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Abstract. We characterize the linear operators which preserve the factor rank of integer

matrices. That is, if M is the set of all m × n matrices with entries in the integers and

min(m, n) > 1, then a linear operator T on M preserves the factor rank of all matrices

in M if and only if T has the form either T (X) = UXV for all X ∈ M, or m = n and

T (X) = UXtV for all X ∈ M, where U and V are suitable nonsingular integer matrices.

Other characterizations of factor rank-preservers of integer matrices are also given.

1. Introduction

The research of Linear Preserver Problems is an active area of matrix theory
(see [1]-[7]). Many researchers have studied on the ranks and their preservers of
matrices over fields ([1]-[5]). Also (nonnegative) integer matrices are combinatorially
interesting matrices and hence it has been a subject of many research works ([6],
[7]).

If F is an algebraically closed field, which linear operators T on the space of m×n
matrices over F preserve the rank of each matrix? Evidently if U and V are m×m
and n× n nonsingular matrices, respectively, then X → UXV is a rank-preserving
linear operator. When m = n, X → UXtV is also. Already in 1957 Marcus and
Moyls [4] found that such (U, V )-operators were the only rank preservers. Later
they [5] obtained that T preserves all ranks if and only if T preserves rank 1. In
1981, Lautemann [3] extended these results to an arbitrary field, and found that T
preserves all ranks if and only if T is bijective and preserves rank 1 if and only if T
is a (U, V )-operator.

In this paper, we characterize linear operators which preserve the factor ranks
of all matrices over the ring of integers. That is, if M is the set of all m × n
matrices with entries in the integers and min(m,n) > 1, then a linear operator T
on M preserves the factor rank of all matrices in M if and only if T has the form
either T (X) = UXV for all X ∈ M, or m = n and T (X) = UXtV for all X ∈ M,
where U and V are suitable nonsingular integer matrices. Other characterizations
of factor rank-preservers of integer matrices are also given.
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2. Preliminaries and basic results

Let Mm×n(Z) denote the set of all m × n matrices with entries in the ring,
Z of integers. Addition, multiplication by scalars, and the product of matrices are
defined as if Z were a field. Let Em,n = {Eij | i = 1, · · · , m and j = 1, · · · , n}, where
Eij is the m× n matrix whose (i, j)th entry is 1 and whose other entries are 0. We
call each member of Em,n a cell.

Lowercase, boldface letters will represent vectors, a vector u is column vector
(ut is a row vector). A nonzero vector p = [pi] in Zn is irreducible if the greatest
common divisor of nonzero pi’s is 1 (that is, gcd(p1, · · · , pn) = 1). A subset S =
{s1, s2, · · · , sd} of Zn is called linearly dependent if there exist α1, α2, · · · , αd in Z,

not all zeros, such that
d∑

i=1

αisi = 0; S is called linearly independent if it is not

linearly dependent.
An n×n integer matrix A is called nonsingular if for any vector x in Zn, Ax = 0

implies that x = 0. We note that nonsingularity and invertibility of a square integer

matrix are not equivalent. For example, consider a matrix A =
[
2 0
0 3

]
in M2×2(Z).

Then we can easily show that A is nonsingular but not invertible in M2×2(Z).

Lemma 2.1. Let p1,p2, · · · , pn be linearly independent vectors in Zn. Then for
any nonzero vector b in Zn, there exist nonzero integer β and integers αi, not all
zero, such that βb = α1p1 + α2p2 + · · ·+ αnpn.

Proof. Let A be the n × n matrix whose columns are p1,p2, · · · , pn. Then A is
nonsingular, and hence det(A) is a nonzero integer. Consider a system Ax = b
of n linear equations in n unknowns. By Cramer’s rule, this system has a unique
solution xi = det(Ai)

det(A) in the rational numbers for all i = 1, 2, · · · , n, where Ai is the
matrix obtained by replacing the entries in the ith column of A by the entries in b.
Then we have

b =
det(A1)
det(A)

p1 +
det(A2)
det(A)

p2 + · · ·+ det(An)
det(A)

pn.

