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ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING

THE FRACTIONAL p-LAPLACIAN IN RN

In Hyoun Kim, Yun-Ho Kim, and Kisoeb Park

Abstract. We are concerned with the following fractional p-Laplacian

inclusion:

(−∆)spu+ V (x)|u|p−2u ∈ λ[f(x, u(x)), f(x, u(x))] in RN ,

where (−∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p <

+∞, sp < N , and f : RN × R → R is measurable with respect to each

variable separately. We show that our problem with the discontinuous

nonlinearity f admits at least one or two nontrivial weak solutions. In
order to do this, the main tool is the Berkovits-Tienari degree theory for

weakly upper semicontinuous set-valued operators. In addition, our main

assertions continue to hold when (−∆)spu is replaced by any non-local
integro-differential operator.

1. Introduction

In the present paper, we consider the existence of nontrivial weak solution
to the fractional p-Laplacian inclusion:

(P ) (−∆)spu+ V (x)|u|p−2u ∈ λ[f(x, u(x)), f(x, u(x))] in RN ,

where the fractional p-Laplacian operator (−∆)sp is defined by

(−∆)spu(x) = 2 lim
ε↘0

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+ps
dy, x ∈ RN .

Here, 0 < s < 1 < p < +∞, sp < N , Bε(x) := {y ∈ RN : |x − y| < ε} and
the measurable functions f, f are induced by a possibly discontinuous function

f : RN × R → R at the second variable. For the motivations that lead to the
study on boundary value problems of some partial differential equations with
discontinuous nonlinearities, we refer the reader to the contribution [16, 17] of
Chang. Afterward, many efforts have been devoted to the study of variational
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problems for elliptic equation with this nonlinearity; see for example [2, 4, 5, 8,
11,12,23,34] and the references therein.

In the last years, a great deal of attention has been paid to the study of non-
linear equations involving fractional and nonlocal operators of elliptic type in
the description of the mathematical theory to concrete some phenomena such
as social sciences, fractional quantum mechanics, materials science, continuum
mechanics, phase transition phenomena, image process, game theory and Levy
processes; see for instance [9,10,15,21,25,29,30] and so on. Especially, in con-
trast with the usual elliptic partial differential equations which are governed by
local differential operators like the p-Laplace operator, discriminated character-
ization of the fractional operator in (P ) is the nonlocality, in the sense that this
operator takes care of the behavior of the solution in the whole space. In this re-
spect, increasing research of elliptic equations involving the fractional Laplacian
type problems has been interesting to many people; see [6, 13, 22, 27, 32, 37, 41]
and the references therein. Meanwhile, most of results have been obtained by
a critical point theory, initially introduced by Ambrosetti and Rabinowitz in
[3], which is one of the main tools for finding solutions to elliptic equations of
variational type; see for example [6, 18, 22, 26, 27, 33, 36, 37, 41]. Especially, the
authors in [22] have been investigated the existence and multiplicity results for
the fractional p-Laplacian type problems:{

(−∆)spu = λf(x, u) in Ω,

u = 0 on RN\Ω,

where f satisfies a Carathéodory condition; see [33] for p = 2.
The first purpose of this paper, as observing new approach deeply different

from that studied in previous related works [6,18,22,26,27,33,36,37,41], is to
obtain the existence of at least one nontrivial weak solution for the problem
(P ) without employing the variational method, in particular, mountain pass
theorem in [3]. More precisely, by using the Berkovits-Tienari degree theory
in [8] for upper semicontinuous set-valued operators of class (S+) which is a
generalization of the single-valued version due to Browder [14], we show that
the corresponding integral operator equation to the given problem has a critical
point. To do this, we analyze some properties of an operator associated with
the discontinuous nonlinear term which plays an important role in applying the
degree theory of this type. In particular, we investigate that this operator is a
locally Lipschitz functional with compact gradient. However the main difficulty
in showing this assertion in RN arises from the lack of the compactness of the
Sobolev embedding. To overcome the difficulty of the noncompact embedding,
we utilize a new compact embedding result under suitable conditions on the
potential V (x) which is originally introduced by Bartsch and Wang [7].

The second aim of this paper is to obtain the existence of at least two
nontrivial weak solutions for the problem (P ). However, in our first main result,
no additional information is given on the existence of at least two solutions.
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We point out that the strategy for overcoming this difficulty is to utilize the
existence of a nontrivial global minimizer for the energy functional to find
another solution. As far as we are aware, there were no such existence results
for fractional p-Laplacian problems, and we are only aware of the paper [24] in
this situation.

Lastly, our main assertions continue to hold when (−∆)spu in (P ) is replaced
by any non-local integro-differential operator LK , defined pointwise by

LKu(x) = 2

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))K(x− y)dy for all x ∈ RN ,

where K : RN \ {0} → (0,+∞) will be specified later.
This paper is structured as follows. First we recall briefly the Berkovits-

Tienari degree theory for weakly upper semicontinuous set-valued operators of
class (S+) and some basic properties for locally Lipschitz continuous functionals
in reflexive Banach spaces. Next, using the fact that every critical point of
the energy functional associated with (P ) is a weak solution for our problem,
we obtain the existence of at least one or two nontrivial weak solutions for
problem (P ). Finally we present that the existence and multiplicity results
for the integro differential operator which is a generalization of the fractional
p-Laplacian are still satisfied.

2. Preliminaries and main result

We first give the Berkovits-Tienari degree theory for weakly upper semicon-
tinuous set-valued operators of class (S+) which is based on the papers [8,23].
Let X be a real Banach space and X∗ be its dual space with dual pairing
〈·, ·〉. Given a nonempty subset Ω of X, let Ω and ∂Ω denote the closure and
the boundary of Ω in X, respectively. Let Br(x) denote the open ball in X
of radius r > 0 centered at x. The symbol → (⇀) stands for strong (weak)
convergence.

