⊕On−h)P \Da,b) +Da,b)

= T (P t(Jh ⊕On−h)P \Da,b) + T (Da,b)

= T (P t(Jh ⊕On−h)P \Da,b) + µT (Dc,d)

= T (P t(Jh ⊕On−h)P \Da,b + µDc,d),

which is a contradiction since P t(Jh ⊕On−h)P ∈ Σh while P t(Jh ⊕On−h)P \
Da,b + µDc,d /∈ Σh by Lemma 3.3(2).

Thus we have that T maps the set of base elements injectively (and hence
bijectively) onto a set of weighted base elements. �

Corollary 3.6. For a linear operator T : Sn(R+) → Sn(R+), if T strongly
preserves Σh for some 3 ≤ h ≤ n, then T is bijective on the set of weighted
base elements and hence on Sn(R+).

Proof. By Lemma 3.5, T maps the set of base elements bijectively onto a set
of weighted base elements. Hence the preimage of each base element under T
is also a weighted base element. That is, T is bijective on the set of weighted
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base elements. Since every member of Sn(R+) is a unique sum of weighted
base element, T is bijective on Sn(R+). �

We define the pattern of a matrix X ∈ Sn(R+), X∗, to be the (0, 1)-matrix
in Sn(B) such that the (j, k) entry of X∗ is 1 if and only if xj,k 6= 0. Then we
have X v X∗ v X, (X + Y )∗ = X∗ + Y ∗ and (XY )∗ = X∗Y ∗. We write
s · arctB(X∗) for the symmetric arctic rank of X∗ ∈ Sn(B) over B.

Lemma 3.7. Let B ∈ Fsym with s · arct(B) = h for some 3 ≤ h ≤ n.

If #(B) = h2+h
2 , then there exists a permutation matrix P such that B∗ =

P t(Jh ⊕On−h)P .

Proof. Let P be a permutation matrix such that P (B ◦ I)∗P t = I` ⊕ On−`
and let B = B1 + B2 + · · · + Bh be a rank-1 decomposition of B such that

s · arct(B) =
∑h

i=1 s · arct(Bi). Then |Bi ◦ I| = s · arct(Bi) and ` = |B ◦ I| =
|(
∑h

i=1Bi) ◦ I| ≤
∑h

i=1 |Bi ◦ I| =
∑h

i=1 s · arct(Bi) = s · arct(B) = h. Since

B ∈ Fsym, we have B v P t(Jh⊕On−h)P . But #(Jh⊕On−h) = h2+h
2 = #(B)

so we must have that B∗ = P t(Jh ⊕On−h)P . �

For X ∈ Sn(R+), we use X[1, . . . , h|1, . . . , h] to denote the submatrix of X
consisting of the intersection of the first h rows and the first h columns. We use
X(1, . . . , h|1, . . . , h) to denote the submatrix of X consisting of the intersection
of the last n− h rows and the last n− h columns.

Lemma 3.8. For a linear operator T : Sn(R+) → Sn(R+), if T strongly
preserves Σh for some 3 ≤ h ≤ n, then T preserves Σ1.

Proof. Suppose that T strongly preserves Σh (3 ≤ h ≤ n). By Corollary 3.6,
T is bijective on the set of weighted base elements.

Suppose that T (Ei,i) = bDr,s for some r 6= s and b 6= 0. By permuting, we
may assume that i = 1. Consider T (Jh ⊕ On−h). Since T is bijective on the

set of weighted base elements, #(T (Jh ⊕On−h)) = #(Jh ⊕On−h) = h2+h
2 and

(T (Jh ⊕ On−h)) ∈ Σh. By Lemma 3.7 there is some permutation matrix P
such that T (Jh ⊕ On−h)∗ = P t(Jh ⊕ On−h)P . Without loss of generality, by
permuting, we assume that (Jh ⊕On−h) w T (Jh ⊕On−h) w (Jh ⊕On−h).

Similarly as above, there is some permutation matrix Q such that QtT (O1⊕
Jh ⊕On−h−1)Q w Jh ⊕On−h so that we have that T (O1 ⊕ Jh ⊕On−h−1) is a
rank-1 matrix since T strongly preserves Σh.

