Factor Rank and Its Preservers of Integer Matrices

Seok-Zun Song and Kyung-Tae Kang
Department of Mathematics, Cheju National University, Jeju 690-756, Korea
e-mail: szsong@cheju.ac.kr and kangkt@cheju.ac.kr

Abstract. We characterize the linear operators which preserve the factor rank of integer matrices. That is, if \mathcal{M} is the set of all $m \times n$ matrices with entries in the integers and $\min (m, n)>1$, then a linear operator T on \mathcal{M} preserves the factor rank of all matrices in \mathcal{M} if and only if T has the form either $T(X)=U X V$ for all $X \in \mathcal{M}$, or $m=n$ and $T(X)=U X^{t} V$ for all $X \in \mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

1. Introduction

The research of Linear Preserver Problems is an active area of matrix theory (see [1]-[7]). Many researchers have studied on the ranks and their preservers of matrices over fields ([1]-[5]). Also (nonnegative) integer matrices are combinatorially interesting matrices and hence it has been a subject of many research works ([6], [7]).

If \mathbb{F} is an algebraically closed field, which linear operators T on the space of $m \times n$ matrices over \mathbb{F} preserve the rank of each matrix? Evidently if U and V are $m \times m$ and $n \times n$ nonsingular matrices, respectively, then $X \rightarrow U X V$ is a rank-preserving linear operator. When $m=n, X \rightarrow U X^{t} V$ is also. Already in 1957 Marcus and Moyls [4] found that such (U, V)-operators were the only rank preservers. Later they [5] obtained that T preserves all ranks if and only if T preserves rank 1. In 1981, Lautemann [3] extended these results to an arbitrary field, and found that T preserves all ranks if and only if T is bijective and preserves rank 1 if and only if T is a (U, V)-operator.

In this paper, we characterize linear operators which preserve the factor ranks of all matrices over the ring of integers. That is, if \mathcal{M} is the set of all $m \times n$ matrices with entries in the integers and $\min (m, n)>1$, then a linear operator T on \mathcal{M} preserves the factor rank of all matrices in \mathcal{M} if and only if T has the form either $T(X)=U X V$ for all $X \in \mathcal{M}$, or $m=n$ and $T(X)=U X^{t} V$ for all $X \in \mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

Received September 2, 2005.
2000 Mathematics Subject Classification: 15A03, 15A04, 15A36.
Key words and phrases: factor rank preserver, (U, V)-operator.

2. Preliminaries and basic results

Let $\mathcal{M}_{m \times n}(\mathbb{Z})$ denote the set of all $m \times n$ matrices with entries in the ring, \mathbb{Z} of integers. Addition, multiplication by scalars, and the product of matrices are defined as if \mathbb{Z} were a field. Let $\mathbb{E}_{m, n}=\left\{E_{i j} \mid i=1, \cdots, m\right.$ and $\left.j=1, \cdots, n\right\}$, where $E_{i j}$ is the $m \times n$ matrix whose $(i, j)^{\text {th }}$ entry is 1 and whose other entries are 0 . We call each member of $\mathbb{E}_{m, n}$ a cell.

Lowercase, boldface letters will represent vectors, a vector \boldsymbol{u} is column vector (\boldsymbol{u}^{t} is a row vector). A nonzero vector $\boldsymbol{p}=\left[p_{i}\right]$ in \mathbb{Z}^{n} is irreducible if the greatest common divisor of nonzero p_{i} 's is 1 (that is, $\operatorname{gcd}\left(p_{1}, \cdots, p_{n}\right)=1$). A subset $S=$ $\left\{s_{1}, s_{2}, \cdots, s_{d}\right\}$ of \mathbb{Z}^{n} is called linearly dependent if there exist $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{d}$ in \mathbb{Z}, not all zeros, such that $\sum_{i=1}^{d} \alpha_{i} s_{i}=\mathbf{0} ; S$ is called linearly independent if it is not linearly dependent.