Definition 2.1. Let U be an open set in X and let Y be another real Banach
space. A set-valued operator h : U → 2Y is said to be

(1) upper semicontinuous if the set h−1(A) = {u ∈ U |h(u) ∩ A 6= ∅} is
closed for all closed sets A in Y .

(2) weakly upper semicontinuous if h−1(A) is closed for all weakly closed
sets A in Y .

(3) compact if it is upper semicontinuous and the image of any bounded
set is relatively compact.

(4) bounded if h maps bounded sets into bounded sets.
(5) locally bounded if for each u ∈ U there exists a neighborhood V of u

such that the set h(V ) =
⋃
u∈V h(u) is bounded.

Definition 2.2. Let U be an open set in X. A set-valued operator h : U →
2X
∗ \ ∅ is said to be
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(1) pseudomonotone if for any sequence {un} in U and for any sequence
{wn} in X∗ with wn ∈ h(un) such that un ⇀ u in X and

lim sup
n→∞

〈wn, un − u〉 ≤ 0,

we have limn→∞ 〈wn, un − u〉 = 0 and if u ∈ U and wj ⇀ w in X∗ for
some subsequence {wj} of {wn}, then w ∈ h(u).

(2) quasimonotone if for any sequence {un} in U and for any sequence
{wn} in X∗ with wn ∈ h(un) such that un ⇀ u in X, we have

lim inf
n→∞

〈wn, un − u〉 ≥ 0.

The following lemma means that operators of class (S+) are invariant under
quasimonotone perturbations.

Lemma 2.3 ([23]). Let U be an open set in a real reflexive Banach space X.
Suppose that h : U → 2X

∗
is a set-valued operator with nonempty values and

S : U → X∗ is a single-valued operator. If h is quasimonotone and S is of
class (S+), then the sum h+ S is of class (S+).

Remark 2.4. It is known that in this case the duality operator j : X → X∗ is
injective, bounded, continuous, and of class (S+), and such that 〈jx, x〉 = ‖x‖2
and ‖jx‖ = ‖x‖ for x ∈ X; see e.g., [40].

As a crucial tool for obtaining our result, we present the Berkovits-Tienari
degree theory for weakly upper semicontinuous set-valued operators of class
(S+) in reflexive Banach spaces.

Lemma 2.5 ([4]). Let G be any bounded open subset of X and let h : G→ 2X
∗

be of class (S+), locally bounded, and weakly upper semicontinuous such that
h(u) is nonempty, closed, and convex for each u ∈ G. If w /∈ h(∂G), then an
integer d (h,G,w) is defined, called the degree of h on G over w, and the degree
has the following properties:

(a) (Existence) If d (h,G,w) 6= 0, then w ∈ h(G).
(b) (Homotopy Invariance) Suppose that H : [0, 1] × G → 2X

∗
is of class

(S+), locally bounded, and weakly upper semicontinuous such that
H(t, u) is nonempty, closed, and convex for each (t, u) ∈ [0, 1] × G.
If c : [0, 1] → X∗ is a continuous path in X∗ such that c(t) /∈ H(t, u)
for all (t, u) ∈ [0, 1] × ∂G, then d (H(t, ·), G, c(t)) is constant for all
t ∈ [0, 1].

(c) (Normalization) If w ∈ J(G), then we have d (J,G,w) = 1. In partic-
ular, if 0 ∈ G, then d (εJ,G, 0) = 1 for every ε > 0.

Here, a homotopy H : [0, 1] × G → 2X
∗

is of class (S+) in the sense that
for any sequence {tn, un} in [0, 1] × G and for any sequence {wn} in X∗ with
wn ∈ H(tn, un) such that tn → t, un ⇀ u in X, and

lim sup
n→∞

〈wn, un − u〉 ≤ 0,
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we have un → u in X.
Next we briefly introduce the following definitions and some properties for

locally Lipschitz continuous functionals. For a real Banach space (X, || · ||X),
we say that a functional h : X → R is called locally Lipschitz when, for every
u ∈ X, there corresponds a neighborhood U of u and a constant L ≥ 0 such
that

(2.1) |h(v)− h(w)| ≤ L||v − w||X for all v, w ∈ U.

Let u, v ∈ X. The symbol h◦(u; v) indicates the generalized directional deriv-
ative of h at point u along direction v, namely

h◦(u; v) := lim sup
w→u,t→0+

h(w + tv)− h(w)

t
.

The generalized gradient of the function h at u, denoted by ∂h(u), is the set

∂h(u) :=
{
u∗ ∈ X∗ : 〈u∗, v〉 ≤ h◦(u; v) for all v ∈ X

}
.

A functional h : X → R is called Gâteaux differentiable at u ∈ X if there is
ϕ ∈ X∗(denoted by h′(u)) such that

lim
t→0+

h(u+ tv)− h(u)

t
= h′(u)(v)

for all v ∈ X. It is called continuously Gâteaux differentiable if it is Gâteaux
differentiable for any u ∈ X and the function u → h′(u) is a continuous map
from X to its dual X∗. We recall that if h is continuously Gâteaux differ-
entiable, then it is locally Lipschitz and one has h◦(u; v) = h′(u)(v) for all
u, v ∈ X. If h : X → R is a locally Lipschitz functional and x ∈ X, then we
say that x is a critical point of h if it satisfies the inequality

h◦(x; y) ≥ 0

for all y ∈ X or, equivalently, 0 ∈ ∂h(x).
We give some properties of the locally Lipschitz functional which will be

used later.