If we take β = det(A) and αi = det(Ai), then the result follows. ¤
If a and b are nonzero vectors in Zn, we denote a ' b if a and b have an

irreducible common factor. That is, a ' b if and only if there exists an irreducible
vector p in Zn such that a = αp and b = βp for some nonzero integers α and β.
Then we can easily show that ' is an equivalence relation in Zn.

Proposition 2.2. If a and b are nonzero vectors in Zn with αa = βb for some
nonzero integers α and β, then we have a ' b.

Proof. Let a = [a1, · · · , an], b = [b1, · · · , bn] and α′ = gcd(a1, · · · , an). Then there
exists an irreducible vector p in Zn such that a = α′p. Thus αa = βb becomes

(2.1) αα′p = βb.
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Let γ = gcd(αα′, β), γ1 = αα′
γ and γ2 = β

γ . Then γ1 and γ2 are nonzero in Z, and
(2.1) becomes

(2.2) γ1p = γ2b.

Therefore we have that γ1 divides every γ2bi for all i = 1, · · · , n. Since gcd(γ1, γ2) =
1 and p is an irreducible vector, γ2 = ±1 so that b = ±γ1p. Therefore a and b
have an irreducible common factor p, and thus a ' b. ¤

The factor rank, fr(A), of a nonzero matrix A ∈ Mm×n(Z) is defined as the
least integer k for which there exist m×k and k×n matrices B and C, respectively,
with A = BC. If the matrices were considered as matrices in the real field, then the
factor ranks of them are the same as their ranks. The factor rank of a zero matrix
is zero.

It is obvious that for a matrix A in Mm×n(Z), fr(A) = 1 if and only if there
exist two nonzero vectors a ∈ Zm and x ∈ Zn such that A = axt. We call a the
left factor, and x the right factor of A.

For any index i ∈ {1, · · · , n}, we denote e
(n)
i as the irreducible vector in Zn

with “1” in ith position and zero elsewhere.

Lemma 2.3. Let A and B be factor rank-1 matrices in Mm×n(Z) with factoriza-
tions A = axt and B = byt, where A + B 6= 0. Then fr(A + B) = 1 if and only if
a ' b or x ' y.

Proof. Suppose that fr(A + B) = 1. Let

A = axt = [x1a, · · · , xna] = [a1x
t, · · · , amxt]t

and
B = byt = [y1b, · · · , ynb] = [b1y

t, · · · , bmyt]t.

If A + B has exactly one nonzero ith row or exactly one nonzero jth column, so do
A and B. In this case, A and B have an irreducible common left factor e

(m)
i or an

irreducible common right factor e
(n)
j . Thus we can assume that A + B has at least

two nonzero rows and at least two nonzero columns. Furthermore, without loss of
generality, we may assume that columns of A + B are all nonzero.

Case 1) xiyi = 0 for some i ∈ {1, · · · , n}. If xi = 0, then yi 6= 0 because A + B
has no zero column. Since A is not a zero matrix, there exists an index j different
from i such that xj 6= 0. Therefore, the ith and jth columns of A + B are yib and
xja + yjb, respectively. Since fr(A + B) = 1, there exist nonzero scalars α, β in Z
such that αyib = β(xja + yjb), equivalently βxja = (αyi − βyj)b. Since βxj 6= 0,
we have αyi − βyj 6= 0. It follows from Proposition 2.2 that a ' b. Similarly, a
parallel argument holds if yi = 0.

Case 2) xiyi 6= 0 for all i = 1, · · · , n. Consider any distinct ith and jth columns
of A + B. Since fr(A + B) = 1, there exist two nonzero scalars α and β in Z such
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that α(xia + yib) = β(xja + yjb), equivalently (αxi − βxj)a = (βyj − αyi)b. If
αxi − βxj 6= 0, then we have βyj − αyi 6= 0. By Proposition 2.2, we have a ' b.
Now, if αxi − βxj = 0, then αxi − βxj = βyj − αyi = 0. Thus,

αxi = βxj and βyj = αyi.

This shows that xiyj = xjyi for all i, j = 1, · · · , n. Thus there exist nonzero integers
s and t such that sxi = tyi for all i = 1, · · · , n. Therefore we have sx = ty. It
follows from Proposition 2.2 that x ' y. Thus we have shown the sufficiency.