An $n \times n$ integer matrix A is called nonsingular if for any vector \boldsymbol{x} in $\mathbb{Z}^{n}, A \boldsymbol{x}=\mathbf{0}$ implies that $\boldsymbol{x}=\mathbf{0}$. We note that nonsingularity and invertibility of a square integer matrix are not equivalent. For example, consider a matrix $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$. Then we can easily show that A is nonsingular but not invertible in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$.
Lemma 2.1. Let $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{n}$ be linearly independent vectors in \mathbb{Z}^{n}. Then for any nonzero vector \boldsymbol{b} in \mathbb{Z}^{n}, there exist nonzero integer β and integers α_{i}, not all zero, such that $\beta \boldsymbol{b}=\alpha_{1} \boldsymbol{p}_{1}+\alpha_{2} \boldsymbol{p}_{2}+\cdots+\alpha_{n} \boldsymbol{p}_{n}$.
Proof. Let A be the $n \times n$ matrix whose columns are $\boldsymbol{p}_{1}, \boldsymbol{p}_{2}, \cdots, \boldsymbol{p}_{n}$. Then A is nonsingular, and hence $\operatorname{det}(A)$ is a nonzero integer. Consider a system $A \boldsymbol{x}=\boldsymbol{b}$ of n linear equations in n unknowns. By Cramer's rule, this system has a unique solution $x_{i}=\frac{\operatorname{det}\left(A_{i}\right)}{\operatorname{det}(A)}$ in the rational numbers for all $i=1,2, \cdots, n$, where A_{i} is the matrix obtained by replacing the entries in the $i^{\text {th }}$ column of A by the entries in \boldsymbol{b}. Then we have

$$
\boldsymbol{b}=\frac{\operatorname{det}\left(A_{1}\right)}{\operatorname{det}(A)} \boldsymbol{p}_{1}+\frac{\operatorname{det}\left(A_{2}\right)}{\operatorname{det}(A)} \boldsymbol{p}_{2}+\cdots+\frac{\operatorname{det}\left(A_{n}\right)}{\operatorname{det}(A)} \boldsymbol{p}_{n} .
$$

If we take $\beta=\operatorname{det}(A)$ and $\alpha_{i}=\operatorname{det}\left(A_{i}\right)$, then the result follows.
If \boldsymbol{a} and \boldsymbol{b} are nonzero vectors in \mathbb{Z}^{n}, we denote $\boldsymbol{a} \simeq \boldsymbol{b}$ if \boldsymbol{a} and \boldsymbol{b} have an irreducible common factor. That is, $\boldsymbol{a} \simeq \boldsymbol{b}$ if and only if there exists an irreducible vector \boldsymbol{p} in \mathbb{Z}^{n} such that $\boldsymbol{a}=\alpha \boldsymbol{p}$ and $\boldsymbol{b}=\beta \boldsymbol{p}$ for some nonzero integers α and β. Then we can easily show that \simeq is an equivalence relation in \mathbb{Z}^{n}.

Proposition 2.2. If \boldsymbol{a} and \boldsymbol{b} are nonzero vectors in \mathbb{Z}^{n} with $\alpha \boldsymbol{a}=\beta \boldsymbol{b}$ for some nonzero integers α and β, then we have $\boldsymbol{a} \simeq \boldsymbol{b}$.
Proof. Let $\boldsymbol{a}=\left[a_{1}, \cdots, a_{n}\right], \boldsymbol{b}=\left[b_{1}, \cdots, b_{n}\right]$ and $\alpha^{\prime}=\operatorname{gcd}\left(a_{1}, \cdots, a_{n}\right)$. Then there exists an irreducible vector \boldsymbol{p} in \mathbb{Z}^{n} such that $\boldsymbol{a}=\alpha^{\prime} \boldsymbol{p}$. Thus $\alpha \boldsymbol{a}=\beta \boldsymbol{b}$ becomes

$$
\begin{equation*}
\alpha \alpha^{\prime} \boldsymbol{p}=\beta \boldsymbol{b} . \tag{2.1}
\end{equation*}
$$

Let $\gamma=\operatorname{gcd}\left(\alpha \alpha^{\prime}, \beta\right), \gamma_{1}=\frac{\alpha \alpha^{\prime}}{\gamma}$ and $\gamma_{2}=\frac{\beta}{\gamma}$. Then γ_{1} and γ_{2} are nonzero in \mathbb{Z}, and (2.1) becomes

$$
\begin{equation*}
\gamma_{1} \boldsymbol{p}=\gamma_{2} \boldsymbol{b} . \tag{2.2}
\end{equation*}
$$

Therefore we have that γ_{1} divides every $\gamma_{2} b_{i}$ for all $i=1, \cdots, n$. Since $\operatorname{gcd}\left(\gamma_{1}, \gamma_{2}\right)=$ 1 and \boldsymbol{p} is an irreducible vector, $\gamma_{2}= \pm 1$ so that $\boldsymbol{b}= \pm \gamma_{1} \boldsymbol{p}$. Therefore \boldsymbol{a} and \boldsymbol{b} have an irreducible common factor \boldsymbol{p}, and thus $\boldsymbol{a} \simeq \boldsymbol{b}$.

