KYUNGPOOK Math. J. 46(2006), 581-589

Factor Rank and Its Preservers of Integer Matrices

SEOK-ZUN SONG AND KYUNG-TAE KANG

Department of Mathematics, Cheju National University, Jeju 690-756, Korea e-mail: szsong@cheju.ac.kr and kangkt@cheju.ac.kr

ABSTRACT. We characterize the linear operators which preserve the factor rank of integer matrices. That is, if \mathcal{M} is the set of all $m \times n$ matrices with entries in the integers and $\min(m, n) > 1$, then a linear operator T on \mathcal{M} preserves the factor rank of all matrices in \mathcal{M} if and only if T has the form either T(X) = UXV for all $X \in \mathcal{M}$, or m = n and $T(X) = UX^t V$ for all $X \in \mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

1. Introduction

The research of Linear Preserver Problems is an active area of matrix theory (see [1]-[7]). Many researchers have studied on the ranks and their preservers of matrices over fields ([1]-[5]). Also (nonnegative) integer matrices are combinatorially interesting matrices and hence it has been a subject of many research works ([6], [7]).

If \mathbb{F} is an algebraically closed field, which linear operators T on the space of $m \times n$ matrices over \mathbb{F} preserve the rank of each matrix? Evidently if U and V are $m \times m$ and $n \times n$ nonsingular matrices, respectively, then $X \to UXV$ is a rank-preserving linear operator. When $m = n, X \to UX^tV$ is also. Already in 1957 Marcus and Moyls [4] found that such (U, V)-operators were the only rank preservers. Later they [5] obtained that T preserves all ranks if and only if T preserves rank 1. In 1981, Lautemann [3] extended these results to an arbitrary field, and found that Tpreserves all ranks if and only if T is bijective and preserves rank 1 if and only if Tis a (U, V)-operator.

In this paper, we characterize linear operators which preserve the factor ranks of all matrices over the ring of integers. That is, if \mathcal{M} is the set of all $m \times n$ matrices with entries in the integers and $\min(m, n) > 1$, then a linear operator Ton \mathcal{M} preserves the factor rank of all matrices in \mathcal{M} if and only if T has the form either T(X) = UXV for all $X \in \mathcal{M}$, or m = n and $T(X) = UX^t V$ for all $X \in \mathcal{M}$, where U and V are suitable nonsingular integer matrices. Other characterizations of factor rank-preservers of integer matrices are also given.

Received September 2, 2005.

²⁰⁰⁰ Mathematics Subject Classification: 15A03, 15A04, 15A36.

Key words and phrases: factor rank preserver, (U, V)-operator.

2. Preliminaries and basic results

Let $\mathcal{M}_{m \times n}(\mathbb{Z})$ denote the set of all $m \times n$ matrices with entries in the ring, \mathbb{Z} of integers. Addition, multiplication by scalars, and the product of matrices are defined as if \mathbb{Z} were a field. Let $\mathbb{E}_{m,n} = \{E_{ij} \mid i = 1, \dots, m \text{ and } j = 1, \dots, n\}$, where E_{ij} is the $m \times n$ matrix whose $(i, j)^{\text{th}}$ entry is 1 and whose other entries are 0. We call each member of $\mathbb{E}_{m,n}$ a *cell*.

Lowercase, boldface letters will represent vectors, a vector \boldsymbol{u} is column vector $(\boldsymbol{u}^t \text{ is a row vector})$. A nonzero vector $\boldsymbol{p} = [p_i]$ in \mathbb{Z}^n is *irreducible* if the greatest common divisor of nonzero p_i 's is 1 (that is, $gcd(p_1, \dots, p_n) = 1$). A subset $S = \{\boldsymbol{s}_1, \boldsymbol{s}_2, \dots, \boldsymbol{s}_d\}$ of \mathbb{Z}^n is called *linearly dependent* if there exist $\alpha_1, \alpha_2, \dots, \alpha_d$ in \mathbb{Z} , not all zeros, such that $\sum_{i=1}^d \alpha_i \boldsymbol{s}_i = \boldsymbol{0}$; S is called *linearly independent* if it is not

linearly dependent. An $n \times n$ integer matrix A is called *nonsingular* if for any vector \boldsymbol{x} in \mathbb{Z}^n , $A\boldsymbol{x} = \boldsymbol{0}$ implies that $\boldsymbol{x} = \boldsymbol{0}$. We note that nonsingularity and invertibility of a square integer matrix are not equivalent. For example, consider a matrix $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ in $\mathcal{M}_{2\times 2}(\mathbb{Z})$. Then we can easily show that A is nonsingular but not invertible in $\mathcal{M}_{2\times 2}(\mathbb{Z})$.

