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EXISTENCE AND NONEXISTENCE OF SOLUTIONS FOR A

CLASS OF HAMILTONIAN STRONGLY DEGENERATE

ELLIPTIC SYSTEM

Nguyen Viet Tuan

Abstract. In this paper, we study the existence and nonexistence of
solutions for a class of Hamiltonian strongly degenerate elliptic system

with subcritical growth
−∆λu− µv = |v|p−1v in Ω,

−∆λv − µu = |u|q−1u in Ω,

u = v = 0 on ∂Ω,

where p, q > 1 and Ω is a smooth bounded domain in RN , N ≥ 3.
Here ∆λ is the strongly degenerate elliptic operator. The existence of at

least a nontrivial solution is obtained by variational methods while the

nonexistence of positive solutions are proven by a contradiction argument.

1. Introduction

In the past years the study on the existence and nonexistence of solutions
of the following Lane-Emden elliptic system

(1)


−∆u = |v|p−1v in Ω,

−∆v = |u|q−1u in Ω,

u = v = 0 on ∂Ω,

where p, q > 1 and Ω is a bounded subset of RN , N ≥ 3 has been considered
by many authors. If p, q > 0 and satisfy

1

p+ 1
+

1

q + 1
> 1,

the so-called subquadratic case. In this case, the existence results have been
established in [5,7,11]. In the superquadratic but subcritical case, i.e., p, q > 0
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and satisfy

1 >
1

p+ 1
+

1

q + 1
>
N − 2

N
,

we can refer to [10,12,13,15]. On the contrary, in the critical case

1

p+ 1
+

1

q + 1
=
N − 2

N
,

nonexistence results have been proved in [20,26].
For more general nonlinearities, the system (1) has also received great inter-

est, and related results can be seen in [6, 8, 24] and the references therein.
In this paper, we study the existence and nonexistence of solutions for a

class of Hamiltonian strongly degenerate elliptic system has form

(2)


−∆λu− µv = |v|p−1v in Ω,

−∆λv − µu = |u|q−1u in Ω,

u = v = 0 on ∂Ω,

where p, q > 1 and Ω is a smooth bounded domain in RN , N ≥ 3, and µ is a
positive constant. Here

∆λu =

N∑
j=1

∂

∂xj

(
λ2j (x)

∂u

∂xj

)
, x = (x1, . . . , xN ) ∈ RN ,

is the strongly degenerate elliptic operator which was first introduced by Franchi
and Lanconelli [14], and reconsidered in [16] by Kogoj and Lanconelli under
the additional assumption that the operator is homogeneous of degree two with
respect to a group dilations in RN . This ∆λ-Laplace operator contains many
degenerate elliptic operators such as the Grushin type operator

Gα = ∆x + |x|2α∆y, α > 0, (x, y) ∈ RN1 × RN2 ,

and the strongly degenerate operator Pα,β in [25] of the form

Pα,β = ∆x +∆y + |x|2α|y|2β∆z,

with (x, y, z) ∈ RN1 ×RN2 ×RN3 (Ni ≥ 1, i = 1, 2, 3), α, β > 0 are two positive
constants. The operator ∆λ belongs to the class of degenerate elliptic operators
which has received considerable attention over the years. For some elementary
properties, typical examples and recent results of the operator ∆λ, we refer to
the papers [1–4,9, 19,21–23] and a recent survey paper [17].

In this note, we are interested in the subcritical growth, i.e., p, q > 1 and
satisfy

(3)
1

p+ 1
+

1

q + 1
>
Q− 2

Q
,

where Q > 4 (the number Q is defined in Subsection 2.1 below).
The main results of this paper are the following theorems.
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Theorem 1.1. Assume (3) holds. Then, there exists µ0 > 0 such that for all
µ ∈ (0, µ0), the problem (2) admits at least two weak solutions, where at least
one is nontrivial.

Theorem 1.2. Assume (3) holds. Then the problem (2) has no positive so-
lutions for any µ > µ1, where µ1 is the first eigenvalue of −∆λ on Ω with
homogeneous Dirichlet boundary condition.