The factor rank, $\operatorname{fr}(A)$, of a nonzero matrix $A \in \mathcal{M}_{m \times n}(\mathbb{Z})$ is defined as the least integer k for which there exist $m \times k$ and $k \times n$ matrices B and C, respectively, with $A=B C$. If the matrices were considered as matrices in the real field, then the factor ranks of them are the same as their ranks. The factor rank of a zero matrix is zero.

It is obvious that for a matrix A in $\mathcal{M}_{m \times n}(\mathbb{Z}), \operatorname{fr}(A)=1$ if and only if there exist two nonzero vectors $\boldsymbol{a} \in \mathbb{Z}^{m}$ and $\boldsymbol{x} \in \mathbb{Z}^{n}$ such that $A=\boldsymbol{a} \boldsymbol{x}^{t}$. We call \boldsymbol{a} the left factor, and \boldsymbol{x} the right factor of A.

For any index $i \in\{1, \cdots, n\}$, we denote $\boldsymbol{e}_{i}^{(n)}$ as the irreducible vector in \mathbb{Z}^{n} with " 1 " in $i^{\text {th }}$ position and zero elsewhere.

Lemma 2.3. Let A and B be factor rank-1 matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with factorizations $A=\boldsymbol{a} \boldsymbol{x}^{t}$ and $B=\boldsymbol{b} \boldsymbol{y}^{t}$, where $A+B \neq 0$. Then $f r(A+B)=1$ if and only if $\boldsymbol{a} \simeq \boldsymbol{b}$ or $\boldsymbol{x} \simeq \boldsymbol{y}$.
Proof. Suppose that $\operatorname{fr}(A+B)=1$. Let

$$
A=\boldsymbol{a} \boldsymbol{x}^{t}=\left[x_{1} \boldsymbol{a}, \cdots, x_{n} \boldsymbol{a}\right]=\left[a_{1} \boldsymbol{x}^{t}, \cdots, a_{m} \boldsymbol{x}^{t}\right]^{t}
$$

and

$$
B=\boldsymbol{b} \boldsymbol{y}^{t}=\left[y_{1} \boldsymbol{b}, \cdots, y_{n} \boldsymbol{b}\right]=\left[b_{1} \boldsymbol{y}^{t}, \cdots, b_{m} \boldsymbol{y}^{t}\right]^{t} .
$$

If $A+B$ has exactly one nonzero $i^{\text {th }}$ row or exactly one nonzero $j^{\text {th }}$ column, so do A and B. In this case, A and B have an irreducible common left factor $\boldsymbol{e}_{i}^{(m)}$ or an irreducible common right factor $\boldsymbol{e}_{j}^{(n)}$. Thus we can assume that $A+B$ has at least two nonzero rows and at least two nonzero columns. Furthermore, without loss of generality, we may assume that columns of $A+B$ are all nonzero.

Case 1) $x_{i} y_{i}=0$ for some $i \in\{1, \cdots, n\}$. If $x_{i}=0$, then $y_{i} \neq 0$ because $A+B$ has no zero column. Since A is not a zero matrix, there exists an index j different from i such that $x_{j} \neq 0$. Therefore, the $i^{\text {th }}$ and $j^{\text {th }}$ columns of $A+B$ are $y_{i} b$ and $x_{j} \boldsymbol{a}+y_{j} \boldsymbol{b}$, respectively. Since $\operatorname{fr}(A+B)=1$, there exist nonzero scalars α, β in \mathbb{Z} such that $\alpha y_{i} \boldsymbol{b}=\beta\left(x_{j} \boldsymbol{a}+y_{j} \boldsymbol{b}\right)$, equivalently $\beta x_{j} \boldsymbol{a}=\left(\alpha y_{i}-\beta y_{j}\right) \boldsymbol{b}$. Since $\beta x_{j} \neq 0$, we have $\alpha y_{i}-\beta y_{j} \neq 0$. It follows from Proposition 2.2 that $\boldsymbol{a} \simeq \boldsymbol{b}$. Similarly, a parallel argument holds if $y_{i}=0$.

