DOI QR코드

DOI QR Code

LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK OVER THE BINARY BOOLEAN SEMIRING

  • Received : 2016.07.29
  • Published : 2017.07.01

Abstract

A Boolean rank one matrix can be factored as $\text{uv}^t$ for vectors u and v of appropriate orders. The perimeter of this Boolean rank one matrix is the number of nonzero entries in u plus the number of nonzero entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean rank one matrices, a rank one decomposition. The perimeter of a Boolean matrix A of Boolean rank k is the minimum over all Boolean rank one decompositions of A of the sums of perimeters of the Boolean rank one matrices. The arctic rank of a Boolean matrix is one half the perimeter. In this article we characterize the linear operators that preserve the symmetric arctic rank of symmetric Boolean matrices.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. L. B. Beasley, Preservers of term ranks and star cover numbers, Electronic J. Linear Algebra 31 (2016), 549-564. https://doi.org/10.13001/1081-3810.3231
  2. L. B. Beasley, Clique covers of graphs and ranks of Boolean matrices, Journal of Combinatorial Mathematics and Combinatorial Computing, To appear.
  3. L. B. Beasley, A. E. Guterman, and Y. Shitov, The arctic rank of a Boolean matrix, J. Algebra 433 (2015), 168-182. https://doi.org/10.1016/j.jalgebra.2015.03.005
  4. L. B. Beasley and N. J. Pullman, Boolean-rank-preserving operators and Boolean-rank-1 spaces, Linear Algebra Appl. 59 (1984), 55-77. https://doi.org/10.1016/0024-3795(84)90158-7
  5. L. B. Beasley and N. J. Pullman, Term-rank, permanent and rook-polynomial preservers, Linear Algebra Appl. 90 (1987), 33-46. https://doi.org/10.1016/0024-3795(87)90302-8
  6. C.-K. Li and S. J. Pierce, Linear preserver problems, Amer. Math. Monthly 108 (2001), n. 7, 591-605. https://doi.org/10.1080/00029890.2001.11919790
  7. S. Pierce, C.-K. Li, and S. Pierce, A Survey of Linear Preserver Problems, Linear and Multilinear Algebra 33 (1992), no. 1-2, 10919.
  8. N. J. Pullman, A property of infinite products of Boolean matrices, SIAM J. Appl. Math. 15 (1967), 871-873. https://doi.org/10.1137/0115075
  9. S.-Z. Song, L. B. Beasley, G.-S. Cheon, and Y.-B. Jun, Rank and perimeter preservers of Boolean rank-1 matrices, J. Korean Math. Soc. 41 (2004), no. 2, 397-406. https://doi.org/10.4134/JKMS.2004.41.2.397
  10. S.-Z. Song, K.-T. Kang, and L. B. Beasley, Linear operators that preserve perimeters of matrices over semirings, J. Korean Math. Soc. 46 (2009), no. 1, 113-123. https://doi.org/10.4134/JKMS.2009.46.1.113