김석찬 Changwon National University

Singular Representation and Finite Element Methods

AM-14

Let Ω be a bounded, open, and polygonal domain in \mathbb{R}^2 with re-entrant corners. We consider the following Partial Differential Equations:

$$\begin{cases}
(I - \nabla \nabla \cdot + \nabla^{\perp} \nabla \times) \mathbf{u} &= \mathbf{f} & \text{in } \Omega, \\
\mathbf{n} \cdot \mathbf{u} &= 0 & \text{on } \Gamma_{N}, \\
\nabla \times \mathbf{u} &= 0 & \text{on } \Gamma_{N}, \\
\mathbf{r} \cdot \mathbf{u} &= 0 & \text{on } \Gamma_{D}, \\
\nabla \cdot \mathbf{u} &= 0 & \text{on } \Gamma_{D},
\end{cases}$$
(1)

where the symbol $\nabla \cdot$ and ∇ stand for the divergence and gradient operators, respectively; $\mathbf{f} \in L^2(\Omega)^2$ is a given vector function; $\partial \Omega = \Gamma_D \cup \Gamma_N$ is the partition of the boundary of Ω ; \mathbf{n} is the outward unit vector normal to the boundary and \mathbf{r} represents the unit vector tangent to the boundary oriented counterclockwise. For simplicity, assume that both Γ_D and Γ_N are nonempty. Denote the curl operator in R^2 by

$$\nabla \times = (-\partial_2, \partial_1)$$

and its formal adjoint by

$$\nabla^{\perp} = \begin{pmatrix} \partial_2 \\ -\partial_1 \end{pmatrix}.$$

Consider a weak formulation(WF); Find $u \in V$ such that

$$a(\mathbf{u}, \mathbf{v}) := (\mathbf{u}, \mathbf{v}) + (\nabla \cdot \mathbf{u}, \nabla \cdot \mathbf{v}) + (\nabla \times \mathbf{u}, \nabla \times \mathbf{v}) = (\mathbf{f}, \mathbf{v}), A \mathbf{v} \in V.$$
 (2) We assume there is only one singular corner.

There are many methods to deal with the domain singularities. We introduce them shortly and we suggest a new Finite Element Methods by using Singular representation for the solution.