Case 2) $x_{i} y_{i} \neq 0$ for all $i=1, \cdots, n$. Consider any distinct $i^{\text {th }}$ and $j^{\text {th }}$ columns of $A+B$. Since $\operatorname{fr}(A+B)=1$, there exist two nonzero scalars α and β in \mathbb{Z} such
that $\alpha\left(x_{i} \boldsymbol{a}+y_{i} \boldsymbol{b}\right)=\beta\left(x_{j} \boldsymbol{a}+y_{j} \boldsymbol{b}\right)$, equivalently $\left(\alpha x_{i}-\beta x_{j}\right) \boldsymbol{a}=\left(\beta y_{j}-\alpha y_{i}\right) \boldsymbol{b}$. If $\alpha x_{i}-\beta x_{j} \neq 0$, then we have $\beta y_{j}-\alpha y_{i} \neq 0$. By Proposition 2.2, we have $\boldsymbol{a} \simeq \boldsymbol{b}$. Now, if $\alpha x_{i}-\beta x_{j}=0$, then $\alpha x_{i}-\beta x_{j}=\beta y_{j}-\alpha y_{i}=0$. Thus,

$$
\alpha x_{i}=\beta x_{j} \quad \text { and } \quad \beta y_{j}=\alpha y_{i} .
$$

This shows that $x_{i} y_{j}=x_{j} y_{i}$ for all $i, j=1, \cdots, n$. Thus there exist nonzero integers s and t such that $s x_{i}=t y_{i}$ for all $i=1, \cdots, n$. Therefore we have $s \boldsymbol{x}=t \boldsymbol{y}$. It follows from Proposition 2.2 that $\boldsymbol{x} \simeq \boldsymbol{y}$. Thus we have shown the sufficiency.

The necessity is an immediate consequence.

3. Factor rank-1 preserver

Suppose that T is a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then T is a
(i) (U, V)-operator if there exist nonsingular matrices U in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and V in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $T(X)=U X V$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, or $m=n$ and $T(X)=U X^{t} V$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, where X^{t} denotes the transpose of X;
(ii) factor rank preserver if $\operatorname{fr}(T(X))=f r(X)$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$;
(iii) factor rank-k preserver if $\operatorname{fr}(T(X))=k$ whenever $\operatorname{fr}(X)=k$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.

Lemma 3.1. If T is a (U, V)-operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$, then T is an injective factor rank preserver.
Proof. It follows directly from the definition of a (U, V)-operator.
Consider $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and a linear operator T on $\mathcal{M}_{2 \times 2}(\mathbb{Z})$ defined by $T(X)=$ $A X$ for all X in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$. Then T is a (U, V)-operator because A is nonsingular. Clearly, T is injective. But T is not surjective: for any cell $E_{i j}$ in $\mathbb{E}_{2,2}$, there is not a matrix X in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$ such that $T(X)=E_{i j}$. Therefore a (U, V)-operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$ may not be invertible.

For any matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ in $\mathcal{M}_{m \times n}(\mathbb{Z})$, let $A \circ B$ denote the Hadamard (or Schur) product, the $(i, j)^{\text {th }}$ entry of $A \circ B$ is $a_{i j} b_{i j}$.
Lemma 3.2. Let $B=\left[b_{i j}\right]$ be a factor rank-1 matrix in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then there exist diagonal matrices D in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and E in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $X \circ B=D X E$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.
Proof. If $f r(B)=1$, then there exist vectors $\boldsymbol{d}=\left[d_{1}, d_{2}, \cdots, d_{m}\right]^{t}$ and $\boldsymbol{e}=$ $\left[e_{1}, e_{2}, \cdots, e_{n}\right]^{t}$ such that $B=\boldsymbol{d e} e^{t}$, equivalently $b_{i j}=d_{i} e_{j}$ for all $i=1, \cdots, m$ and $j=1, \cdots, n$. Let $D=\operatorname{diag}\left(d_{1}, \cdots, d_{m}\right)$ and $E=\operatorname{diag}\left(e_{1}, \cdots, e_{n}\right)$. Now, the $(i, j)^{\text {th }}$ entry of $X \circ B$ is $x_{i j} b_{i j}$ and the $(i, j)^{\text {th }}$ entry of $D X E$ is $d_{i} x_{i j} e_{j}=x_{i j} b_{i j}$. Therefore we have the results.