Remark 1.3. The results presented here seems to be new in the case strongly
degenerate elliptic operator ∆λ, and our results complement the existing results
in [1, 4, 9, 21–23].

The plan of the paper is as follows. In Section 2, we present some preliminary
results which will be used later on. In Section 3 we prove the main results, we
prove the existence of a nontrivial solution in Theorem 1.1 in Subsection 3.1,
while in Subsection 3.2 we prove the nonexistence in Theorem 1.2.

2. Preliminary results

2.1. ∆λ-Laplace operator

We recall the functional setting in [16]. We consider the operator of the form

∆λ :=

N∑
i=1

∂xi(λ
2
i ∂xi),

where ∂xi = ∂
∂xi

, i = 1, . . . , N . Here the functions λi : RN → R are con-

tinuous, strictly positive and of class C1(RN \
∏
) for i = 1, . . . , N , where∏

= {(x1, . . . , xN ) ∈ RN :
∏N

i=1 xi = 0}. As in [16] we assume that λi satisfy
the following properties:

(1) λ1(x) ≡ 1, λi(x) = λi (x1, . . . , xi−1), i = 2, . . . , N ;
(2) For every x ∈ RN , λi(x) = λi(x

∗), i = 1, . . . , N , where

x∗ = (|x1|, . . . , |xN |) if x = (x1, . . . , xN );

(3) There exists a constant ρ ≥ 0 such that

0 ≤ xk∂xk
λi(x) ≤ ρλi(x) ∀k ∈ {1, . . . , i− 1}, i = 2, . . . , N,

and for every x ∈ RN
+ := {(x1, . . . , xN ) ∈ RN : xi ≥ 0 ∀i = 1, . . . , N};

(4) There exists a group of dilations {δt}t>0

δt : RN → RN , δt(x) = δt(x1, . . . , xN ) = (tϵ1x1, . . . , t
ϵNxN ),

where 1 ≤ ϵ1 ≤ ϵ2 ≤ · · · ≤ ϵN , such that λi is δt-homogeneous of degree
ϵi − 1, i.e.,

λi(δt(x)) = tϵi−1λ(x) ∀x ∈ RN , t > 0, i = 1, . . . , N.

This implies that the operator ∆λ is δt-homogeneous of degree two,
i.e.,

∆λ(u(δt(x))) = t2(∆λu)(δt(x)) ∀u ∈ C∞(RN ).
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We denote by Q the homogeneous dimension of RN with respect to the group
of dilations {δt}t>0, i.e.,

Q := ϵ1 + · · ·+ ϵN .

2.2. Function spaces and setting functional

First, we recall some function spaces which will be used to study problem
(2).

For p ≥ 1, we denote by
◦
W 1,p

λ (Ω) the completion of C∞
0 (Ω) in the norm

∥u∥ ◦
W 1,p

λ

=

(∫
Ω

|∇λu|pdx
) 1

p

,

where ∇λu = (λ1∂x1u, . . . , λN∂xN
u). We define W 2,p

λ (Ω) as the space of all
functions u such that

u ∈ Lp(Ω), λi(x)
∂u

∂xi
∈ Lp(Ω), λi(x)

∂

∂xi

(
λj(x)

∂u

∂xj

)
∈ Lp(Ω), i, j=1, . . . , N,

with the norm

∥u∥W 2,p
λ

=

∫
Ω

[
|u|p + |∇λu|p +

N∑
i,j=1

∣∣λi(x) ∂

∂xi
(λj(x)

∂u

∂xj
)
∣∣p]dx

 1
p

.

We see that W 2,p
λ (Ω) and

◦
W 1,p

λ (Ω) are Banach spaces. When p = 2, the spaces

W 2,2
λ (Ω) and

◦
W 1,2

λ (Ω) are Hilbert spaces with the following inner products

(u, v)W 2,2
λ

= (u, v)L2 +

N∑
i=1

(λi
∂u

∂xi
, λi

∂v

∂xi
)L2

+

N∑
i,j=1

(
λi

∂

∂xi
(λj

∂u

∂xj
), λi

∂

∂xi
(λj

∂v

∂xj
)

)
L2

,

and

(u, v) ◦
W 1,2

λ

=

N∑
i=1

(
λi
∂u

∂xi
, λi

∂v

∂xi

)
L2

,

respectively. The following useful embedding was established in [16].