Lemma 2.1. Let p_1, p_2, \dots, p_n be linearly independent vectors in \mathbb{Z}^n . Then for any nonzero vector **b** in \mathbb{Z}^n , there exist nonzero integer β and integers α_i , not all zero, such that $\beta \mathbf{b} = \alpha_1 \mathbf{p}_1 + \alpha_2 \mathbf{p}_2 + \dots + \alpha_n \mathbf{p}_n$.

Proof. Let A be the $n \times n$ matrix whose columns are p_1, p_2, \dots, p_n . Then A is nonsingular, and hence det(A) is a nonzero integer. Consider a system $A\mathbf{x} = \mathbf{b}$ of n linear equations in n unknowns. By Cramer's rule, this system has a unique solution $x_i = \frac{\det(A_i)}{\det(A)}$ in the rational numbers for all $i = 1, 2, \dots, n$, where A_i is the matrix obtained by replacing the entries in the i^{th} column of A by the entries in **b**. Then we have

$$\boldsymbol{b} = \frac{\det(A_1)}{\det(A)}\boldsymbol{p}_1 + \frac{\det(A_2)}{\det(A)}\boldsymbol{p}_2 + \dots + \frac{\det(A_n)}{\det(A)}\boldsymbol{p}_n.$$

If we take $\beta = \det(A)$ and $\alpha_i = \det(A_i)$, then the result follows.

If a and b are nonzero vectors in \mathbb{Z}^n , we denote $a \simeq b$ if a and b have an irreducible common factor. That is, $a \simeq b$ if and only if there exists an irreducible vector p in \mathbb{Z}^n such that $a = \alpha p$ and $b = \beta p$ for some nonzero integers α and β . Then we can easily show that \simeq is an equivalence relation in \mathbb{Z}^n .

Proposition 2.2. If a and b are nonzero vectors in \mathbb{Z}^n with $\alpha a = \beta b$ for some nonzero integers α and β , then we have $a \simeq b$.

Proof. Let $\boldsymbol{a} = [a_1, \dots, a_n]$, $\boldsymbol{b} = [b_1, \dots, b_n]$ and $\alpha' = \operatorname{gcd}(a_1, \dots, a_n)$. Then there exists an irreducible vector \boldsymbol{p} in \mathbb{Z}^n such that $\boldsymbol{a} = \alpha' \boldsymbol{p}$. Thus $\alpha \boldsymbol{a} = \beta \boldsymbol{b}$ becomes

(2.1)
$$\alpha \alpha' \boldsymbol{p} = \beta \boldsymbol{b}.$$

Let $\gamma = \gcd(\alpha \alpha', \beta)$, $\gamma_1 = \frac{\alpha \alpha'}{\gamma}$ and $\gamma_2 = \frac{\beta}{\gamma}$. Then γ_1 and γ_2 are nonzero in \mathbb{Z} , and (2.1) becomes

(2.2)
$$\gamma_1 \boldsymbol{p} = \gamma_2 \boldsymbol{b}$$

Therefore we have that γ_1 divides every $\gamma_2 b_i$ for all $i = 1, \dots, n$. Since $gcd(\gamma_1, \gamma_2) = 1$ and p is an irreducible vector, $\gamma_2 = \pm 1$ so that $b = \pm \gamma_1 p$. Therefore a and b have an irreducible common factor p, and thus $a \simeq b$.