Proposition 2.6 ([19]). Let h : X → R be locally Lipschitz functional. Then

(i) (−h)◦(u; z) = h◦(u;−z) for all u, z ∈ X;
(ii) h◦(u; z) = max{〈u∗, z〉X : u∗ ∈ ∂h(u)} ≤ L||z|| with L as in (2.1) for

all u, z ∈ X;
(iii) Let j : X → R be a continuously differentiable function. Then (h +

j)◦(u; z) = h◦(u; z) + 〈j′(u), z〉X for all u, z ∈ X;
(iv) (Lebourg’s mean value theorem) Let u and v be two points in X. Then,

there exist a point w in the open segment between u and v, and a
u∗ω ∈ ∂h(ω) such that

h(u)− h(v) = 〈u∗ω, u− v〉X ;
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(v) Let Y be a Banach space and j : Y → X a continuously differentiable
function. Then h ◦ j is locally Lipschitz and

∂(h ◦ j)(u) ⊆ ∂h(j(y)) ◦ j′(y) for all y ∈ Y ;

(vi) If h1, h2 : X → R are locally Lipschitz, then

∂(h1 + h2)(u) ⊆ ∂h1(u) + ∂h2(u);

(vii) ∂h(u) is convex and weakly* compact and the set-valued mapping ∂h :
X → 2X

∗
is weakly* u.s.c.;

(viii) ∂(λh)(u) = λ∂h(u) for every λ ∈ R.

Lemma 2.7 ([38]). Let h : X → R be a locally Lipschitz functional with
compact gradient. Then, h is sequentially weakly continuous, i.e., if {un} is a
sequence in X such that un ⇀ u in X as n→∞, then h(un)→ h(u) in X as
n→∞.

From now on we study the problem (P ) with discontinuous nonlinearity
which involves the fractional p-Laplacian. Let s ∈ (0, 1) and p ∈ (1,+∞). We
define the fractional Sobolev space W s,p(RN ) as follows:

W s,p(RN ) :=

{
u ∈ Lp(RN ) :

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy < +∞

}
,

endowed with the norm

||u||W s,p(RN ) :=

(
||u||p

Lp(RN )
+ |u|p

W s,p(RN )

) 1
p

,

where

||u||p
Lp(RN )

:=

∫
RN

|u|p dx and |u|p
W s,p(RN )

:=

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy.

Let s ∈ (0, 1) and 1 < p < +∞. Then W s,p(RN ) is a separable and re-
flexive Banach space. Also, the space C∞0 (RN ) is dense in W s,p(RN ), that is
W s,p

0 (RN ) = W s,p(RN ) (see e.g. [1, 31]).

Lemma 2.8 ([28, 31]). Let 0 < s < 1 < p < +∞ with ps < N . Then the
space W s,p(RN ) is continuously embedded in Lq(RN ) for any q ∈ [p, p∗s] where
p∗s = Np/(N − sp) is the fractional critical exponent.

Let the potential V ∈ C(RN ) be a continuous function. Suppose that

(V) V ∈ C(RN ), infx∈RN V (x) > 0, meas
{
x ∈ RN : V (x) ≤M

}
< +∞ for

all M ∈ R.

When V satisfies (V), the basic space

Xs(RN ) :=
{
u ∈W s,p(RN ) : V |u|p ∈ L1(RN )

}
denote the completion of C∞0 (RN ) with respect to the norm

||u||Xs(RN ) :=

(
|u|p

W s,p(RN )
+ ||V

1
pu||p

Lp(RN )

) 1
p

.
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Lemma 2.9 ([36]). Let 0 < s < 1 < p < +∞ with ps < N and suppose that the
assumption (V) holds. Then there is a compact embedding Xs(RN ) ↪→ Lq(RN )
for q ∈ [p, p∗s).

Let us define a functional J : Xs(RN )→ R by

J(u) =
1

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy +

1

p

∫
RN

V (x) |u(x)|p dx.

Then the functional J is well defined on Xs(RN ), J ∈ C1(Xs(RN ),R) and its
Fréchet derivative is given by

〈J ′(u), v〉 =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx

for any v ∈ Xs(RN ) where 〈·, ·〉 denotes the pairing of Xs(RN ) and its dual
(Xs(RN ))∗; see [32].

Lemma 2.10 ([32]). Let 0 < s < 1 < p < +∞ with ps < N and suppose that
the assumption (V) holds. Let 0 < s < 1 < p < +∞. Then the functional
J ′ : Xs(RN ) → (Xs(RN ))∗ is of type (S+), i.e., if un ⇀ u in Xs(RN ) and
lim supn→∞ 〈J ′(un)− J ′(u), un − u〉 ≤ 0, then un → u in Xs(RN ) as n→∞.

Corollary 2.11 ([32]). Let 0 < s < 1 < p < +∞ with ps < N and suppose
that the assumption (V) holds. Then the functional J ′ is strictly monotone,
coercive and hemicontinuous on Xs(RN ). Furthermore, the functional J ′ is a
bounded homeomorphism onto (Xs(RN ))∗.

Proof. It is obvious that the operator J ′ is strictly monotone, coercive and
hemicontinuous on X. By the Browder-Minty theorem, the inverse operator
(J ′)−1 exists; see Theorem 26.A in [39]. If we apply Lemma 2.10, then the
proof of continuity of the inverse operator (J ′)−1 is analogous to that in the
case of the p-Laplacian and is omitted. �

We assume that

(F1) f is measurable with respect to each variable separately.

(F2) There exist nonnegative functions ρ ∈ Lp′(RN ) and σ ∈ L∞(RN ) such
that

|f(x, t)| ≤ ρ(x) + σ(x) |t|p−1

for all (x, t) ∈ RN × R.

Moreover, we denote by G the family of all locally bounded functions f : RN ×
R→ R satisfying the following conditions:

(m1) f(·, z) is measurable for every z ∈ R;
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(m2) there exists a set Ω0 ⊆ RN with m(Ω0) = 0 such that the set

Df :=
⋃

x∈RN\Ω0

{z ∈ R : f(x, ·) is discontinuous at z}

has measure zero.
(m3) for f : RN × R→ R and (x, t) ∈ RN × R, the functions

f(x, z) := lim
δ→0+

ess inf
|ξ−z|<δ

f(x, ξ) and f(x, z) := lim
δ→0+

ess sup
|ξ−z|<δ

f(x, ξ)

are superpositionally measurable, that is, when f(·, u(·)) and f(·, u(·))
are measurable on RN for any measurable function u : RN → R.