Theorem 3.3. Let T be a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then T is an injective factor rank-1 preserver if and only if T is a (U, V)-operator.
Proof. The sufficiency follows from Lemma 3.1. So, we shall show the necessity. For any cell $E_{i j}$ in $\mathbb{E}_{m, n}$, we can write $T\left(E_{i j}\right)=\boldsymbol{u}^{i j} \boldsymbol{v}_{i j}{ }^{t}$ for all $i=1, \cdots, m$ and $j=1, \cdots, n$, where $\boldsymbol{u}^{i j} \in \mathbb{Z}^{m}$ and $\boldsymbol{v}_{i j} \in \mathbb{Z}^{n}$ are nonzero vectors. Let j and k be arbitrary integers in $\{1, \cdots, n\}$. Since $E_{i j}+E_{i k}$ is of factor rank-1, the factor rank of $T\left(E_{i j}+E_{i k}\right)=\boldsymbol{u}^{i j} \boldsymbol{v}_{i j}{ }^{t}+\boldsymbol{u}^{i k} \boldsymbol{v}_{i k}{ }^{t}$ must be 1. It follows from Lemma 2.3 that $\boldsymbol{u}^{i j} \simeq \boldsymbol{u}^{i k}$ or $\boldsymbol{v}_{i j} \simeq \boldsymbol{v}_{i k}$. Now, we will show that for a fixed i in $\{1, \cdots, m\}$, either

$$
\begin{equation*}
\boldsymbol{u}^{i 1} \simeq \boldsymbol{u}^{i 2} \simeq \cdots \simeq \boldsymbol{u}^{i n} \quad \text { or } \quad \boldsymbol{v}_{i 1} \simeq \boldsymbol{v}_{i 2} \simeq \cdots \simeq \boldsymbol{v}_{i n} \tag{3.1}
\end{equation*}
$$

Suppose that $\boldsymbol{v}_{i 1} \nsucceq \boldsymbol{v}_{i j}$ for some index j. By Lemma 2.3, we have $\boldsymbol{u}^{i 1} \simeq \boldsymbol{u}^{i j}$ because $f r\left(T\left(E_{i 1}+E_{i j}\right)\right)=1$. If $\boldsymbol{u}^{i 1} \not \not \boldsymbol{u}^{i k}$ for some index k, then we have $\boldsymbol{v}_{i 1} \simeq \boldsymbol{v}_{i k}$ by Lemma 2.3. Therefore $\boldsymbol{v}_{i j} \nsucceq \boldsymbol{v}_{i k}$ because \simeq is an equivalence relation. But then $\boldsymbol{u}^{i j} \simeq \boldsymbol{u}^{i k}$ and this would imply $\boldsymbol{u}^{i 1} \simeq \boldsymbol{u}^{i k}$ because $\boldsymbol{u}^{i 1} \simeq \boldsymbol{u}^{i j}$. This contradicts to $\boldsymbol{u}^{i 1} \not 千 \boldsymbol{u}^{i k}$, and thus (3.1) is established.

Similarly, we can show that for a fixed j in $\{1, \cdots, n\}$, either

$$
\begin{equation*}
\boldsymbol{u}^{1 j} \simeq \boldsymbol{u}^{2 j} \simeq \cdots \simeq \boldsymbol{u}^{m j} \tag{3.2}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{v}_{1 j} \simeq \boldsymbol{v}_{2 j} \simeq \cdots \simeq \boldsymbol{v}_{m j} . \tag{3.3}
\end{equation*}
$$

If $\boldsymbol{u}^{i 1} \simeq \boldsymbol{u}^{i 2} \simeq \cdots \simeq \boldsymbol{u}^{i n}$, there exist an irreducible vector \boldsymbol{p}_{i} in \mathbb{Z}^{m} and nonzero integers c_{j} such that $\boldsymbol{u}^{i j}=c_{j} \boldsymbol{p}_{i}$ for all $j=1, \cdots, n$. Thus we have $T\left(E_{i j}\right)=$ $\boldsymbol{p}_{i}\left(c_{j} \boldsymbol{v}_{i j}\right)^{t}$ for all $j=1, \cdots, n$. We can therefore restate (3.1) as follows. For a fixed i in $\{1, \cdots, m\}$, either

$$
\begin{equation*}
\boldsymbol{u}^{i 1}=\boldsymbol{u}^{i 2}=\cdots=\boldsymbol{u}^{i n}=\boldsymbol{p}_{i} \tag{3.4}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{v}_{i 1}=\boldsymbol{v}_{i 2}=\cdots=\boldsymbol{v}_{i n}=\boldsymbol{q}_{i}, \tag{3.5}
\end{equation*}
$$

where \boldsymbol{p}_{i} and \boldsymbol{q}_{i} are irreducible vectors.
Assume that (3.4) holds for some i. If $\boldsymbol{v}_{i 1}, \boldsymbol{v}_{i 2}, \cdots, \boldsymbol{v}_{i n}$ are linearly dependent, then there exist $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{n}$ in \mathbb{Z}, not all zeros, such that $\sum_{j=1}^{n} \alpha_{j} \boldsymbol{v}_{i j}=\mathbf{0}$. Consider a factor rank-1 matrix $X=\sum_{j=1}^{n} \alpha_{j} E_{i j}$. Then we have

$$
T(X)=T\left(\sum_{j=1}^{n} \alpha_{j} E_{i j}\right)=\boldsymbol{p}_{i}\left(\sum_{j=1}^{n} \alpha_{j} \boldsymbol{v}_{i j}\right)^{t}=\mathbf{0},
$$

a contradiction to the fact that T is a factor rank- 1 preserver. Thus $\boldsymbol{v}_{i 1}, \boldsymbol{v}_{i 2}, \cdots, \boldsymbol{v}_{i n}$ are linearly independent. Analogous statements are satisfied in case (3.2), (3.3) or (3.5).