The factor rank, fr(A), of a nonzero matrix $A \in \mathcal{M}_{m \times n}(\mathbb{Z})$ is defined as the least integer k for which there exist $m \times k$ and $k \times n$ matrices B and C, respectively, with A = BC. If the matrices were considered as matrices in the real field, then the factor ranks of them are the same as their ranks. The factor rank of a zero matrix is zero.

It is obvious that for a matrix A in $\mathcal{M}_{m \times n}(\mathbb{Z})$, fr(A) = 1 if and only if there exist two nonzero vectors $\mathbf{a} \in \mathbb{Z}^m$ and $\mathbf{x} \in \mathbb{Z}^n$ such that $A = \mathbf{a}\mathbf{x}^t$. We call \mathbf{a} the *left factor*, and \mathbf{x} the *right factor* of A.

For any index $i \in \{1, \dots, n\}$, we denote $e_i^{(n)}$ as the irreducible vector in \mathbb{Z}^n with "1" in *i*th position and zero elsewhere.

Lemma 2.3. Let A and B be factor rank-1 matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with factorizations $A = \mathbf{a}\mathbf{x}^t$ and $B = \mathbf{b}\mathbf{y}^t$, where $A + B \neq 0$. Then fr(A + B) = 1 if and only if $\mathbf{a} \simeq \mathbf{b}$ or $\mathbf{x} \simeq \mathbf{y}$.

Proof. Suppose that fr(A + B) = 1. Let

$$A = \boldsymbol{a} \, \boldsymbol{x}^t = [x_1 \boldsymbol{a}, \cdots, x_n \boldsymbol{a}] = [a_1 \boldsymbol{x}^t, \cdots, a_m \boldsymbol{x}^t]^t$$

and

$$B = oldsymbol{b} oldsymbol{y}^t = [y_1 oldsymbol{b}, \cdots, y_n oldsymbol{b}] = [b_1 oldsymbol{y}^t, \cdots, b_m oldsymbol{y}^t]^t.$$

If A + B has exactly one nonzero i^{th} row or exactly one nonzero j^{th} column, so do A and B. In this case, A and B have an irreducible common left factor $e_i^{(m)}$ or an irreducible common right factor $e_j^{(n)}$. Thus we can assume that A + B has at least two nonzero rows and at least two nonzero columns. Furthermore, without loss of generality, we may assume that columns of A + B are all nonzero.

Case 1) $x_i y_i = 0$ for some $i \in \{1, \dots, n\}$. If $x_i = 0$, then $y_i \neq 0$ because A + B has no zero column. Since A is not a zero matrix, there exists an index j different from i such that $x_j \neq 0$. Therefore, the i^{th} and j^{th} columns of A + B are $y_i b$ and $x_j a + y_j b$, respectively. Since fr(A + B) = 1, there exist nonzero scalars α, β in \mathbb{Z} such that $\alpha y_i b = \beta(x_j a + y_j b)$, equivalently $\beta x_j a = (\alpha y_i - \beta y_j) b$. Since $\beta x_j \neq 0$, we have $\alpha y_i - \beta y_j \neq 0$. It follows from Proposition 2.2 that $a \simeq b$. Similarly, a parallel argument holds if $y_i = 0$.

Case 2) $x_i y_i \neq 0$ for all $i = 1, \dots, n$. Consider any distinct i^{th} and j^{th} columns of A + B. Since fr(A + B) = 1, there exist two nonzero scalars α and β in \mathbb{Z} such

that $\alpha(x_i \boldsymbol{a} + y_i \boldsymbol{b}) = \beta(x_j \boldsymbol{a} + y_j \boldsymbol{b})$, equivalently $(\alpha x_i - \beta x_j) \boldsymbol{a} = (\beta y_j - \alpha y_i) \boldsymbol{b}$. If $\alpha x_i - \beta x_j \neq 0$, then we have $\beta y_j - \alpha y_i \neq 0$. By Proposition 2.2, we have $\boldsymbol{a} \simeq \boldsymbol{b}$. Now, if $\alpha x_i - \beta x_j = 0$, then $\alpha x_i - \beta x_j = \beta y_j - \alpha y_i = 0$. Thus,

$$\alpha x_i = \beta x_j$$
 and $\beta y_i = \alpha y_i$.