Clearly, if f ∈ G, then f satisfies (F1). For fixed x ∈ RN , as the function of t,
the function F is defined by

F (x, t) :=

∫ t

0

f(x, ξ) dξ for (x, t) ∈ RN × R.

The generalized gradients of the function t do exist, that is,

∂F (x, t) := ∂tF (x, t) = ∂zF
◦(x, t; θ),

where

F ◦(x, t; z) = lim sup
h→0,η↓0

f(x, t+ h+ ηz)− f(x, t+ h)

h
.

Define the functional Ψ : Xs(RN )→ R by

Ψ(u) =

∫
RN

F (x, u) dx.

Next we define a functional Iλ : Xs(RN )→ R by

Iλ(u) = J(u)− λΨ(u).

Proposition 2.12 ([17]). If f ∈ G satisfies (F2), then F : X → R is a locally
Lipschitz functional in Lp(RN ) and

∂Ψ(u) ⊆ ∂F (x, u) = [f(x, u(x)), f(x, u(x))]

for almost all x ∈ RN .

Definition 2.13. Let 0 < s < 1 < p < +∞ with ps < N and suppose that
the assumption (V) holds. We say that u ∈ Xs(RN ) is a weak solution of the
problem (P ) if there exists a function w ∈ ∂F (x, u) for almost all x ∈ RN such
that ∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx = λ

∫
RN

wv dx

for all v ∈ Xs(RN ).
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In view of Proposition 2.12, this equation corresponds to the following op-
erator problem

0 ∈ (J ′ − λ∂Ψ)(u).

Lemma 2.14. Let 0 < s < 1 < p < +∞ with ps < N and suppose that the
assumption (V) holds. If f ∈ G satisfies (F2), then Ψ : Xs(RN ) → R is a
locally Lipschitz functional with compact gradient.

Proof. We firstly prove that Ψ is locally Lipschitz functional. We denote by κp
the constant of the embedding Xs(RN ) ↪→ Lp(RN ). Let u, v ∈ Xs(RN ). Apply
Lemma 2.9 and the Hölder inequality to obtain

|Ψ(u)−Ψ(v)|

≤
∫
RN

|F (x, u)− F (x, v)| dx

≤
∫
RN

(ρ(x) + σ(x) |u(x)|p−1
+ ρ(x) + σ(x) |v(x)|p−1

) |u(x)− v(x)| dx

≤ 2||ρ||Lp′ (RN )||u− v||Lp(RN ) + ||σ||L∞(RN )(||u||p−1
Lp(RN )

+ ||v||p−1
Lp(RN )

)||u− v||Lp(RN )

≤ 2κp||ρ||Lp′ (RN )||u− v||Xs(RN ) + κp||σ||L∞(RN )(||u||p−1
Xs(RN )

+ ||v||p−1
Xs(RN )

)||u− v||Xs(RN ).

From the above computation, it is obvious that Ψ is locally Lipschitz functional.
Now, we prove that ∂Ψ(u) is compact. Apply Lebourg’s mean value theorem

and Proposition 2.6(ii), for every v ∈ Xs(RN ) we choose an element u in
Xs(RN ) and u∗ ∈ ∂Ψ(u) such that

(2.2) 〈u∗, v〉 ≤ Ψ◦(u; v)

and Ψ◦(u; ·) : Lp(RN ) → R is a subadditive function; see Proposition 2.6.
Furthermore, u∗ ∈ (Xs(RN ))∗ is also continuous with respect to the topology
induced on Xs(RN ) by the norm || · ||Lp(RN ). In fact, if we set a Lipschitz
constant L > 0 for Ψ in a neighborhood of u, then it follows from Proposition
2.6(ii) that for all z ∈ Xs(RN ) we obtain

〈u∗, z〉 ≤ L||z||Lp(RN ), 〈u∗,−z〉 ≤ L|| − z||Lp(RN ),

and thus

〈u∗, z〉 ≤ L||z||Lp(RN ).

Hence, from the Hahn-Banach Theorem, u∗ can be extended to an element of
the dual Lp(RN ) (complying with (2.2)) for every v ∈ Lp(RN ), this means that

u∗ can be regarded as an element of Lp
′
(RN ) and write for every v ∈ Lp(RN )

(2.3) 〈u∗, v〉 =

∫
RN

u∗(x)v(x) dx.

Let {un} be a sequence in Xs(RN ) such that ||un||Xs(RN ) ≤ M for all n ∈ N
and for some positive constant M , and take u∗Fn

∈ ∂Ψ(un) for all n ∈ N. From
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(F2) and (2.3) we have

〈u∗Fn
, v〉 =

∫
RN

u∗Fn
v(x) dx ≤

∫
RN

|u∗Fn
||v(x)| dx

≤
∫
RN

(ρ(x) + σ(x) |un(x)|p−1
)|v(x)| dx

≤ ||ρ||Lp′ (RN )||v||Lp(RN ) + ||σ||L∞(RN )||un||p−1
Lp(RN )

||v||Lp(RN )

≤ (1 + κp)
p(||ρ||Lp′ (RN ) + ||σ||L∞(RN )M

p−1)||v||Xs(RN )

for all n ∈ N and for all u ∈ Xs(RN ). Hence

||u∗Fn
||(Xs(RN ))∗ ≤ (1 + κp)

p(||ρ||Lp′ (RN ) + ||σ||L∞(RN )M
p−1),

namely, the sequence {u∗Fn
} is bounded. So, passing to a subsequence, we have

that the sequence {u∗Fn
} weakly converges to u∗F in (Xs(RN ))∗ as n→∞. We

will prove that {u∗Fn
} has a strong convergence in (Xs(RN ))∗. Suppose to the

contrary that there exists some ε0 > 0 such that

||u∗Fn
− u∗F ||(Xs(RN ))∗ > ε0

for all n ∈ N. Then there is a vn ∈ B1(0) such that

(2.4) 〈u∗Fn
− u∗F , vn〉 > ε0.