Lemma 2.1 ([16, Proposition 3.2]). The embedding

◦
W 1,2

λ (Ω) ↪→ L2∗λ(Ω), where 2∗λ =
2Q

Q− 2
,

is continuous. Moreover, the embedding
◦
W 1,2

λ (Ω) ↪→ Lγ(Ω)

is compact for every γ ∈ [1, 2∗λ).
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We also have the following lemma.

Lemma 2.2 ([4, Lemma 2.2]). The embedding W 2,2
λ (Ω) ∩

◦
W 1,2

λ (Ω) ↪→ Lγ(Ω)

is continuous with 1 ≤ γ ≤ 2Q
Q−4 and Q > 4.

We consider the operator

−∆λ :W 2,2
λ (Ω) ∩

◦
W 1,2

λ (Ω) → L2(Ω),

and set A = −∆λ, then by Lemma 2.1, A is a linear, positive, self-adjoint
operator with compact inverse. Consequently, there exists an orthonormal

basis of L2(Ω) consisting of eigenfunctions φj ∈
◦
W 1,2

λ (Ω), j = 1, 2, . . . of the
operator A with eigenvalues

0 < µ1 ≤ µ2 < · · · and µj → +∞ as j → +∞.

We denote, Es = D(As), s > 0, with the inner products

(u, v)Es =

∫
Ω

AsuAsv dx, u, v ∈ Es,

where

D(As) =

{
φ =

∞∑
j=1

ajφj , aj ∈ R |
∞∑
j=1

µs
ja

2
j < +∞

}
and Asφ =

∞∑
j=1

ajµ
s
2
j φj .

We notice that, as a consequence of Lemma 2.2 and the interpolation theorem,
we have the following important embeddings which will be frequently used
later.

Lemma 2.3 ([4, Lemma 2.3]). The embeddings

Es ↪→ Lν(Ω) and Et ↪→ Lδ(Ω)

are continuous if 1
ν ≥ 1

2 − s
Q ,

1
δ ≥ 1

2 − t
Q , and they are compact if these

inequalities are strict.

For s > t > 0 such that s + t = 2, we consider E = Es × Et, the Hilbert
space with the inner product

(z, η)E = (u, φ)Es + (v, ψ)Et for z = (u, v), η = (φ,ψ) ∈ E.

For simplicity, we denote the norm in E by ∥ · ∥.
Using arguments as in [12] we can obtain the orthogonal decomposition

E = E+ ⊕ E−, where

(4) E+ = {(u,As−tu) : u ∈ Es} and E− = {(u,−As−tu) : u ∈ Es}.
For any z ∈ E = E+ ⊕E−, we have z = z+ + z− with z+ ∈ E+, z− ∈ E− and
if we denote by P− : E → E− and P+ : E → E+ the orthogonal projections,
then by (4) we obtain

P−(z) = z− =
1

2

(
u−At−sv, v −As−tu

)
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and

P+(z) = z+ =
1

2

(
u+At−sv, v +As−tu

)
,

where z = (u, v) ∈ E. Now, we define the functional Φ : E = Es × Et → R
associated to the problem (2) by

Φ(u, v) =

∫
Ω

AsuAtv dx− µ

2

∫
Ω

(|u|2 + |v|2)dx−
∫
Ω

H(x, u, v) dx,(5)

where

H(x, u, v) =
1

p+ 1
|v|p+1 +

1

q + 1
|u|q+1.

Here, we have selected s > t > 0 such that

s+ t = 2, q + 1 <
2Q

Q− 2s
and p+ 1 <

2Q

Q− 2t
.

After some computations, we have∫
Ω

AsuAtv dx =
1

2
(∥z+∥2 − ∥z−∥2), z = (u, v) ∈ Es × Et.

Thus, we can write Φ in the form

Φ(z) =
1

2
(∥z+∥2 − ∥z−∥2)− µ

2

∫
Ω

(|u|2 + |v|2)dx−
∫
Ω

H(x, u, v) dx.