This shows that $x_i y_j = x_j y_i$ for all $i, j = 1, \dots, n$. Thus there exist nonzero integers s and t such that $sx_i = ty_i$ for all $i = 1, \dots, n$. Therefore we have sx = ty. It follows from Proposition 2.2 that $x \simeq y$. Thus we have shown the sufficiency.

The necessity is an immediate consequence.

3. Factor rank-1 preserver

Suppose that T is a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then T is a

- (i) (U, V)-operator if there exist nonsingular matrices U in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and V in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that T(X) = UXV for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, or m = n and $T(X) = UX^t V$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, where X^t denotes the transpose of X;
- (ii) factor rank preserver if fr(T(X)) = fr(X) for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$;
- (iii) factor rank-k preserver if fr(T(X)) = k whenever fr(X) = k for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.

Lemma 3.1. If T is a (U, V)-operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$, then T is an injective factor rank preserver.

Proof. It follows directly from the definition of a (U, V)-operator.

Consider $A = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ and a linear operator T on $\mathcal{M}_{2 \times 2}(\mathbb{Z})$ defined by T(X) = AX for all X in $\mathcal{M}_{2 \times 2}(\mathbb{Z})$. Then T is a (U, V)-operator because A is nonsingular.

Clearly, T is injective. But T is not surjective: for any cell E_{ij} in $\mathbb{E}_{2,2}$, there is not a matrix X in $\mathcal{M}_{2\times 2}(\mathbb{Z})$ such that $T(X) = E_{ij}$. Therefore a (U, V)-operator on $\mathcal{M}_{m\times n}(\mathbb{Z})$ may not be invertible.

For any matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ in $\mathcal{M}_{m \times n}(\mathbb{Z})$, let $A \circ B$ denote the *Hadamard* (or *Schur*) product, the $(i, j)^{\text{th}}$ entry of $A \circ B$ is $a_{ij}b_{ij}$.

Lemma 3.2. Let $B = [b_{ij}]$ be a factor rank-1 matrix in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then there exist diagonal matrices D in $\mathcal{M}_{m \times m}(\mathbb{Z})$ and E in $\mathcal{M}_{n \times n}(\mathbb{Z})$ such that $X \circ B = DXE$ for all X in $\mathcal{M}_{m \times n}(\mathbb{Z})$.

Proof. If fr(B) = 1, then there exist vectors $\boldsymbol{d} = [d_1, d_2, \cdots, d_m]^t$ and $\boldsymbol{e} = [e_1, e_2, \cdots, e_n]^t$ such that $B = \boldsymbol{de}^t$, equivalently $b_{ij} = d_i e_j$ for all $i = 1, \cdots, m$ and $j = 1, \cdots, n$. Let $D = diag(d_1, \cdots, d_m)$ and $E = diag(e_1, \cdots, e_n)$. Now, the $(i, j)^{\text{th}}$ entry of $X \circ B$ is $x_{ij}b_{ij}$ and the $(i, j)^{\text{th}}$ entry of DXE is $d_ix_{ij}e_j = x_{ij}b_{ij}$. Therefore we have the results.

Theorem 3.3. Let T be a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then T is an injective factor rank-1 preserver if and only if T is a (U, V)-operator.

Proof. The sufficiency follows from Lemma 3.1. So, we shall show the necessity. For any cell E_{ij} in $\mathbb{E}_{m,n}$, we can write $T(E_{ij}) = \mathbf{u}^{ij} \mathbf{v}_{ij}^{t}$ for all $i = 1, \dots, m$ and $j = 1, \dots, n$, where $\mathbf{u}^{ij} \in \mathbb{Z}^{m}$ and $\mathbf{v}_{ij} \in \mathbb{Z}^{n}$ are nonzero vectors. Let j and k be arbitrary integers in $\{1, \dots, n\}$. Since $E_{ij} + E_{ik}$ is of factor rank-1, the factor rank of $T(E_{ij} + E_{ik}) = \mathbf{u}^{ij} \mathbf{v}_{ij}^{t} + \mathbf{u}^{ik} \mathbf{v}_{ik}^{t}$ must be 1. It follows from Lemma 2.3 that $\mathbf{u}^{ij} \simeq \mathbf{u}^{ik}$ or $\mathbf{v}_{ij} \simeq \mathbf{v}_{ik}$. Now, we will show that for a fixed i in $\{1, \dots, m\}$, either