Let X = T (O1⊕Jh⊕On−h−1) and let R be a permutation matrix such that
R(X[1, . . . , h|1, . . . , h])∗Rt = Oh−` ⊕ J`. Let S be a permutation matrix such
that S(X(1, . . . , h|1, . . . , h)∗St = Jh−` ⊕On−2h+`. Then ,

(R⊕ S)X∗(R⊕ S)t =


Oh−` O A1 A2

O J` A3 A4

At
1 At

3 Jh−` O
At

2 At
4 O On−2h+`

 .
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We use the fact that if Y ∈ Fsym and the ith row or column of Y has a nonzero
entry, then yi,i 6= 0. Thus, A1, A2, and A4 are all zero matrices. SinceX is rank-
1, we must have that A3 = J`.h−`. Hence we have that (R ⊕ S)X∗(R ⊕ S)t =
Oh−`⊕Jh⊕On−2h+`. And (R⊕S)(Jh⊕On−h)(R⊕S)t = RJhR

t⊕SOn−hS
t =

Jh ⊕On−h so that (R⊕ S)T (Jh ⊕On−h)
∗
(R⊕ S)t = Jh ⊕On−h.

Define f : Sn(R+) → Sn(R+) by f(X) = (R ⊕ S)T (X)(R ⊕ S)t. Then,
f is bijective on the set of weighted base elements, f(E1,1) = bDp,q for some
nonzero b and p 6= q, f(Jh⊕On−h)∗ = Jh⊕On−h, and f(O1⊕Jh⊕On−h−1)∗ =
Oh−`⊕ Jh⊕On−2h+`. Since O1⊕ Jh−1⊕On−h v Jh⊕On−h and O1⊕ Jh−1⊕
On−h v O1⊕Jh⊕On−h−1, we must have that f(O1⊕Jh−1⊕On−h)∗ v f(Jh⊕
On−h)∗ = Jh ⊕On−h and L(O1 ⊕ Jh−1 ⊕On−h)∗ v f(O1 ⊕ Jh ⊕On−h−1)∗ =

Oh−` ⊕ Jh ⊕ On−2h+`. Since #(O1 ⊕ Jh−1 ⊕ On−h) = (h−1)2+(h−1)
2 and f is

bijective on the weighted base elements, we must have that ` = h − 1. Hence
f(O1 ⊕ Jh−1 ⊕On−h)∗ = (O1 ⊕ Jh−1 ⊕On−h).

Now we have that f(E1,1+(O1⊕Jh−1⊕On−h))∗ = Dp,q+(O1⊕Jh−1⊕On−h),
and bDp,q = f(E1,1) 6v f(O1 ⊕ Jh−1 ⊕ On−h) v O1 ⊕ Jh−1 ⊕ On−h since f is
bijective on the set of weighted base elements. We have a contradiction since
s · arct(E1,1 + (O1 ⊕ Jh−1 ⊕ On−h)) = h and s · arct(Y ) = ∞ for any Y such
that Y ∗ = (Dp,q + (O1 ⊕ Jh−1 ⊕ On−h)) = f(E1,1 + (O1 ⊕ Jh−1 ⊕ On−h))∗.
This contradiction implies that f(E1,1) = bDp,q = bEp,p for some p and b 6= 0.
Thus f , and hence T , preserves Σ1. �

Lemma 3.9. For a linear operator T : Sn(R+) → Sn(R+), if T strongly
preserves Σh for some 3 ≤ h ≤ n, then T maps the set of diagonal cells
bijectively onto a set of n distinct weighted diagonal cells. That is, T is a
bijective mapping from Σ1 into Σ1.