We can see that Φ is well-defined on E and Φ ∈ C1(E,R) with

Φ′(u, v)(φ,ψ) =

∫
Ω

(AsuAtψ +Atv Asφ)dx− µ

∫
Ω

(uφ+ vψ)dx

−
∫
Ω

[φHu(x, u, v) + ψHv(x, u, v)] dx.(6)

One can also see that a critical point of Φ is a weak solution of the problem
(2) in the following sense.

Definition 1. We say that z = (u, v) ∈ E = Es ×Et is a weak solution of (2)
if for all (φ,ψ) ∈ Es × Et we have

(7)

∫
Ω

AsuAtψ dx− µ

∫
Ω

vψdx =

∫
Ω

ψHv(x, u, v) dx, ∀ψ ∈ Et,∫
Ω

Atv Asφdx− µ

∫
Ω

uφdx =

∫
Ω

φHu(x, u, v) dx, ∀φ ∈ Es.

2.3. Critical point theory

Let E be a Hilbert space with the inner product (·, ·)E , and Φ : E → R
be a functional. Assume that E = E+ ⊕ E−, where E+, E− are both infinite
dimensional subspaces of E. We assume further that, there exist sequences of
finite dimensional subspaces E+

n ⊂ E+, E−
n ⊂ E− such that

E±
1 ⊂ E±

2 ⊂ · · · and

∞⋃
n=1

E±
n = E±.
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Denote
En = E+

n ⊕ E−
n and Φn = Φ|En

.

We have

E1 ⊂ E2 ⊂ · · · and
∞⋃

n=1

En = E.

Definition 2. Let E be a Hilbert space and let Φ ∈ C1(E,R). We say that
Φ satisfies the (PS)∗ condition with respect to the scale of subspaces (En)n if
every sequence {zn}n such that

zn ∈ En, |Φn(zn)| ≤ C

and
|⟨Φ′

n(zn), η⟩| ≤ ϵn∥η∥E , ∀η ∈ En, ϵn → 0,

contains a subsequence which converges to a critical point of Φ.

We shall use the following abstract critical point result in [18, Theorem 2].

Lemma 2.4. Let Φ ∈ C1(E,R) such that

(i) Φ has a local linking at the origin, i.e., for some r > 0

Φ(z) ≥ 0 for z ∈ E+, and Φ(z) ≤ 0 for z ∈ E− with ∥z∥E ≤ r;

(ii) Φ maps bounded sets into bounded sets;
(iii) Φ(z) → −∞ as ∥z∥ → ∞, z ∈ E+

n ⊕ E− for every n ∈ N;
(iv) Φ satisfies the (PS)∗ condition with respect to the scale of subspaces

(En)n.

Then Φ has at least two critical points.

3. Proof of the main results

3.1. Existence of nontrivial solutions

In this subsection, we prove the existence of at least two weak solutions to
the system (2). We first check the condition (i) of Lemma 2.4 via the following
lemma.

Lemma 3.1. Assume (3) holds. Then there exists a µ∗ > 0 such that for all
µ ∈ (0, µ∗), the functional Φ has a local linking at the origin.

Proof. For z = (u, v) ∈ E+, by the Poincaré inequality for the operator As we
have

∥Asu∥L2 ≥ µ
s
2
1 ∥u∥L2 ∀u ∈ Es.

Thus, by Lemma 2.3 we find that

Φ(z) =
1

2
∥z∥2 − µ

2

∫
Ω

(|u|2 + |v|2)dx

− 1

p+ 1

∫
Ω

|v|p+1dx− 1

q + 1

∫
Ω

|u|q+1dx
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≥ 1

2
∥z∥2 − µ

2

(
1

µs
1

∥u∥2Es +
1

µt
1

∥v∥2Et

)
− C

(
∥u∥q+1

Es + ∥v∥p+1
Et

)
≥

(
1

2
− µ

2min{µs
1, µ

t
1}

)
∥z∥2 − C∥z∥τ ,(8)

where τ > 2. Thus, let µ∗ = min{µs
1, µ

t
1}, then there exists a constant r > 0

such that

Φ(z) ≥ 0 ∀µ ∈ (0, µ∗), z ∈ E+, ∥z∥ ≤ r.