(3.1)
$$\boldsymbol{u}^{i1} \simeq \boldsymbol{u}^{i2} \simeq \cdots \simeq \boldsymbol{u}^{in} \text{ or } \boldsymbol{v}_{i1} \simeq \boldsymbol{v}_{i2} \simeq \cdots \simeq \boldsymbol{v}_{in}.$$

Suppose that $\mathbf{v}_{i1} \not\simeq \mathbf{v}_{ij}$ for some index j. By Lemma 2.3, we have $\mathbf{u}^{i1} \simeq \mathbf{u}^{ij}$ because $fr(T(E_{i1} + E_{ij})) = 1$. If $\mathbf{u}^{i1} \not\simeq \mathbf{u}^{ik}$ for some index k, then we have $\mathbf{v}_{i1} \simeq \mathbf{v}_{ik}$ by Lemma 2.3. Therefore $\mathbf{v}_{ij} \not\simeq \mathbf{v}_{ik}$ because \simeq is an equivalence relation. But then $\mathbf{u}^{ij} \simeq \mathbf{u}^{ik}$ and this would imply $\mathbf{u}^{i1} \simeq \mathbf{u}^{ik}$ because $\mathbf{u}^{i1} \simeq \mathbf{u}^{ij}$. This contradicts to $\mathbf{u}^{i1} \not\simeq \mathbf{u}^{ik}$, and thus (3.1) is established.

Similarly, we can show that for a fixed j in $\{1, \dots, n\}$, either

$$(3.2) u^{1j} \simeq u^{2j} \simeq \cdots \simeq u^{m_j}$$

or

$$(3.3) v_{1j} \simeq v_{2j} \simeq \cdots \simeq v_{mj}.$$

If $\boldsymbol{u}^{i1} \simeq \boldsymbol{u}^{i2} \simeq \cdots \simeq \boldsymbol{u}^{in}$, there exist an irreducible vector \boldsymbol{p}_i in \mathbb{Z}^m and nonzero integers c_j such that $\boldsymbol{u}^{ij} = c_j \boldsymbol{p}_i$ for all $j = 1, \cdots, n$. Thus we have $T(E_{ij}) = \boldsymbol{p}_i (c_j \boldsymbol{v}_{ij})^t$ for all $j = 1, \cdots, n$. We can therefore restate (3.1) as follows. For a fixed i in $\{1, \cdots, m\}$, either

$$(3.4) u^{i1} = u^{i2} = \cdots = u^{in} = p_i$$

or

$$(3.5) v_{i1} = v_{i2} = \cdots = v_{in} = q_i,$$

where p_i and q_i are irreducible vectors.

Assume that (3.4) holds for some *i*. If $\boldsymbol{v}_{i1}, \boldsymbol{v}_{i2}, \cdots, \boldsymbol{v}_{in}$ are linearly dependent, then there exist $\alpha_1, \alpha_2, \cdots, \alpha_n$ in \mathbb{Z} , not all zeros, such that $\sum_{j=1}^n \alpha_j \boldsymbol{v}_{ij} = \mathbf{0}$. Consider a factor rank-1 matrix $X = \sum_{j=1}^n \alpha_j E_{ijj}$. Then we have

ttor rank-r matrix
$$A = \sum_{j=1}^{n} \alpha_j E_{ij}$$
. Then we have

$$T(X) = T\left(\sum_{j=1}^{n} \alpha_j E_{ij}\right) = \boldsymbol{p}_i \left(\sum_{j=1}^{n} \alpha_j \boldsymbol{v}_{ij}\right)^t = \boldsymbol{0},$$

a contradiction to the fact that T is a factor rank-1 preserver. Thus $v_{i1}, v_{i2}, \dots, v_{in}$ are linearly independent. Analogous statements are satisfied in case (3.2), (3.3) or (3.5).