Proof. Assume that T strongly preserves Σh. Then T preserves Σ1 by Lemma
3.8. Hence the image of a diagonal cell is a weighted diagonal cell. Suppose
that the images of two diagonal cells are weighted cells of the same diagonal
cell. Without loss of generality, we assume that T (E1,1) = bEr,r and T (E2,2) =
dEr,r. Then T (Ih⊕On−h) is the sum of at most h− 1 weighted diagonal cells.
Thus s · arct(T (Ih ⊕ On−h)) ≤ h − 1, while s · arct(Ih ⊕ On−h) = h, which is
a contradiction since T preserves Σh. Hence T maps the set of diagonal cells
bijectively onto a set of n distinct weighted diagonal cells. That is, T is a
bijective mapping from Σ1 into Σ1. �

Theorem 3.10. For a linear operator T : Sn(R+) → Sn(R+), we have that
T strongly preserves Σh for some 4 ≤ h ≤ n − 1, if and only if there exist a
matrix B ∈ Sn(R+) with all nonzero entries, scalars ci,j , di,j ∈ Sn(R+) for
1 ≤ i < j ≤ n, and a permutation P such that

T (Y ) = P

Y ◦B +
∑

1≤i<j≤n

yi,j(ci,jEi,i + di,jEj,j)

P t
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for all Y ∈ Sn(R+).

Proof. Assume that T strongly preserves Σh for some 4 ≤ h ≤ n − 1. Then
by Lemma 3.9, T maps the set of diagonal cells bijectively onto a set of n
distinct weighted diagonal cells. Permute by P so that f(Y ) = P tT (Y )P
for all Y and such that for some bi 6= 0, T (Ei,i) = biEi,i for all i. Since
permutational similarity preserves all symmetric arctic ranks, it follows that f
strongly preserves Σh.

Step 1) Suppose that f(D+
i,j) dominates at least three diagonal cells, where

D+
i,j = Ei,i + Ej,j + Di,j for all 1 ≤ i, j ≤ n. Let ∆1 be the sum of h − 2

diagonal cells such that s · arct(D+
i,j + ∆1) = h and f(D+

i,j + ∆1) dominates

h + 1 diagonal cells. This is always possible since f(Ei,i) = biEi,i. Then,
s · arct(f(D+

i,j+∆1)) ≥ h+1, which is a contradiction since s · arct(D+
i,j+∆1) =

h and f strongly preserves Σh.
Step 2) Suppose that f(Di,j) dominates two digons. Then there is some k

such that f(D+
i,j) dominates Dk,` for some `, but does not dominate Ek,k. Let

∆1 be the sum of h − 2 diagonal cells whose image does not dominate Ek,k

and such that s · arct(D+
i,j + ∆1) = h. Then we have a contradiction since

s · arct(f(D+
i,j + ∆1)) = ∞ from f(D+

i,j + ∆1) 6∈ Fsym. Thus, for each (i, j)

there is some (p, q) such that f(D+
i,j) v D+

p.q.

Step 3) Suppose that f(D+
i,j) v D+

p,q and f(D+
h,`) v D+

p.q for (i, j) 6= (h, `).

Let ∆2 be the sum of either h−3 or h−4 diagonal cells such that s · arct(D+
i,j +

D+
h,` +∆2) = h. But, f(D+

i,j +D+
h,` +∆2) v D+

p,q +f(∆2) has symmetric arctic
rank at most h-1, which is a contradiction since f strongly preserves Σh.

By the above steps, we have that f(D+
i,j) v D

+
i,j for all (i, j). Suppose that

f(D+
i,j) v Ei,i+Ej,j . Without loss of generality, we may assume that f(D+

1,2) =

cE1,1+dE2,2. Then, s · arct(D+
1,2+D+

1,3+E4,4+ · · ·+Eh−1,h−1) = h and hence

D+
1,2+D+

1,3+E4,4+· · ·+Eh−1,h−1 ∈ Σh. But E2,2+D+
1,3+E4,4+· · ·+Eh−1,h−1 v

f(D+
1,2 +D+

1,3 + E4,4 + · · ·+ Eh−1,h−1) v E2,2 +D+
1,3 + E4,4 + · · ·+ Eh−1,h−1

and s · arct(E2,2 + D+
1,3 + E4,4 + · · · + Ek−1,k−1) = h − 1, we have f(D+

1,2 +

D+
1,3 + E4,4 + · · · + Eh−1,h−1) ∈ Σh−1. Thus we have a contradiction since f

strongly preserves Σh. Hence, for all (i, j), T (D+
i,j) = bDi,j + cEi,i + dEj,j for

some b, c, d ∈ R+.
Since f(Di,j) v D+

i,j , we can define that f(Di,j) = bi,jDi,j+ci,jEi,i+di,jEj,j .

