DOI QR코드

DOI QR Code

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF p(x)-TRIHARMONIC PROBLEM

  • Belakhdar, Adnane (Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st) ;
  • Belaouidel, Hassan (Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st) ;
  • Filali, Mohammed (Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st) ;
  • Tsouli, Najib (Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st)
  • Received : 2021.11.12
  • Accepted : 2022.02.23
  • Published : 2022.06.08

Abstract

In this paper, we study the following nonlinear problem: $$\{-\Delta_{p}^{3}(x)u\;=\;{\lambda}V_{1}(x){\mid}u{\mid}^{q(x)-2}u\;in\;{\Omega},\\u\;=\;{\Delta}u\;{\Delta}^{2}u\;=\;0\;on\;{\partial}\Omega, $$ under adequate conditions on the exponent functions p, q and the weight function V1. We prove the existence and nonexistence of eigenvalues for p(x)-triharmonic problem with Navier boundary value conditions on a bounded domain in ℝN. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.

Keywords

References

  1. A. Ayoujil, Existence and Nonexistence Results for Weighted Fourth Order Eigenvalue Problems With Variable Exponent, Bol. Soc. Paran. Mat,, 37(3) (2019), 55-66. https://doi.org/10.5269/bspm.v37i3.31657
  2. A. Ayoujil, A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. T.M.A., 71(10) (2009), 4916-4926. https://doi.org/10.1016/j.na.2009.03.074
  3. M. Dammak, R. Jaidane and C. Jerb, Positive solutions for asymptotically linear biharmonic problems, Nonlinear Funct. Anal. Appl., 22(1) (2017), 59-76 https://doi.org/10.22771/NFAA.2017.22.01.04
  4. L. Diening, P. Hasto, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces,, Proc. Milovy, Czech Republic, (2004), 38-58.
  5. D.E. Edmunds, J. Rakosnk, Sobolev embedding with variable exponent, Studia Math., 143(3) (2000), 267-293. https://doi.org/10.4064/sm-143-3-267-293
  6. A. El Amrouss and A. Ourraoui, Existence Of Solutions For A Boundary Problem Involving p(x)-Biharmonic Operator, Bol. Soc. Paran. Math., 31(1) (2013), 179-192 . https://doi.org/10.5269/bspm.v31i1.15148
  7. X.L. Fan and D. Zhao, On the space Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl., 263 (2001), 424-446. https://doi.org/10.1006/jmaa.2000.7617
  8. B. Ge, Q.M. Zhou and Y.H. Wu, Eigenvalues of the p(x)-biharmonic operator with indefinite weight, Zeitschrift fr angewandte Mathematik und Physik, 66(3) (2015), 1007-1021. https://doi.org/10.1007/s00033-014-0465-y
  9. P. Harjulehto, P. Hasto, An overview of variable exponent Lebesgue and Sobolev spaces, in: D. Herron (Ed.), Future Trends in Geometric Function Theory, RNC Workshop, Jyvaskyla, (2003), 85-93.
  10. O. Kavian, Introduction a la theorie des points critiques et Applications, Springer-Verlag, 13 (1993).
  11. O. Kovacik, J.Rakosnik, On spaces Lp(x) and W1,p(x), Czechoslovak Math., J.41 (1991), 592-618. https://doi.org/10.21136/cmj.1991.102493
  12. K.R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59-78. https://doi.org/10.1007/s001610100034
  13. M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin 1748 (2000).
  14. A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent LebesgueSobolev spaces , Nonlinear Anal T.M.A., 69(10) (2008), 3629-3636. https://doi.org/10.1016/j.na.2007.10.001
  15. V.V. Zhikov, On some variational problems, Russ. J. Math. Phys, 5 (1997), 105-116.