Next, we will show that if (3.4) holds for a fixed i, then (3.3) must hold for all $j=1, \cdots, n$, and consequently (3.4) must hold for all i. Suppose that (3.2) holds for some $j=1, \cdots, n$. Then $\boldsymbol{u}^{i j}\left(=\boldsymbol{p}_{i}\right)$ appears both in (3.4) and (3.2). It follows from (3.2) that there exist nonzero integers α_{s} such that $\boldsymbol{u}^{s j}=\alpha_{s} \boldsymbol{p}_{i}$ for all $s=1, \cdots, m$. Note that $\boldsymbol{v}_{i 1}, \boldsymbol{v}_{i 2}, \cdots, \boldsymbol{v}_{i n}$ are linearly independent since (3.4) is satisfied. By Lemma 2.1, there exist nonzero integer β_{s} and integers $\beta_{s k}$, not all zero, such that $\beta_{s} \boldsymbol{v}_{s j}=\sum_{k=1}^{n} \beta_{s k} \boldsymbol{v}_{i k}$ for all $s=1, \cdots, m$. Then we have

$$
\beta_{s} \boldsymbol{u}^{s j} \boldsymbol{v}_{s j}{ }^{t}=\sum_{k=1}^{n} \beta_{s k} \boldsymbol{u}^{s j} \boldsymbol{v}_{i k}{ }^{t}=\sum_{k=1}^{n} \beta_{s k} \alpha_{s} \boldsymbol{p}_{i} \boldsymbol{v}_{i k}{ }^{t}=\sum_{k=1}^{n} \beta_{s k} \alpha_{s} \boldsymbol{u}^{i k} \boldsymbol{v}_{i k}{ }^{t},
$$

equivalently $T\left(\beta_{s} E_{s j}\right)=T\left(\sum_{k=1}^{n} \beta_{s k} \alpha_{s} E_{i k}\right)$ for all $s \in\{1, \cdots, m\} \backslash\{i\}$. This contradicts to the fact that T is injective. Thus we have established that either

$$
\begin{equation*}
\boldsymbol{u}^{i j}=\boldsymbol{p}_{i} \quad \text { and } \quad \boldsymbol{v}_{i j}=b_{i j} \boldsymbol{q}_{j} \tag{3.6}
\end{equation*}
$$

for all $i=1, \cdots, m$ and $j=1, \cdots, n$, where $\boldsymbol{p}_{1}, \cdots, \boldsymbol{p}_{m}$ and $\boldsymbol{q}_{1} \cdots, \boldsymbol{q}_{n}$ are linearly independent irreducible vectors and $b_{i j}$ are nonzero integers, or

$$
\begin{equation*}
\boldsymbol{v}_{i j}=\boldsymbol{q}_{i} \quad \text { and } \quad \boldsymbol{u}^{i j}=b_{i j} \boldsymbol{p}_{j} \tag{3.7}
\end{equation*}
$$

for all $i=1, \cdots, m$ and $j=1, \cdots, n$, where $\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{m}$ and $\boldsymbol{p}_{1} \cdots, \boldsymbol{p}_{n}$ are linearly independent irreducible vectors and $b_{i j}$ are nonzero integers.

If $m \neq n$, (3.7) is not possible. For, if $m<n$, then the set $\left\{\boldsymbol{p}_{1}, \cdots, \boldsymbol{p}_{n}\right\}$ would be linearly dependent by Lemma 2.1. Similar conclusion follows if $m>n$. Hence, if $m \neq n$, only (3.6) is possible.