Noting that {vn} is a bounded sequence and passing to a subsequence, one has

vn ⇀ v in Xs(RN ), ||vn − v||Lp(RN ) → 0 as n→∞
by Lemma 2.9. So, for n large enough, we have∣∣〈u∗Fn

− u∗F , v〉
∣∣ < ε0

3
, |〈u∗F , vn − v〉| <

ε0

3
,

||vn − v||Lp(RN ) <
ε0

3(||ρ||Lp′ (RN ) + ||σ||L∞(RN )κpp−1Mp−1)
.

Then

〈u∗Fn
− u∗F , vn〉 = 〈u∗Fn

− u∗F , v〉+ 〈u∗Fn
, vn − v〉 − 〈u∗F , vn − v〉

<
2ε0

3
+

∫
RN

|u∗Fn
||vn(x)− v(x)| dx

≤ 2ε0

3
+

∫
RN

(ρ(x) + σ(x) |un(x)|p−1
)|vn(x)− v(x)| dx

≤ 2ε0

3
+ ||ρ||Lp′ (RN )||vn − v||Lp(RN )

+ ||σ||L∞(RN )||un||p−1
Lp(RN )

||vn − v||Lp(RN )

≤ 2ε0

3
+ (||ρ||Lp′ (RN ) + ||σ||L∞(RN )κp

p−1Mp−1)||vn − v||Lp(RN )

< ε0,

which contradicts to (2.4). �



FRACTIONAL p-LAPLACIAN EQUATION 1879

Now we give that every critical point of the functional Iλ is weak solution for
our problem. The basic idea of the proof of the following consequence comes
from [12]; see also [5].

Lemma 2.15. Let 0 < s < 1 < p < +∞ with ps < N and suppose that the
assumption (V) holds. Assume that f ∈ G satisfies (F2). Then the critical
points of the functional Iλ are weak solutions for the problem (P ).

Proof. If u0 ∈ Xs(RN ) is a critical point of Iλ, then one has

Iλ
◦(u0; v) = (J − λΨ)◦(u0; v) ≥ 0 for all v ∈ Xs(RN ).

Since J ∈ C1(Xs(RN ),R), we have, by Proposition 2.6, in particular

0 ≤ (J−λΨ)◦(u0; v) = J ′(u0; v)+(−λΨ)◦(u0; v) = 〈J ′(u0), v〉+(−λΨ)◦(u0; v),

whence
−〈J ′(u0), v〉 ≤ (−λΨ)◦(u0; v) for all v ∈ Xs(RN ).

This means
−J ′(u0) ∈ ∂(−λΨ)(u0),

namely

(2.5) J ′(u0) ∈ ∂(λΨ)(u0).

Since Xs(RN ) is compactly embedded and dense in Lp(RN ), from Theorem 2.2
in [17] one has

∂(−λΨ)(u0) ⊆ ∂(−λΨ|Lp(RN ))(u0).

From (F2) and because −λf ∈ G, we deduce that f, f , −λf , and −λf satisfy
all the assumptions in Theorem 2.1 of [17]. Thus

∂(Ψ|Lp(RN ))(u0) ⊆ [f(x, u0(x)), f(x, u0(x))]p′ ,

where

[f(·, u0(·)), f(·, u0(·))]p′

= {ω ∈ Lp
′
(RN ) : ω(x) ∈ [f(x, u0(x)), f(x, u0(x))] a.e. in RN}.

Using (2.5),

J ′(u0) ∈ λ[f(·, u0(·)), f(·, u0(·))]p′
and then we have

(−∆)spu0 + V (x) |u|p−2
u ∈ λ[f(·, u0(·)), f(·, u0(·))]p′ .

Thus, Radon-Nikodym theorem implies that there exists a unique

ω0(·) ∈ λ[f(·, u0(·)), f(·, u0(·))]p′
such that∫

RN

∫
RN

|u0(x)− u0(y)|p−2(u0(x)− u0(y))(v(x)− v(y))

|x− y|N+ps
dxdy

+

∫
RN

V (x) |u0(x)|p−2
u(x)v(x) dx =

∫
RN

ω0(x)v(x) dx
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for each v ∈ Xs(RN ). This means that u0 is a weak solution of the problem

(−∆)spu+ V (x) |u|p−2
u = ω0(x) in RN .

This completes the proof. �

Now we obtain the positivity of the infimum of all eigenvalues for the problem

(E) (−∆)spu+ V (x)|u|p−2u = λ|u|p−2u in RN .

Although the idea of the proof is completely the same as in that of Lemma 3.1 in
[20], for the sake of convenience, we give the proof of the following proposition.

Proposition 2.16. Let 0 < s < 1 < p < +∞ with ps < N and suppose
that the assumption (V) holds. Then the eigenvalue problem (E) has a pair
(λ1, u1) of a principal eigenvalue λ1 and an eigenfunction u1 with λ1 > 0 and
0 < u1 ∈ Xs(RN ).