Next, we will show that if (3.4) holds for a fixed *i*, then (3.3) must hold for all $j = 1, \dots, n$, and consequently (3.4) must hold for all *i*. Suppose that (3.2) holds for some $j = 1, \dots, n$. Then $\boldsymbol{u}^{ij}(=\boldsymbol{p}_i)$ appears both in (3.4) and (3.2). It follows from (3.2) that there exist nonzero integers α_s such that $\boldsymbol{u}^{sj} = \alpha_s \boldsymbol{p}_i$ for all $s = 1, \dots, m$. Note that $\boldsymbol{v}_{i1}, \boldsymbol{v}_{i2}, \dots, \boldsymbol{v}_{in}$ are linearly independent since (3.4) is satisfied. By Lemma 2.1, there exist nonzero integer β_s and integers β_{sk} , not all zero, such that $\beta_s \boldsymbol{v}_{sj} = \sum_{k=1}^n \beta_{sk} \boldsymbol{v}_{ik}$ for all $s = 1, \dots, m$. Then we have

$$\beta_s \boldsymbol{u}^{sj} \boldsymbol{v}_{sj}{}^t = \sum_{k=1}^n \beta_{sk} \boldsymbol{u}^{sj} \boldsymbol{v}_{ik}{}^t = \sum_{k=1}^n \beta_{sk} \alpha_s \boldsymbol{p}_i \boldsymbol{v}_{ik}{}^t = \sum_{k=1}^n \beta_{sk} \alpha_s \boldsymbol{u}^{ik} \boldsymbol{v}_{ik}{}^t,$$

equivalently $T(\beta_s E_{sj}) = T\left(\sum_{k=1}^n \beta_{sk} \alpha_s E_{ik}\right)$ for all $s \in \{1, \dots, m\} \setminus \{i\}$. This contradicts to the fact that T is injective. Thus we have established that either

(3.6)
$$\boldsymbol{u}^{ij} = \boldsymbol{p}_i \text{ and } \boldsymbol{v}_{ij} = b_{ij}\boldsymbol{q}_j$$

for all $i = 1, \dots, m$ and $j = 1, \dots, n$, where p_1, \dots, p_m and q_1, \dots, q_n are linearly independent irreducible vectors and b_{ij} are nonzero integers, or

(3.7)
$$\boldsymbol{v}_{ij} = \boldsymbol{q}_i \text{ and } \boldsymbol{u}^{ij} = b_{ij}\boldsymbol{p}_j$$

for all $i = 1, \dots, m$ and $j = 1, \dots, n$, where q_1, \dots, q_m and p_1, \dots, p_n are linearly independent irreducible vectors and b_{ij} are nonzero integers.

If $m \neq n$, (3.7) is not possible. For, if m < n, then the set $\{p_1, \dots, p_n\}$ would be linearly dependent by Lemma 2.1. Similar conclusion follows if m > n. Hence, if $m \neq n$, only (3.6) is possible.

Assume that (3.6) holds. Let U' be the $m \times m$ matrix whose columns are p_1, \dots, p_m and let V' be the $n \times n$ matrix whose rows are q_1, \dots, q_n . Then U' and V' are nonsingular, and

$$T(E_{ij}) = \boldsymbol{u}^{ij} \boldsymbol{v}_{ij}{}^t = \boldsymbol{p}_i b_{ij} \boldsymbol{q}_j{}^t = U'(b_{ij} E_{ij}) V$$

for all $i = 1, \dots, m$ and $j = 1, \dots, n$. It follows that for any matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z})$, we have $T(X) = U'(X \circ B)V'$, where $B = [b_{ij}]$ as above. Now, we claim fr(B) = 1. If not, there exists a 2×2 submatrix $B' = \begin{bmatrix} b_{ij} & b_{ik} \\ b_{lj} & b_{lk} \end{bmatrix}$ of B such that fr(B') = 2. Consider a factor rank-1 matrix $Y = E_{ij} + E_{ik} + E_{lj} + E_{lk}$. Then the factor rank of

