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EXISTENCE OF GLOBAL SOLUTIONS TO SOME

NONLINEAR EQUATIONS ON LOCALLY FINITE GRAPHS

Yanxun Chang and Xiaoxiao Zhang

Abstract. Let G = (V,E) be a connected locally finite and weighted
graph, ∆p be the p-th graph Laplacian. Consider the p-th nonlinear

equation

−∆pu+ h|u|p−2u = f(x, u)

on G, where p > 2, h, f satisfy certain assumptions. Grigor’yan-Lin-Yang
[24] proved the existence of the solution to the above nonlinear equation

in a bounded domain Ω ⊂ V . In this paper, we show that there exists

a strictly positive solution on the infinite set V to the above nonlinear
equation by modifying some conditions in [24]. To the m-order differential

operator Lm,p, we also prove the existence of the nontrivial solution to

the analogous nonlinear equation.

1. Introduction

Let G = (V,E) be a locally finite graph. Grigor’yan-Lin-Yang [24] firstly
studied Yamabe type equations on graphs. Using the mountain pass theorem,
they proved that the Yamabe type equation, −∆u−αu = |u|p−2u, has a strictly
positive solution in a nonempty bounded domain Ω ⊂ V with the solution
function takes a value of 0 at the boundary ∂Ω. They also established local
existence results about the p-th graph Laplacian ∆p as follows{

−∆pu = f(x, u) in Ω◦,
u ≥ 0 in Ω◦, u = 0 on ∂Ω,

where Ω ⊂ V is a bounded domain with Ω◦ = Ω\∂Ω 6= ∅ and p > 2. Applying
the similar method, Grigor’yan-Lin-Yang [25] considered the nonlinear equation
−∆u+ hu = f(x, u), they proved:
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Theorem 1.1 (Theorem 2, [25]). Let G = (V,E) be a locally finite graph.
Assume that its weight satisfies ωxy = ωyx for all y ∼ x ∈ V , and that its
measure µ(x) ≥ µmin > 0 for all x ∈ V . Let h : V → R be a function satisfying

(1) there exists a constant h0 > 0 such that h(x) ≥ h0 for all x ∈ V ;
(2) h(x)→ +∞ as d(x, x0)→ +∞ for some fixed x0 ∈ V .

Suppose that f : V × R→ R satisfies the following hypothesis:
(3) for any s, t ∈ R, there exists some constant L > 0 such that

|f(x, s)− f(x, t)| ≤ L|s− t| for all x ∈ V ;

(4) there exists a constant q > 2 such that for all x ∈ V and s > 0,

0 < qF (x, s) = q

∫ s

0

f(x, t)dt ≤ sf(x, s);

(5) lim sups→0+
2F (x,s)
s2 < λ1 = inf∫

V
u2dµ=1

∫
V

(|∇u|2 + hu2)dµ.

Then the equation −∆u+ hu = f(x, u) has a strictly positive solution.

From the above results in [24, 25], one naturally has the following question:
Does the p-th nonlinear equation −∆pu + h|u|p−2u = f(x, u) exist a positive
solution on V ?

The main purpose of this paper is to prove the existence of global positive
solution on V to the p-th nonlinear equation

−∆pu+ h|u|p−2u = f(x, u),

where p > 2 and h, f satisfy certain assumptions. However, the associated func-
tion space

{
u ∈ Lp(V ) :

∫
V

(|∇u|p + h|u|p) dµ < +∞
}

is not a Hilbert space
when p > 2. In view of this fact, the approach in [25] is not feasible. By follow-
ing the method in [20], we will use variational principles and Fatou’s lemma to
replace the mountain pass theorem.

Grigor’yan-Lin-Yang [24] also studied the associated equation about the m-
order differential operator Lm,p on graphs. On a locally finite graph G = (V,E)
and Ω ⊂ V is a bounded domain with Ω◦ 6= ∅, they considered the following
nonlinear equation {

Lm,pu = f(x, u) in Ω◦,

|∇ju| = 0 on ∂Ω, 0 ≤ j ≤ m− 1,

where m ≥ 2 is an integer and p > 1. And they proved the existence of the
nontrivial solution to the above equation with f satisfies three assumptions.
Moreover, on a finite graph G = (V,E) with the same three assumptions,
they showed that there exists a nontrivial solution to Lm,pu + h|u|p−2u =
f(x, u) on V. In this paper, we will study the nonlinear equation Lm,pu +
h|u|p−2u = f(x, u) on a locally finite graph and prove the existence of the
nontrivial global solution to this equation.

This kind of problems have been extensively studied in the Euclidean space,
see for examples, Alves-Figueiredo [2], Alama-Li [1], Cao [6], Ding-Ni [13],
Jeanjean [27], Kryszewski-Szulkin [29], Panda [32], and the references therein.
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For the Riemannian manifold case, we refer the reader to [15,33,34]. Recently,
the investigations of discrete weighted Laplacians and various equations on
graphs have attracted much attention, see for examples Bauer-Hua-Jost [3],
Chung-Lee-Chung [12], Ge [16], Ge-Hua-Jiang [19], Ge-Jiang [21,22], Han [26],
Bauer-Hua-Yau [4]. For p-Laplacian on graphs, we refer to Bühler-Hein [5],
Chang [7, 8], Chang-Shao-Zhang [9, 10], Kawohl-Fridman [28], Mugnolo [31],
Zhang-Chang [35], Zhang-Lin [36,37].