Proof. Set

λ1 = inf

{∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x) |v|p dx

}
the infimum being taken over all v such that

∫
RN |v|pdx = 1. We shall prove

that λ1 is the least eigenvalue of (E). The expression for λ1 presented above
will be referred to as its variational characterization. Obviously λ1 ≥ 0. Let
{vn}∞n=1 be the minimizing sequence for λ1, i.e.,

(2.6)

∫
RN

|vn|p dx = 1 and∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x) |vn|p dx = λ1 + δn

with δn → 0+ for n → ∞. It follows from (2.6) that ||vn||Xs(RN ) ≤ c for some

constant c > 0. The reflexivity of Xs(RN ) yields the weak convergence vn ⇀ u1

in Xs(RN ) for some u1 (at least for some subsequence of {vn}). The compact
embedding Xs(RN ) ↪→ Lp(RN ) implies the strong convergence vn → u1 in
Lp(RN ). It follows from (2.6) and the Minkowski inequality that

1 = lim
n→∞

(∫
RN

|vn|p dx
) 1

p

≤ lim
n→∞

(∫
RN

|vn − u1|p dx
) 1

p

+

(∫
RN

|u1|p dx
) 1

p

=

(∫
RN

|u1|p dx
) 1

p

,
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and analogously(∫
RN

|u1|p dx
) 1

p

≤
(∫

RN

|u1 − vn|p dx
) 1

p

+ lim
n→∞

(∫
RN

|vn|p dx
) 1

p

= 1.

Hence ∫
RN

|u1|p dx = 1.

In particular, u1 6≡ 0. The weak lower semicontinuity of the norm in Xs(RN )
yields

λ1 ≤
∫
RN

∫
RN

|u1(x)− u1(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x) |u1|p dx = ||u1||pX

≤ lim inf
n→∞

||vn||pX

= lim inf
n→∞

{∫
RN

∫
RN

|vn(x)− vn(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x) |vn|p dx

}
= lim inf

n→∞
(λ1 + δn) = λ1,

i.e.,

(2.7) λ1 =

∫
RN

∫
RN

|u1(x)− u1(y)|p

|x− y|N+ps
dxdy +

∫
RN

V (x) |u1|p dx.

It follows from (2.7) that λ1 > 0 and it is easy to see that λ1 is the least
eigenvalue of (E) with the corresponding eigenfunction u1.

Moreover, if u is an eigenfunction corresponding to λ1, then |u| is also an
eigenfunction corresponding to λ1. Hence we can suppose that u1 > 0 a.e. in
RN . �

Now, we are ready to state the main result of this paper. We investigate the
solvability of nonlinear elliptic equations involving the fractional p-Laplacian,
by using the Berkovits-Tienari degree theory for set-valued operators of class
(S+).

Theorem 2.17. Let 0 < s < 1 < p < +∞ with ps < N and suppose that the
assumption (V) holds. Assume that f ∈ G satisfies (F2). If λλ1||σ||L∞(RN ) < 1,

then the problem (P ) admits at least one nontrivial weak solution in Xs(RN ).

Proof. Note by Corollary 2.11, Lemmas 2.7, 2.10, and 2.14 that the bounded
continuous operator J ′ is of class (S+) and −∂Ψ is quasimonotone. Hence,
taking into account Lemma 2.3 the sum J ′ − ∂(λΨ) is bounded, upper semi-
continuous, and of class (S+) or pseudomonotone. For each u ∈ Xs(RN ), we
can express as

〈w, u〉 =

∫
RN

wudx
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for some w ∈ ∂Ψ(u). Applying Hölder’s inequality, we assert that

−
∫
RN

wudx

≥ −
∫
RN

(ρ(x) + σ(x) |u(x)|p−1
)u dx

≥ −||σ||L∞(RN )

∫
RN

|u|p dx−
(∫

RN

|ρ(x)|p
′
dx

) 1
p′
(∫

RN

|u|p dx
) 1

p

≥ −λ1||σ||L∞(RN )||u||pXs(RN )
− λ

1
p

1 ||ρ||Lp′ (RN )||u||Xs(RN )

and hence

〈J ′(u)− λw, u〉 = ||u||p
Xs(RN )

− λ
∫
RN

wudx

≥
(
1− λλ1||σ||L∞(RN )

)
||u||p

Xs(RN )
− λλ

1
p

1 ||ρ||Lp′ (RN )||u||Xs(RN ).

This implies, owing to λλ1||σ||L∞(RN ) < 1 and p > 1, that there exists a positive
constant R such that

〈J ′(u)− λw, u〉 > 0 for all u ∈ Xs(RN ) with ||u||Xs(RN ) ≥ R and w ∈ ∂Ψ(u).

Observe by Remark 2.4 that the duality operator j : Xs(RN ) → (Xs(RN ))∗

is injective, bounded, continuous, and of class (S+), and such that 〈jx, x〉 =
||x||2Xs(RN ) and ||jx||(Xs(RN ))∗ = ||x||Xs(RN ) for x ∈ Xs(RN ). Let ε > 0 be

arbitrary but fixed. We consider a homotopy H : [0, 1] × BR(0) → 2(Xs(RN ))∗

defined by

H(t, u) := (1− t)(J ′ − ∂(λΨ))(u) + εju for (t, u) ∈ [0, 1]×BR(0).

Then the operators (J ′−∂(λΨ))+εj and j are of class (S+), the affine homotopy
H is also of class (S+). Moreover, we have 0 /∈ H(t, u) for all (t, u) ∈ [0, 1] ×
∂BR(0). The homotopy invariance and normalization properties of the degree
d imply that

d ((J ′ − ∂(λΨ)) + εj,BR(0), 0) = d (εj,BR(0), 0) = 1.

Put ε = 1/n for each n ∈ N. The existence property of the degree in Lemma
2.5 yields that there exist points un ∈ BR(0) and wn ∈ (J ′ − ∂(λΨ))(un) such
that

wn +
1

n
jun = 0.

Passing to a subsequence, if necessary, we may suppose that un ⇀ u in Xs(RN )
for some u ∈ Xs(RN ). Then it follows from the boundedness of {jun} that
wn → 0 in (Xs(RN ))∗ and hence

lim
n→∞

〈wn, un − u〉 = 0.