The necessity is an immediate consequence. ¤

3. Factor rank-1 preserver

Suppose that T is a linear operator on Mm×n(Z). Then T is a

(i) (U, V )-operator if there exist nonsingular matrices U in Mm×m(Z) and V in
Mn×n(Z) such that T (X) = UXV for all X in Mm×n(Z), or m = n and
T (X) = UXtV for all X in Mm×n(Z), where Xt denotes the transpose of
X;

(ii) factor rank preserver if fr(T (X)) = fr(X) for all X in Mm×n(Z);

(iii) factor rank-k preserver if fr(T (X)) = k whenever fr(X) = k for all X in
Mm×n(Z).

Lemma 3.1. If T is a (U, V )-operator on Mm×n(Z), then T is an injective factor
rank preserver.

Proof. It follows directly from the definition of a (U, V )-operator. ¤

Consider A =
[
2 0
0 3

]
and a linear operator T on M2×2(Z) defined by T (X) =

AX for all X in M2×2(Z). Then T is a (U, V )-operator because A is nonsingular.
Clearly, T is injective. But T is not surjective: for any cell Eij in E2,2, there is not
a matrix X in M2×2(Z) such that T (X) = Eij . Therefore a (U, V )-operator on
Mm×n(Z) may not be invertible.

For any matrices A = [aij ] and B = [bij ] in Mm×n(Z), let A ◦ B denote the
Hadamard (or Schur) product, the (i, j)th entry of A ◦B is aijbij .

Lemma 3.2. Let B = [bij ] be a factor rank-1 matrix in Mm×n(Z). Then there ex-
ist diagonal matrices D in Mm×m(Z) and E in Mn×n(Z) such that X ◦B = DXE
for all X in Mm×n(Z).

Proof. If fr(B) = 1, then there exist vectors d = [d1, d2, · · · , dm]t and e =
[e1, e2, · · · , en]t such that B = det, equivalently bij = diej for all i = 1, · · · ,m
and j = 1, · · · , n. Let D = diag(d1, · · · , dm) and E = diag(e1, · · · , en). Now, the
(i, j)th entry of X ◦ B is xijbij and the (i, j)th entry of DXE is dixijej = xijbij .
Therefore we have the results. ¤
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Theorem 3.3. Let T be a linear operator on Mm×n(Z). Then T is an injective
factor rank-1 preserver if and only if T is a (U, V )-operator.

Proof. The sufficiency follows from Lemma 3.1. So, we shall show the necessity.
For any cell Eij in Em,n, we can write T (Eij) = uijvij

t for all i = 1, · · · ,m and
j = 1, · · · , n, where uij ∈ Zm and vij ∈ Zn are nonzero vectors. Let j and k be
arbitrary integers in {1, · · · , n}. Since Eij + Eik is of factor rank-1, the factor rank
of T (Eij + Eik) = uijvij

t + uikvik
t must be 1. It follows from Lemma 2.3 that

uij ' uik or vij ' vik. Now, we will show that for a fixed i in {1, · · · ,m}, either

(3.1) ui1 ' ui2 ' · · · ' uin or vi1 ' vi2 ' · · · ' vin.

Suppose that vi1 6' vij for some index j. By Lemma 2.3, we have ui1 ' uij because
fr(T (Ei1 + Eij)) = 1. If ui1 6' uik for some index k, then we have vi1 ' vik by
Lemma 2.3. Therefore vij 6' vik because ' is an equivalence relation. But then
uij ' uik and this would imply ui1 ' uik because ui1 ' uij . This contradicts to
ui1 6' uik, and thus (3.1) is established.

Similarly, we can show that for a fixed j in {1, · · · , n}, either

(3.2) u1j ' u2j ' · · · ' umj

or

(3.3) v1j ' v2j ' · · · ' vmj .