Assume that (3.6) holds. Let U^{\prime} be the $m \times m$ matrix whose columns are $\boldsymbol{p}_{1}, \cdots, \boldsymbol{p}_{m}$ and let V^{\prime} be the $n \times n$ matrix whose rows are $\boldsymbol{q}_{1}, \cdots, \boldsymbol{q}_{n}$. Then U^{\prime} and V^{\prime} are nonsingular, and

$$
T\left(E_{i j}\right)=\boldsymbol{u}^{i j} \boldsymbol{v}_{i j}{ }^{t}=\boldsymbol{p}_{i} b_{i j} \boldsymbol{q}_{j}^{t}=U^{\prime}\left(b_{i j} E_{i j}\right) V^{\prime}
$$

for all $i=1, \cdots, m$ and $j=1, \cdots, n$. It follows that for any matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, we have $T(X)=U^{\prime}(X \circ B) V^{\prime}$, where $B=\left[b_{i j}\right]$ as above. Now, we claim $f r(B)=1$. If not, there exists a 2×2 submatrix $B^{\prime}=\left[\begin{array}{ll}b_{i j} & b_{i k} \\ b_{l j} & b_{l k}\end{array}\right]$ of B such that $\operatorname{fr}\left(B^{\prime}\right)=2$. Consider a factor rank-1 matrix $Y=E_{i j}+E_{i k}+E_{l j}+E_{l k}$. Then the factor rank of

$$
T(Y)=\boldsymbol{p}_{i}\left(b_{i j} \boldsymbol{q}_{j}+b_{i k} \boldsymbol{q}_{k}\right)^{t}+\boldsymbol{p}_{l}\left(b_{l j} \boldsymbol{q}_{j}+b_{l k} \boldsymbol{q}_{k}\right)^{t}
$$

must be 1 . Since $\boldsymbol{p}_{i} \not \models \boldsymbol{p}_{l}$, it follows that $b_{i j} \boldsymbol{q}_{j}+b_{i k} \boldsymbol{q}_{k} \simeq b_{l j} \boldsymbol{q}_{j}+b_{l k} \boldsymbol{q}_{k}$. Therefore there exist an irreducible vectors \boldsymbol{q} and nonzero integers α and β such that $b_{i j} \boldsymbol{q}_{j}+b_{i k} \boldsymbol{q}_{k}=$
$\alpha \boldsymbol{q}$ and $b_{l j} \boldsymbol{q}_{j}+b_{l k} \boldsymbol{q}_{k}=\beta \boldsymbol{q}$, equivalently $\left(b_{i j} \beta-b_{l j} \alpha\right) \boldsymbol{q}_{j}=\left(b_{l k} \alpha-b_{i k} \beta\right) \boldsymbol{q}_{k}$. It follows from $\boldsymbol{q}_{j} \not 千 \boldsymbol{q}_{k}$ that $b_{i j} \beta-b_{l j}=b_{l k} \alpha-b_{i k} \beta=0$ so that $b_{i j} b_{l k}=b_{i k} b_{l j}$. This implies that the factor rank of B^{\prime} is 1 , a contradiction. Therefore we have $\operatorname{fr}(B)=1$. By Lemma 3.2, there exist diagonal matrices D in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and E in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $X \circ B=D X E$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Since B has no zero entries, it follows that D and E are nonsingular. Let $U=U^{\prime} D$ and $V=E V^{\prime}$. Then U and V are nonsingular. Furthermore, we have $T(X)=U X V$ for all matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Therefore T is a (U, V)-operator.

If (3.7) holds, then $m=n$ and we can easily establish that for any matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z}), T(X)=U X^{t} V$ for some $n \times n$ nonsingular matrices U and V. Therefore T is a (U, V)-operator.

4. Factor rank preserver

In this section, we characterize the linear operators which preserve the factor rank of all matrices over the ring of integers.
Proposition 4.1. Let A and B be matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with $\alpha A \neq \beta B$ for all nonzero scalars $\alpha, \beta \in \mathbb{Z}$. If $f r(A)=f r(B)=1$, then there exists a factor rank-1 matrix C in $\mathcal{M}_{m \times n}(\mathbb{Z})$ such that $\operatorname{fr}(A+C)=1$ and $\operatorname{fr}(B+C)=2$.
Proof. Since $\operatorname{fr}(A)=\operatorname{fr}(B)=1$, it follows from $\alpha A \neq \beta B$ that either $\operatorname{fr}(A+B)=2$ or $\operatorname{fr}(A+B)=1$. For the case of $\operatorname{fr}(A+B)=2$, the conclusion is satisfied by letting $C=A$. So we may assume that $f r(A+B)=1$. By Lemma 2.3, A and B have an irreducible common factor. If A and B have an irreducible common left factor, then we may write A and B as