Note that the weak limit u belongs to the closed convex hull of the open ball
BR(0) and so u ∈ BR(0) ⊂ Xs(RN ). Since J ′ − ∂(λΨ) is pseudomonotone, we
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assert that the inclusion 0 ∈ (J ′ − ∂(λΨ))(u) has a solution in Xs(RN ) and so
u is a critical point of Iλ. In view of Lemma 2.15, the conclusion holds. This
completes the proof. �

Next we consider the existence of two distinct nontrivial weak solutions for
problem (P ). To do this, we need that the following additional condition on f :

(F3) There exists δ > 0 such that

f(x, t) ≥ s(x)tγ0−1

for almost all x ∈ RN and 0 < t ≤ δ, where s ≥ 0, s ∈ C(RN ,R) and
1 < γ0 < p.

Theorem 2.18. Let 0 < s < 1 < p < +∞ with ps < N and suppose that
the assumption (V) holds. Assume that f ∈ G satisfies (F2)–(F3). Then there
exists a positive constant λ∗ such that problem (P ) admits two nontrivial weak
solutions in Xs(RN ) in which one has negative energy and another has positive
energy for any λ ∈ (0, λ∗).

Proof. We first claim that there exists ϕ ∈ Xs(RN ) such that ϕ ≥ 0, ϕ 6= 0 and
Iλ(ηϕ) < 0 for η > 0 small enough. Let ϕ ∈ C∞0 (RN ) such that 0 ≤ ϕ(x) ≤ 1
for all x ∈ RN ; ϕ(x) ≡ 1 for all x ∈ BR(x0); ϕ(x) ≡ 0 for all x ∈ RN \B2R(x0),
where BR(x0) := {x ∈ RN : |x− x0| ≤ R}. Then it is obvious that ϕ ∈
Xs(RN ). Also it follows from (F3) that for any η ∈ (0, 1),

Iλ(ηϕ) = J(ηϕ)− λΨ(ηϕ)

=
1

p

∫
B2R(x0)

∫
B2R(x0)

|ηϕ(x)− ηϕ(y)|p

|x− y|N+ps
dxdy

+
1

p

∫
B2R(x0)

V (x) |ηϕ|p dx− λ
∫
B2R(x0)

F (x, ηϕ) dx

≤ ηp

p

(∫
B2R(x0)

∫
B2R(x0)

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dxdy +

∫
B2R(x0)

V (x) |ϕ|p dx

)

− λ
∫
B2R(x0)

ηγ0

γ0
|s(x)| |ϕ|γ0 dx

≤ ηp

p

(∫
B2R(x0)

∫
B2R(x0)

|ϕ(x)− ϕ(y)|p

|x− y|N+ps
dxdy +

∫
B2R(x0)

V (x) |ϕ|p dx

)

− ληγ0

γ0

∫
B2R(x0)

|s(x)| dx.

Choose a positive constant δ such that

0 < δ < min

{
1,

λp
γ0

∫
B2R(x0)

|s(x)| dx∫
B2R(x0)

∫
B2R(x0)

|ϕ(x)−ϕ(y)|p
|x−y|N+ps dxdy +

∫
B2R(x0)

V (x) |ϕ|p dx

}
,



1884 I. H. KIM, Y.-H. KIM, AND K. PARK

then η < δ1/(p−γ0) implies that

Iλ(ηϕ) < 0,

as claimed.
Let us define the quantity

λ∗ = min

{
%p−1

(
λ1||σ||L∞(RN )%

p−1 + pλ
1
p

1 ||ρ||Lp′ (RN )

)−1

,
(
λ1||σ||L∞(RN )

)−1
}
,

where % will be chosen later. Then for any u ∈ Xs(RN ) and λ ∈ (0, λ∗) it
follows from the assumption (F2) that

Iλ(u) = J(u)− λΨ(u)

=
1

p

∫
RN

∫
RN

|u(x)− u(y)|p

|x− y|N+ps
dxdy − λ

∫
RN

F (x, u) dx

≥ 1

p

(
||u||p

Xs(RN )
− λ||σ||L∞(RN )

∫
RN

|u|p dx
)

(2.8)

−
(∫

RN

|ρ(x)|p
′
dx

) 1
p′
(∫

RN

|u|p dx
) 1

p

≥ 1

p

(
1− λλ1||σ||L∞(RN )

)
||u||p

Xs(RN )
− λλ

1
p

1 ||ρ||Lp′ (RN )||u||Xs(RN ).

Since λλ1||σ||L∞(RN ) < 1 and p > 1, we conclude that

Iλ(u)→ +∞ as ||u||Xs(RN ) → +∞ for all u ∈ Xs(RN ) and λ ∈ (0, λ∗).

This means that Iλ is coercive for all λ ∈ (0, λ∗). By the coercivity of the
functional Iλ, we get that there exists a global minimizer u1 ∈ Xs(RN ) of Iλ
(Theorem 1.2 in [35]). This together with the above claim yields that

Iλ(u1) = inf
u∈Xs(RN )\{0}

Iλ(u) < 0.

Hence we deduce that u1 is a nontrivial global minimizer of the functional Iλ
in Xs(RN ) for any λ ∈ (0, λ∗).