Let us denote B = (bi,j). Since f(Y ) = P tT (Y )P , we have that T (Y ) =

P
(
Y ◦B +

∑
1≤i<j≤n yi,j(ci,jEi,i + di,jEj,j)

)
P t for all Y ∈ Sn(R+).

Now we claim that B has rank 1. For, if not, we have a 2 × 2 princi-
pal submatrix B1 of B with rank 2. By permuting, we may assume that

B1 =
[
b1.1 b1,2
b2,1 b2,2

]
has rank 2. Since bi,j 6= 0 for all 1 ≤ i, j ≤ 2, we have

s · arct(B1) = 3. Then f(J2⊕ Ih−2⊕On−h) =
[
b1.1 b1,2
b2,1 b2,2

]
⊕Gh−2⊕On−h where



SYMMETRIC ARCTIC RANK PRESERVERS 1513

Gh−2 is a (h−2)× (h−2) diagonal matrix with all nonzero entries in the main
diagonal. We have a contradiction from s · arct(J2 ⊕ Ih−2 ⊕ On−h) = h and

s · arct(
[
b1.1 b1,2
b2,1 b2,2

]
⊕Gh−2⊕On−h) = h+ 1 since T strongly preserves Σh. This

contradiction implies that B has rank 1.
For the converse implication, assume that B has rank 1, P is a permu-

tation, and f(Y ) = P
(
Y ◦B +

∑
1≤i<j≤n yi,j(ci,jEi,i + di,jEj,j)

)
P t for all

Y ∈ Sn(R+), then f strongly preserves all symmetric arctic ranks except
s · arct(Y ) =∞. �

Corollary 3.11. For a linear operator T : Sn(R+)→ Sn(R+), we have that T
strongly preserves Σh for some 4 ≤ h ≤ n− 1 if and only if T is a (P, P t, B)-
operator for some rank-1 matrix B with all nonzero entries.

Proof. Suppose T strongly preserves Σh for some 4 ≤ h ≤ n − 1. By Lemma
3.8, T preserves Σ1. And by Theorem 3.10, there exist a matrix B ∈ Sn(R+)
with all nonzero entries, scalars ci,j , di,j ∈ Sn(R+) for 1 ≤ i < j ≤ n, and a
permutation P such that

T (Y ) = P

Y ◦B +
∑

1≤i<j≤n

yi,j(ci,jEi,i + di,jEj,j)

P t

for all Y ∈ Sn(R+).
Suppose that ci,j 6= 0. Since T is bijective on the set of weighted base

elements by Lemma 3.9, we can find matrices U, V,W ∈ Sn(R+) such that
T (U) = Di,j , T (V ) = Ei,i and T (W ) = Ej,j . Then

T (Di,j) = bi,jDi,j + ci,jEi,i + di,jEj,j

= bi,jT (U) + ci,jT (V ) + di,jT (W )

= T (bi,jU + ci,jV + di,jW ).

Since T is bijective, Di,j = bi,jU + ci,jV + di,jW . Since R+ is antinegative
semiring, we have nonzero x, y, z ∈ R+ such that U = xDi,j , V = yDi,j and
W = zDi,j . Then T (xyDi,j) = xT (yDi,j) = xT (V ) = xEi,i, and T (xyDi,j) =
yT (xDi,j) = yT (U) = yDi,j . Since T is bijective, we have xEi,i = yDi,j and
hence x = y = 0 and U = V = 0, which is impossible from T (U) = Di,j , T (V ) =
Ei,i. Thus ci,j = 0. Similarly di,j = 0. Thus we have T (Y ) = P (Y ◦ B)P t

for all Y ∈ Sn(R+). The fact that B is rank-1 with all nonzero entries follows
from the proof of Theorem 3.10.

The converse is obvious. �
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