$$T(Y) = \boldsymbol{p}_i (b_{ij}\boldsymbol{q}_j + b_{ik}\boldsymbol{q}_k)^t + \boldsymbol{p}_l (b_{lj}\boldsymbol{q}_j + b_{lk}\boldsymbol{q}_k)^t$$

must be 1. Since $\mathbf{p}_i \not\simeq \mathbf{p}_l$, it follows that $b_{ij}\mathbf{q}_j + b_{ik}\mathbf{q}_k \simeq b_{lj}\mathbf{q}_j + b_{lk}\mathbf{q}_k$. Therefore there exist an irreducible vectors \mathbf{q} and nonzero integers α and β such that $b_{ij}\mathbf{q}_j + b_{ik}\mathbf{q}_k =$

586

 $\alpha \boldsymbol{q}$ and $b_{lj}\boldsymbol{q}_j + b_{lk}\boldsymbol{q}_k = \beta \boldsymbol{q}$, equivalently $(b_{ij}\beta - b_{lj}\alpha)\boldsymbol{q}_j = (b_{lk}\alpha - b_{ik}\beta)\boldsymbol{q}_k$. It follows from $\boldsymbol{q}_j \neq \boldsymbol{q}_k$ that $b_{ij}\beta - b_{lj} = b_{lk}\alpha - b_{ik}\beta = 0$ so that $b_{ij}b_{lk} = b_{ik}b_{lj}$. This implies that the factor rank of B' is 1, a contradiction. Therefore we have fr(B) = 1. By Lemma 3.2, there exist diagonal matrices D in $\mathcal{M}_{m\times m}(\mathbb{Z})$ and E in $\mathcal{M}_{n\times n}(\mathbb{Z})$ such that $X \circ B = DXE$ for all X in $\mathcal{M}_{m\times n}(\mathbb{Z})$. Since B has no zero entries, it follows that D and E are nonsingular. Let U = U'D and V = EV'. Then U and V are nonsingular. Furthermore, we have T(X) = UXV for all matrix X in $\mathcal{M}_{m\times n}(\mathbb{Z})$. Therefore T is a (U, V)-operator.

If (3.7) holds, then m = n and we can easily establish that for any matrix X in $\mathcal{M}_{m \times n}(\mathbb{Z}), T(X) = UX^t V$ for some $n \times n$ nonsingular matrices U and V. Therefore T is a (U, V)-operator.

4. Factor rank preserver

In this section, we characterize the linear operators which preserve the factor rank of all matrices over the ring of integers.

Proposition 4.1. Let A and B be matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with $\alpha A \neq \beta B$ for all nonzero scalars $\alpha, \beta \in \mathbb{Z}$. If fr(A) = fr(B) = 1, then there exists a factor rank-1 matrix C in $\mathcal{M}_{m \times n}(\mathbb{Z})$ such that fr(A + C) = 1 and fr(B + C) = 2.

Proof. Since fr(A) = fr(B) = 1, it follows from $\alpha A \neq \beta B$ that either fr(A+B) = 2 or fr(A+B) = 1. For the case of fr(A+B) = 2, the conclusion is satisfied by letting C = A. So we may assume that fr(A+B) = 1. By Lemma 2.3, A and B have an irreducible common factor. If A and B have an irreducible common left factor, then we may write A and B as

$$A = \boldsymbol{a} \, \boldsymbol{x}^t = [x_1 \boldsymbol{a}, \cdots, x_n \boldsymbol{a}] \quad \text{and} \quad B = \boldsymbol{a} \, \boldsymbol{y}^t = [y_1 \boldsymbol{a}, \cdots, y_n \boldsymbol{a}],$$

where \boldsymbol{a} is an irreducible vector. Then we have $\alpha \boldsymbol{x} \neq \beta \boldsymbol{y}$ for all nonzero integers α and β because $\alpha A \neq \beta B$. Since $\boldsymbol{a} = [a_i]$ is not zero-vector, $a_i \neq 0$ for some $i = 1, \dots, m$. Let

$$C = \begin{cases} \mathbf{e}_j^{(m)} \mathbf{x}^t & \text{if } a_j = 0 \text{ for some } j \neq i, \\ \mathbf{e}_i^{(m)} \mathbf{x}^t & \text{otherwise.} \end{cases}$$

Then C is a matrix in $\mathcal{M}_{m \times n}(\mathbb{Z})$ with fr(C) = 1. Moreover fr(A+C) = 1 because A and C have a common right factor. But B and C have neither a common left factor nor a common right factor. It follows from Lemma 2.3 that fr(B+C) = 2.