Finally, we will establish that our problem has another weak solution with
positive energy. As in Theorem 2.17, we deduce that the functional Iλ has a
nontrivial critical point u. Denote it by u = u2 with ||u2||Xs(RN ) = % > 0. By
the inequality (2.8), we yield

Iλ(u2) ≥ 1

p

(
1− λλ1||σ||L∞(RN )

)
||u2||pXs(RN )

− λλ
1
p

1 ||ρ||Lp′ (RN )||u2||Xs(RN )

=
1

p

(
1− λλ1||σ||L∞(RN )

)
%p − λλ

1
p

1 ||ρ||Lp′ (RN )%

and thus, owing to the definition of λ∗, we assert that Iλ(u2) > 0 for any
λ ∈ (0, λ∗). Therefore, we conclude that u2 is another weak solution with
positive energy. This completes the proof. �
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3. Appendix

In this section, we consider the existence of weak solutions for equations
in RN , driven by a non-local integro-differential operator of elliptic type as
follows:

(PK) −LKu+ V (x)|u|p−2u ∈ λ[f(x, u(x)), f(x, u(x))] in RN ,

where K : RN \ {0} → (0,+∞) is a kernel function satisfying properties that

(K1) mK ∈ L1(RN ), where m(x) = min{|x|p, 1};
(K2) there exists θ > 0 such that K(x) ≥ θ|x|−(N+ps) for all x ∈ RN \ {0};
(K3) K(x) = K(−x) for all x ∈ RN \ {0}.

By the condition (K1), the function

(x, y) 7→ (u(x)− u(y))K(x− y)
1
p ∈ Lp(R2N )

for all u ∈ C∞0 (RN ). Let us denote by W s,p
K (RN ) the completion of C∞0 (RN )

with respect to the norm

||u||W s,p
K (RN ) :=

(
||u||p

Lp(RN )
+ |u|p

W s,p
K (RN )

) 1
p

,

where

|u|p
W s,p

K (RN )
:=

∫
RN

∫
RN

|u(x)− u(y)|pK(x− y) dxdy.

Lemma 3.1 ([37]). Let K : RN \ {0} → (0,∞) be a kernel function satisfy-
ing the conditions (K1)–(K3). Then if v ∈ W s,p

K (RN ), then v ∈ W s,p(RN ).
Moreover

||v||W s,p(RN ) ≤ max{1, θ−
1
p }||v||W s,p

K (RN );

From Lemmas 2.8 and 3.1, we can obtain the following assertion immediately.

Lemma 3.2 ([37]). Let K : RN \ {0} → (0,∞) satisfy the conditions (K1)–
(K3). Then there exists a positive constant C0 = C0(N, p, s) such that for any
v ∈W s,p

K (RN ) and p ≤ q ≤ p∗s

||v||p
Lq(RN )

≤ C0

∫
RN

∫
RN

|v(x)− v(y)|p

|x− y|N+ps
dxdy

≤ C0

θ

∫
RN

∫
RN

|u(x)− u(y)|pK(x− y) dxdy;

In this section, the basic space

Xs
K(RN ) :=

{
u ∈W s,p

K (RN ) : V |u|p ∈ L1(RN )
}

denote the completion of C∞0 (RN ) with respect to the norm

||u||Xs
K(RN ) :=

(
|u|p

W s,p
K (RN )

+ ||V
1
pu||p

Lp(RN )

) 1
p

,

where the function V satisfies the condition (V).
Combining with Lemmas 2.9 and 3.2, we get the following consequence.
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Lemma 3.3 ([36]). Let 0 < s < 1 < p < +∞ with ps < N and suppose that
conditions (V) and (K1)-(K3) are satisfied. Then there is a compact embedding
Xs
K(RN ) ↪→ Lq(RN ) for q ∈ [p, p∗s).

Definition 3.4. Let 0 < s < 1 < p < +∞ with ps < N and conditions (V)
and (K1)-(K3) are satisfied. We say that u ∈ Xs

K(RN ) is a weak solution of
the problem (PK) if there exists a function w ∈ ∂F (x, u) for almost all x ∈ RN
such that∫

RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

+

∫
RN

V (x) |u(x)|p−2
uv dx = λ

∫
RN

wv dx

for all v ∈ Xs
K(RN ).

Let us define a functional Jp,K : Xs
K(RN )→ R by

Jp,K(u) =
1

p

∫
RN

∫
RN

|u(x)− u(y)|pK(x− y) dxdy.

Then the functional Jp,K is well defined on Xs
K(RN ), Jp,K ∈ C1(X0,R) and

its Fréchet derivative is given by

〈J ′p,K(u), v〉 =

∫
RN

∫
RN

|u(x)− u(y)|p−2(u(x)− u(y))(v(x)− v(y))K(x− y) dxdy

for any v ∈ Xs
K(RN ) where 〈·, ·〉 denotes the pairing of Xs

K(RN ) and its dual
(Xs

K(RN ))∗; see [32].
Let us define the quantity

λ1,K = inf

{∫
RN

∫
RN

|v(x)− v(y)|pK(x− y) dxdy +

∫
RN

V (x) |v|p dx :

∫
RN

|v|pdx = 1

}
.

Arguing as in Proposition 2.6, we derive that λ1,K is the least eigenvalue of the
problem

−LKu+ V (x)|u|p−2u = λ|u|p−2u in RN .

Theorem 3.5. Let 0 < s < 1 < p < +∞ with ps < N and suppose that
conditions (V) and (K1)-(K3) are satisfied. Assume that f ∈ G satisfies (F2).
If λλ1,K ||σ||L∞(RN ) < 1, then the problem (PK) admits at least one nontrivial

weak solution in Xs
K(RN ).

Proof. If we replace Xs(RN ) and J by Xs
K(RN ) and JK , respectively, then

obvious modifications of the proofs of Lemmas 2.14 and 2.15 yield that the
same assertions hold. Therefore it follows upon proceeding the same way as
in the proof of Theorem 2.17 that the conclusion holds. This completes the
proof. �
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Theorem 3.6. Let 0 < s < 1 < p < +∞ with ps < N and suppose that
conditions (V) and (K1)-(K3) are satisfied. Assume that f ∈ G satisfies (F2)–
(F3). Then there exists a positive constant λ∗ such that problem (PK) admits
two nontrivial weak solutions in Xs

K(RN ) in which one has negative energy and
another has positive energy for any λ ∈ (0, λ∗).

Proof. The idea of the proof is essentially the same as that of the proof of
Theorem 2.18. �
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