If ui1 ' ui2 ' · · · ' uin, there exist an irreducible vector pi in Zm and nonzero
integers cj such that uij = cjpi for all j = 1, · · · , n. Thus we have T (Eij) =
pi(cjvij)

t for all j = 1, · · · , n. We can therefore restate (3.1) as follows. For a fixed
i in {1, · · · ,m}, either

(3.4) ui1 = ui2 = · · · = uin = pi

or

(3.5) vi1 = vi2 = · · · = vin = qi,

where pi and qi are irreducible vectors.
Assume that (3.4) holds for some i. If vi1, vi2, · · · , vin are linearly dependent,

then there exist α1, α2, · · · , αn in Z, not all zeros, such that
n∑

j=1

αjvij = 0. Consider

a factor rank-1 matrix X =
n∑

j=1

αjEij . Then we have

T (X) = T

(
n∑

j=1

αjEij

)
= pi

(
n∑

j=1

αjvij

)t

= 0,
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a contradiction to the fact that T is a factor rank-1 preserver. Thus vi1, vi2, · · · , vin

are linearly independent. Analogous statements are satisfied in case (3.2), (3.3) or
(3.5).

Next, we will show that if (3.4) holds for a fixed i, then (3.3) must hold for
all j = 1, · · · , n, and consequently (3.4) must hold for all i. Suppose that (3.2)
holds for some j = 1, · · · , n. Then uij(= pi) appears both in (3.4) and (3.2). It
follows from (3.2) that there exist nonzero integers αs such that usj = αspi for
all s = 1, · · · ,m. Note that vi1, vi2, · · · , vin are linearly independent since (3.4) is
satisfied. By Lemma 2.1, there exist nonzero integer βs and integers βsk, not all

zero, such that βsvsj =
n∑

k=1

βskvik for all s = 1, · · · ,m. Then we have

βsu
sjvsj

t =
n∑

k=1

βskusjvik
t =

n∑

k=1

βskαspivik
t =

n∑

k=1

βskαsu
ikvik

t,

equivalently T (βsEsj) = T
( n∑

k=1

βskαsEik

)
for all s ∈ {1, · · · ,m} \ {i}. This con-

tradicts to the fact that T is injective. Thus we have established that either

(3.6) uij = pi and vij = bijqj

for all i = 1, · · · ,m and j = 1, · · · , n, where p1, · · · , pm and q1 · · · , qn are linearly
independent irreducible vectors and bij are nonzero integers, or

(3.7) vij = qi and uij = bijpj

for all i = 1, · · · ,m and j = 1, · · · , n, where q1, · · · , qm and p1 · · · , pn are linearly
independent irreducible vectors and bij are nonzero integers.

If m 6= n, (3.7) is not possible. For, if m < n, then the set {p1, · · · , pn} would
be linearly dependent by Lemma 2.1. Similar conclusion follows if m > n. Hence,
if m 6= n, only (3.6) is possible.

Assume that (3.6) holds. Let U ′ be the m × m matrix whose columns are
p1, · · · , pm and let V ′ be the n×n matrix whose rows are q1, · · · , qn. Then U ′ and
V ′ are nonsingular, and

T (Eij) = uijvij
t = pibijqj

t = U ′(bijEij)V ′

for all i = 1, · · · , m and j = 1, · · · , n. It follows that for any matrix X inMm×n(Z),
we have T (X) = U ′(X ◦B)V ′, where B = [bij ] as above. Now, we claim fr(B) = 1.

If not, there exists a 2 × 2 submatrix B′ =
[
bij bik

blj blk

]
of B such that fr(B′) = 2.

Consider a factor rank-1 matrix Y = Eij +Eik +Elj +Elk. Then the factor rank of

T (Y ) = pi(bijqj + bikqk)t + pl(bljqj + blkqk)t

must be 1. Since pi 6' pl, it follows that bijqj+bikqk ' bljqj+blkqk. Therefore there
exist an irreducible vectors q and nonzero integers α and β such that bijqj +bikqk =
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αq and bljqj +blkqk = βq, equivalently (bijβ−bljα)qj = (blkα−bikβ)qk. It follows
from qj 6' qk that bijβ − blj = blkα− bikβ = 0 so that bijblk = bikblj . This implies
that the factor rank of B′ is 1, a contradiction. Therefore we have fr(B) = 1. By
Lemma 3.2, there exist diagonal matrices D in Mm×m(Z) and E in Mn×n(Z) such
that X ◦B = DXE for all X in Mm×n(Z). Since B has no zero entries, it follows
that D and E are nonsingular. Let U = U ′D and V = EV ′. Then U and V are
nonsingular. Furthermore, we have T (X) = UXV for all matrix X in Mm×n(Z).
Therefore T is a (U, V )-operator.