Next, for z = (u, v) ∈ E−, we have

Φ(z) = −1

2
∥z∥2 − µ

2

∫
Ω

(|u|2 + |v|2)dx

− 1

p+ 1

∫
Ω

|v|p+1dx− 1

q + 1

∫
Ω

|u|q+1dx

≤ −1

2
∥z∥2.(9)

Thus, Φ(z) ≤ 0 for z ∈ E− and ∥z∥ ≤ r. □

Next, we check the condition (ii) of Lemma 2.4.

Lemma 3.2. Φ maps bounded sets into bounded sets.

Proof. Let M ⊂ E = Es × Et be a bounded set. Then for all z = (u, v) ∈ M ,
there exists a positive constant C > 0 such that

(10) ∥u∥Es ≤ C and ∥v∥Et ≤ C.

Thus, for all z = (u, v) ∈ E, from Lemma 2.3 and the Hölder inequality, we
have

|Φ(z)| ≤
∫
Ω

|AsuAtv|dx+
µ

2

∫
Ω

(|u|2 + |v|2)dx

+
1

p+ 1

∫
Ω

|v|p+1dx+
1

q + 1

∫
Ω

|u|q+1dx

≤ ∥Asu∥L2∥Atv∥L2 +
µ

2

(
∥u∥2L2 + ∥v∥2L2

)
+

1

p+ 1
∥v∥p+1

Lp+1 +
1

q + 1
∥u∥q+1

Lq+1

≤ ∥u∥Es∥v∥Et + C
(
∥u∥2Es + ∥v∥2Et + ∥u∥q+1

Es + ∥v∥p+1
Et

)
.(11)

Combining (10) and (11), we infer that

|Φ(z)| ≤ C ∀z ∈M.

Thus we obtain the conclusion of the lemma. □

We now check the condition (iii) of Lemma 2.4.
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Lemma 3.3. Let n ∈ N be fixed and zk ∈ E+
n ⊕E− with E+

n is an n-dimensional
subspace of E+. Then

Φ(zk) → −∞ whenever ∥z∥ → ∞.

Proof. By (4), for each k ∈ N, zk ∈ E+
n ⊕ E− can be written as

zk = (uk, A
s−tuk) + (vk,−As−tvk) for uk ∈ Es

n and vk ∈ Es.

Hence, we find that

Φ(zk) =

∫
Ω

|Asuk|2dx−
∫
Ω

|Asvk|2dx

− µ

2

∫
Ω

(
|uk + vk|2 + |As−t(uk − vk)|2

)
dx

− 1

q + 1

∫
Ω

|uk + vk|q+1dx− 1

q + 1

∫
Ω

|As−t(uk − vk)|p+1dx

= ∥uk∥2Es − ∥vk∥2Es −
µ

2

∫
Ω

(
|uk + vk|2 + |As−t(uk − vk)|2

)
dx

− 1

q + 1

∫
Ω

|uk + vk|q+1dx− 1

q + 1

∫
Ω

|As−t(uk − vk)|p+1dx.(12)

Note that

∥zk∥2E = ∥uk + vk∥2Es + ∥As−t(uk − vk)∥2Et

= ∥uk + vk∥2Es + ∥AtAs−t(uk − vk)∥2L2

= ∥uk + vk∥2Es + ∥As(uk − vk)∥2L2

= ∥uk + vk∥2Es + ∥uk − vk∥2Es

= ∥uk∥2Es + 2(uk, vk)Es + ∥vk∥2Es + ∥uk∥2Es − 2(uk, vk)Es + ∥vk∥2Es

= 2(∥uk∥2Es + ∥vk∥2Es) → ∞.(13)

Case 1: If ∥uk∥Es ≤ C, then by (13) we obtain ∥vk∥ → ∞. Therefore,
from (12) we easy obtain

Φ(zk) → −∞.