Similarly, a parallel argument holds if A and B have an irreducible common right factor.

Lemma 4.2. Let T be a factor rank-1 preserver on $\mathcal{M}_{m \times n}(\mathbb{Z})$. If T is not injective, then T decreases the factor rank of some factor rank-2 matrix.

Proof. By the similar proof to that of Theorem 3.3, we can see that T is a (U, V)-operator if T is a factor rank-1 preserver and is injective in the set of all factor rank-1

matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$. If *T* is not injective, then *T* is not a (U, V)-operator. From above fact we have that *T* is not injective in the set of all factor rank-1 matrices in $\mathcal{M}_{m \times n}(\mathbb{Z})$. Thus there exist distinct factor rank-1 matrices *X* and *Y* such that T(X) = T(Y). Suppose that there exist distinct nonzero integers α and β such that $\alpha X = \beta Y$. Then we have

$$\alpha T(X) = T(\alpha X) = T(\beta Y) = \beta T(Y) = \beta T(X).$$

Since \mathbb{Z} has no zero divisors and $T(X) \neq O$, we have $\alpha = \beta$, a contradiction. So, we may assume that $\alpha X \neq \beta Y$ for all nonzero scalars $\alpha, \beta \in \mathbb{Z}$. By Proposition 4.1, there exists a factor rank-1 matrix C such that fr(X+C) = 1 while fr(Y+C) = 2. But we then have T(Y+C) = T(X+C) so that fr(T(Y+C)) = fr(T(X+C)) = 1 because T is a factor rank-1 preserver. Therefore T decreases the factor rank of some factor rank-2 matrix.

Theorem 4.3. Let T be a linear operator on $\mathcal{M}_{m \times n}(\mathbb{Z})$. Then the following are equivalent;

- (i) T is an injective factor rank-1 preserver;
- (ii) T is a (U, V)-operator;
- (iii) T is a factor rank preserver;
- (iv) T is a factor rank-1 and factor rank-2 preserver.

Proof. It follows from Theorem 3.3 that (i) and (ii) are equivalent. Statement (ii) implies (iii) by Lemma 3.1. Clearly, (iii) implies (iv). Lemma 4.2 shows if T preserves the factor ranks of all factor rank-1 matrices and factor rank-2 matrices, then T is injective. Thus, (iv) implies (i).

Thus we have characterized the linear operators that preserve the factor rank of integer matrices.

References

- L. B. Beasley, A. E. Guterman, Sang-Gu Lee and S. Z. Song, *Linear preservers of zeros of matrix polynomials*, Linear Algebra Appl., 401(2005), 325-340.
- [2] L. B. Beasley, S. Z. Song, K. T. Kang and B. K. Sarma, Column ranks and their preservers over nonnegative real matrices, Linear Algebra Appl., 399(2005), 3-16.
- [3] C. Lautemann, Linear transformations on matrices: Rank preservers and determinant preservers, Linear and Multilinear Algebra, 10(1981), 343-345.
- M. Marcus and B. Moyls, *Linear transformations on algebras of matrices*, Canad. J. Math., **11**(1959), 61-66.

- [5] M. Marcus and B. Moyls, Transformations on tensor product spaces, Pacific J. Math., 9(1959), 1215-1221.
- [6] S. Z. Song, Linear operators that preserve maximal column ranks of nonnegative integer matrices, Proc. Amer. Math. Soc., 126(1998), 2205-2211.
- [7] S. Z. Song, K. T. Kang and S. Yi, Perimeter preservers of nonnegative integer matrices, Comment. Math. Univ. Carolinae, 45(2004), 9-15.