If (3.7) holds, then m = n and we can easily establish that for any matrix X in
Mm×n(Z), T (X) = UXtV for some n×n nonsingular matrices U and V . Therefore
T is a (U, V )-operator. ¤

4. Factor rank preserver

In this section, we characterize the linear operators which preserve the factor
rank of all matrices over the ring of integers.

Proposition 4.1. Let A and B be matrices in Mm×n(Z) with αA 6= βB for all
nonzero scalars α, β ∈ Z. If fr(A) = fr(B) = 1, then there exists a factor rank-1
matrix C in Mm×n(Z) such that fr(A + C) = 1 and fr(B + C) = 2.

Proof. Since fr(A) = fr(B) = 1, it follows from αA 6= βB that either fr(A+B) = 2
or fr(A + B) = 1. For the case of fr(A + B) = 2, the conclusion is satisfied by
letting C = A. So we may assume that fr(A + B) = 1. By Lemma 2.3, A and B
have an irreducible common factor. If A and B have an irreducible common left
factor, then we may write A and B as

A = axt = [x1a, · · · , xna] and B = ayt = [y1a, · · · , yna],

where a is an irreducible vector. Then we have αx 6= βy for all nonzero integers
α and β because αA 6= βB. Since a = [ai] is not zero-vector, ai 6= 0 for some
i = 1, · · · ,m. Let

C =

{
e

(m)
j xt if aj = 0 for some j 6= i,

e
(m)
i xt otherwise.

Then C is a matrix in Mm×n(Z) with fr(C) = 1. Moreover fr(A+C) = 1 because
A and C have a common right factor. But B and C have neither a common left
factor nor a common right factor. It follows from Lemma 2.3 that fr(B + C) = 2.

Similarly, a parallel argument holds if A and B have an irreducible common
right factor. ¤

Lemma 4.2. Let T be a factor rank-1 preserver on Mm×n(Z). If T is not injective,
then T decreases the factor rank of some factor rank-2 matrix.

Proof. By the similar proof to that of Theorem 3.3, we can see that T is a (U, V )-
operator if T is a factor rank-1 preserver and is injective in the set of all factor rank-1
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matrices in Mm×n(Z). If T is not injective, then T is not a (U, V )-operator. From
above fact we have that T is not injective in the set of all factor rank-1 matrices
in Mm×n(Z). Thus there exist distinct factor rank-1 matrices X and Y such that
T (X) = T (Y ). Suppose that there exist distinct nonzero integers α and β such that
αX = βY . Then we have

αT (X) = T (αX) = T (βY ) = βT (Y ) = βT (X).

Since Z has no zero divisors and T (X) 6= O, we have α = β, a contradiction. So,
we may assume that αX 6= βY for all nonzero scalars α, β ∈ Z. By Proposition 4.1,
there exists a factor rank-1 matrix C such that fr(X +C) = 1 while fr(Y +C) = 2.
But we then have T (Y +C) = T (X +C) so that fr(T (Y +C)) = fr(T (X +C)) = 1
because T is a factor rank-1 preserver. Therefore T decreases the factor rank of
some factor rank-2 matrix. ¤

Theorem 4.3. Let T be a linear operator on Mm×n(Z). Then the following are
equivalent ;

(i) T is an injective factor rank-1 preserver ;

(ii) T is a (U, V )-operator ;

(iii) T is a factor rank preserver ;

(iv) T is a factor rank-1 and factor rank-2 preserver.

Proof. It follows from Theorem 3.3 that (i) and (ii) are equivalent. Statement
(ii) implies (iii) by Lemma 3.1. Clearly, (iii) implies (iv). Lemma 4.2 shows if T
preserves the factor ranks of all factor rank-1 matrices and factor rank-2 matrices,
then T is injective. Thus, (iv) implies (i). ¤

Thus we have characterized the linear operators that preserve the factor rank
of integer matrices.
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