Case 2: If ∥uk∥Es → ∞, then we estimate (for some C,C1, C2 > 0)∫
Ω

|uk + vk|q+1dx ≥ C

(∫
Ω

|uk + vk|2dx
) q+1

2

≥ C∥uk + vk∥q+1
L2 ,

and since s > t, we get∫
Ω

|As−t(uk − vk)|p+1dx ≥ C1

(∫
Ω

|As−t(uk − vk)|2dx
) p+1

2

≥ C2∥uk − vk∥p+1
L2 ,
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where we used the Poincaré inequality ∥Asu∥L2(Ω) ≥ µ
s
2
1 ∥u∥L2(Ω) for all u ∈ Es.

Thus, for some τ > 2, we get

Φ(zk) ≤ ∥uk∥2Es − C
(
∥uk + vk∥q+1

L2 + ∥uk − vk∥p+1
L2

)
≤ ∥uk∥2Es − C (∥uk + vk∥L2 + ∥uk − vk∥L2)

τ

≤ ∥uk∥2Es − C∥uk∥τL2 ,(14)

where we used the inequality 1
2 (h(x) + h(y)) ≥ h( 12 (x + y)) for the convex

function h(x) = xτ , τ > 2. And by the fact that Es
n is a finite dimensional

subspace, then two norms ∥ · ∥Es and ∥ · ∥L2 are equivalent on Es
n. Therefore,

we can conclude from (14) that Φ(zk) → −∞ as k → ∞. □

Finally, we check the condition (iv) of Lemma 2.4.

Lemma 3.4. There exists µ̄ > 0 such that for all µ ∈ (0, µ̄) the functional Φ
satisfies the (PS)∗-condition.

Proof. Let (zn) be a (PS)∗-sequence of Φ with respect to En, i.e., zn ∈ En and

(15) |Φ|En
(zn)| ≤ C and |(Φ′|En

(zn), w)| ≤ ϵn∥w∥ ∀w ∈ En,

where ϵn → 0 as n→ ∞. This implies that

Φ(zn) =

∫
Ω

AsunA
tvndx− µ

2

∫
Ω

(|un|2 + |vn|2)dx

− 1

q + 1

∫
Ω

|un|q+1dx− 1

p+ 1

∫
Ω

|vn|p+1dx→ C,

and

Φ′(zn)(φ,ψ) =

∫
Ω

(AsunA
tψ +AtvnA

sφ)dx− µ

∫
Ω

(unφ+ vnψ)dx

−
∫
Ω

(|un|q−1unφ+ |vn|p−1vnψ)dx ≤ ϵn∥(φ,ψ)∥E ,(16)

where w = (φ,ψ) ∈ E.
(i) We first show {zn} is bounded in E. Indeed, it is easy see that

Φ(zn)−
1

2
(Φ′(zn), zn) =

(
1

2
− 1

q + 1

)∫
Ω

|un|q+1dx

+

(
1

2
− 1

p+ 1

)∫
Ω

|vn|p+1dx

≤ C + ϵn∥zn∥.

Moreover, since p, q > 1 we have

(17)

∫
Ω

|un|q+1dx ≤ C + ϵn(∥un∥Es + ∥vn∥Et)



HAMILTONIAN STRONGLY DEGENERATE ELLIPTIC SYSTEM 751

and

(18)

∫
Ω

|vn|p+1dx ≤ C + ϵn(∥un∥Es + ∥vn∥Et).

Note that As−tun ∈ Et, indeed, since un ∈ Es implies that At(As−tun) =
Asun ∈ L2, thus As−tun ∈ Et. Then we can choose w = (0, As−tun) in (16),
we obtain ∫

Ω

|Asun|2dx ≤ µ

∫
Ω

|vnAs−tun|dx+

∫
Ω

|vn|p|As−tun|dx

+ ϵn∥As−tun∥Et ,

and hence

∥un∥2Es ≤ µ∥vn∥L2∥As−tun∥L2

+

(∫
Ω

|vn|p+1dx

) p
p+1

(∫
Ω

|As−tun|p+1dx

) 1
p+1

+ ϵn∥un∥Es .