$$
A=\boldsymbol{a} \boldsymbol{x}^{t}=\left[x_{1} \boldsymbol{a}, \cdots, x_{n} \boldsymbol{a}\right] \quad \text { and } \quad B=\boldsymbol{a} \boldsymbol{y}^{t}=\left[y_{1} \boldsymbol{a}, \cdots, y_{n} \boldsymbol{a}\right]
$$

where \boldsymbol{a} is an irreducible vector. Then we have $\alpha \boldsymbol{x} \neq \beta \boldsymbol{y}$ for all nonzero integers α and β because $\alpha A \neq \beta B$. Since $\boldsymbol{a}=\left[a_{i}\right]$ is not zero-vector, $a_{i} \neq 0$ for some $i=1, \cdots, m$. Let

$$
C= \begin{cases}\boldsymbol{e}_{j}^{(m)} \boldsymbol{x}^{t} & \text { if } a_{j}=0 \text { for some } j \neq i \\ \boldsymbol{e}_{i}^{(m)} \boldsymbol{x}^{t} & \text { otherwise }\end{cases}
$$

Then C is a matrix in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with $f r(C)=1$. Moreover $f r(A+C)=1$ because A and C have a common right factor. But B and C have neither a common left factor nor a common right factor. It follows from Lemma 2.3 that $\operatorname{fr}(B+C)=2$.

Similarly, a parallel argument holds if A and B have an irreducible common right factor.

Lemma 4.2. Let T be a factor rank-1 preserver on $\mathcal{M}_{m \times n}(\mathbb{Z})$. If T is not injective, then T decreases the factor rank of some factor rank-2 matrix.
Proof. By the similar proof to that of Theorem 3.3, we can see that T is a (U, V) operator if T is a factor rank-1 preserver and is injective in the set of all factor rank-1
matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$. If T is not injective, then T is not a (U, V)-operator. From above fact we have that T is not injective in the set of all factor rank-1 matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Thus there exist distinct factor rank- 1 matrices X and Y such that $T(X)=T(Y)$. Suppose that there exist distinct nonzero integers α and β such that $\alpha X=\beta Y$. Then we have

$$
\alpha T(X)=T(\alpha X)=T(\beta Y)=\beta T(Y)=\beta T(X)
$$

Since \mathbb{Z} has no zero divisors and $T(X) \neq O$, we have $\alpha=\beta$, a contradiction. So, we may assume that $\alpha X \neq \beta Y$ for all nonzero scalars $\alpha, \beta \in \mathbb{Z}$. By Proposition 4.1, there exists a factor rank-1 matrix C such that $\operatorname{fr}(X+C)=1$ while $\operatorname{fr}(Y+C)=2$. But we then have $T(Y+C)=T(X+C)$ so that $f r(T(Y+C))=f r(T(X+C))=1$ because T is a factor rank-1 preserver. Therefore T decreases the factor rank of some factor rank-2 matrix.

Theorem 4.3. Let T be a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then the following are equivalent;
(i) T is an injective factor rank-1 preserver;
(ii) T is a (U, V)-operator;
(iii) T is a factor rank preserver;
(iv) T is a factor rank-1 and factor rank-2 preserver.

Proof. It follows from Theorem 3.3 that (i) and (ii) are equivalent. Statement (ii) implies (iii) by Lemma 3.1. Clearly, (iii) implies (iv). Lemma 4.2 shows if T preserves the factor ranks of all factor rank-1 matrices and factor rank-2 matrices, then T is injective. Thus, (iv) implies (i).

Thus we have characterized the linear operators that preserve the factor rank of integer matrices.

References

[1] L. B. Beasley, A. E. Guterman, Sang-Gu Lee and S. Z. Song, Linear preservers of zeros of matrix polynomials, Linear Algebra Appl., 401(2005), 325-340.
[2] L. B. Beasley, S. Z. Song, K. T. Kang and B. K. Sarma, Column ranks and their preservers over nonnegative real matrices, Linear Algebra Appl., 399(2005), 3-16.
[3] C. Lautemann, Linear transformations on matrices: Rank preservers and determinant preservers, Linear and Multilinear Algebra, 10(1981), 343-345.
[4] M. Marcus and B. Moyls, Linear transformations on algebras of matrices, Canad. J. Math., 11(1959), 61-66.
[5] M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math., 9(1959), 1215-1221.
[6] S. Z. Song, Linear operators that preserve maximal column ranks of nonnegative integer matrices, Proc. Amer. Math. Soc., 126(1998), 2205-2211.
[7] S. Z. Song, K. T. Kang and S. Yi, Perimeter preservers of nonnegative integer matrices, Comment. Math. Univ. Carolinae, 45(2004), 9-15.