By Lemma 2.3 and (17), we obtain

∥un∥2Es ≤ µ

µ2
1

∥vn∥Et∥un∥Es +
(
C + ϵn(∥un∥Es + ∥vn∥Et)

) p
p+1 ∥un∥Es

+ ϵn∥un∥Es ,

and thus

(19) ∥un∥Es ≤ µ

µ2
1

∥vn∥Et + ϵn
(
∥un∥Es + ∥vn∥Et

) p
p+1 + C.

Analogously, we also get that

(20) ∥vn∥Et ≤ µ

µ2
1

∥un∥Es + ϵn
(
∥un∥Es + ∥vn∥Et

) q
q+1 + C.

Combining (19) and (20) we obtain

(21)

(
1− µ

µ2
1

)
(∥un∥Es + ∥vn∥Et) ≤ ϵn

(
∥un∥Es + ∥vn∥Et

)θ
+ C,

where θ ≤ 1. We now choose µ̄ = µ2
1, then it follows from (21) that ∥un∥Es +

∥vn∥Et is bounded for all µ ∈ (0, µ̄).
(ii) We now prove {zn} converges strongly in E. By the boundedness of

{zn}, without loss of generality, we may assume that, there is a subsequence of
{zn} (not relabel) such that

zn = (un, vn)⇀ z = (u, v) weakly in E = Es × Et.

Note that the maps As : Es → L2(Ω) and A−t : L2(Ω) → Et are continuous
isomorphisms, then we obtain

As(un − u)⇀ 0 in L2(Ω),

As−t(un − u)⇀ 0 in Et.
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By the embeddings Et ↪→ Lp+1(Ω) and Et ↪→ L2(Ω) are compact, it follows
that

As−t(un − u) → 0 strongly in Lp+1(Ω) and L2(Ω).

Next, we choose w = (0, As−t(un − u)) ∈ Es × Et in (16),∣∣∣∣∫
Ω

(
|Asun|2 −AsunA

su
)
dx

∣∣∣∣
≤ µ

∫
Ω

|vnAs−t(un − u)|dx+

∫
Ω

|vn|p|As−t(un − u)|dx+ ϵn∥As−t(un − u)∥Et

≤ µ∥vn∥L2∥As−t(un − u)∥L2 + ∥vn∥pp+1∥As−t(un − u)∥p+1 + ϵn∥un − u∥Es

→ 0 as n→ ∞.

This implies that ∫
Ω

|Asun|2dx→
∫
Ω

|Asu|2dx as n→ ∞.

Similarly, we also get∫
Ω

|Atvn|2dx→
∫
Ω

|Atv|2dx as n→ ∞.

Therefore, we can conclude that zn → z strongly in E. The proof is complete.
□

Proof of Theorem 1.1. Taking µ0 = min{µ̄, µ∗} and using the above Lemmas
3.1-3.4 we see that all conditions of Lemma 2.4 are satisfied. Thus, the prob-
lem (2) admits at least two weak solutions, where at least one solution is non-
trivial. □

3.2. Nonexistence of positive solutions

Proof of Theorem 1.2. Suppose on the contrary, (u, v) is a positive solution
of (2). Denote by ϕ1 is the first eigenfunction of −∆λ on Ω with homogeneous
Dirichlet boundary condition. Multiplying equations of the system (2) by ϕ1
and integrating by part, we have

µ1

∫
Ω

vϕ1dx = −
∫
Ω

∆λvϕ1dx = µ

∫
Ω

uϕ1dx+

∫
Ω

uqϕ1dx,(22)

µ1

∫
Ω

uϕ1dx = −
∫
Ω

∆λuϕ1dx = µ

∫
Ω

vϕ1dx+

∫
Ω

vpϕ1dx.(23)

Since v > 0, we deduce from the second integral identity (23) that∫
Ω

vϕ1dx ≤ µ1

µ

∫
Ω

uϕ1dx.

Replacing this inequality into (22), we get

µ

∫
Ω

uϕ1dx+

∫
Ω

uqϕ1dx ≤ µ2
1

µ

∫
Ω

uϕ1dx,
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this is equivalent to (
µ2
1 − µ2

µ2

)∫
Ω

uϕ1dx ≥ 0,

which implies that µ1 ≥ µ. This contradicts with µ > µ1. Thus, (2) has no
nontrivial positive solution for any µ > µ1. □
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