The remaining part of this paper is organized as follows: In Section 2, we
give some notations and main results on weighted graphs. In Section 3, we
give the proof of Theorem 2.1. We prove Theorem 2.2 in Section 4. Finally, in
Section 5, we consider another definition of ∆p and prove the existence of the
strictly positive global solution to the nonlinear equation (35) under the same
assumptions in Theorem 2.1.

2. Settings and main results

All graphs considered in this paper are connected, undirected and weighted
graphs. Now, we recall some basic notations for weighted graphs in [11, 35].
Let G = (V,E) be a locally finite graph, where V , E denote the vertex set
and the edge set of G, respectively. Let ω : V × V 3 (x, y) 7→ ωxy ∈ [0,∞)
be an edge weight function satisfying ωxy = ωyx,

∑
y∈V ωxy < ∞, for any

x ∈ V, µ : V 3 x 7→ µ(x) ∈ (0,∞) be a measure on V of full support, and for
any x, y ∈ V, {x, y} ∈ E if and only if ωxy > 0, in symbols x ∼ y. Alternatively,
ωxy can be considered as a positive function on the set E, that is extended to
be 0 on non-edge pairs (x, y). Note that G = (V,E) possibly possesses self-
loops. Any weight ωxy gives rise to a function on vertices as µ(x) =

∑
y∼x ωxy,

and µ(x) is called the weight of a vertex x. For example, if the weight ω is
simple, then µ(x) = deg(x). Throughout this paper, we denote CG,h,... as some
positive constant depending only on the information of G, h, . . .. Note that the
information of G contains V,E, µ and ω. Denote C(V ) as the set of all real
functions defined on V , then C(V ) is an infinite dimensional linear space with
the usual functions additions and scalar multiplications due to V is an infinite
set.

For any function u : V → R, the µ-Laplacian (or Laplacian for short) of u
is defined as

(1) ∆u(x) =
1

µ(x)

∑
y∼x

wxy(u(y)− u(x)).

With respect to the vertex weight µ, the integral of u over V is defined by∫
V

udµ =
∑
x∈V

u(x)µ(x)
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for any u ∈ C(V ). We consider the p-th Laplacian ∆p : C(V )→ C(V ), which
is defined in distributional sense by

(2)

∫
V

(∆pu)φdµ = −
∫
V

|∇u|p−2Γ(u, φ)dµ, ∀φ ∈ Cc(V ),

where Cc(V ) denotes the set of all functions with compact support. The asso-
ciated gradient form reads

Γ(u, v)(x) =
1

2µ(x)

∑
y∼x

ωxy(u(y)− u(x))(v(y)− v(x)).

We write Γ(u) = Γ(u, u) for short. The length of its gradient |∇u| in (2) is
defined as

(3) |∇u|(x) =
√

Γ(u)(x) =

(
1

2µ(x)

∑
y∼x

ωxy (u(y)− u(x))
2

)1/2

.

Point-wisely, ∆p can be written as

(4) ∆pu(x) =
1

2µ(x)

∑
y∼x

ωxy

(
|∇u|p−2(y) + |∇u|p−2(x)

)(
u(y)− u(x)

)
for u ∈ C(V ) and x ∈ V . Note that u may not be integrable generally. Denote
Lp(V ) as the space of all p-th integrable functions on V .

We define a space of functions

(5) H =

{
u ∈ Lp(V ) :

∫
V

(|∇u|p + h|u|p) dµ < +∞
}

with a norm

‖u‖H =

(∫
V

(|∇u|p + h|u|p) dµ
)1/p

,

where |∇u| is defined as (3) and h ∈ C(V ).
Let h : V → R, f : V × R→ R be two functions. We say that u : V → R is

a solution of the p-th nonlinear equation

(6) −∆pu+ h|u|p−2u = f(x, u),

if (6) holds for all x ∈ V , where ∆p is defined as (4). We shall prove the
following:

Theorem 2.1. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Let h : V → R
be a function satisfying the following assumptions:

(H1) infx∈V h(x) > 0;
(H2) 1/h ∈ Lδ(V ) for some δ : 0 < δ ≤ 1

p−2 .

Suppose that f : V × R→ R satisfies the following hypothesis:
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(H3) for all x ∈ V , f(x, 0) = 0, and there exists a constant q > 0 such that
for all x ∈ V and s > 0,

0 < q

∫ s

0

f(x, t)dt ≤ sf(x, s);

(H4) there exists some constant L > 0 such that

|f(x, t1)− f(x, t2)| ≤ L|t1 − t2| for any x ∈ V and t1, t2 ∈ R.
Then the equation (6) has a strictly positive solution.

We know that the higher order differential operators were also extensively
studied on manifolds, refer to [14,30]. Inspired by Grigor’yan-Lin-Yang’s work
in [23, 24], we shall extend the equation (6) to nonlinear elliptic equation in-
volving higher order derivative. The length of m-order gradient of u is defined
as

(7) |∇mu| =

{
|∇∆

m−1
2 u|, when m is odd,

|∆m
2 u|, when m is even,

where |∇∆
m−1

2 u| is defined as in (3) for the function ∆
m−1

2 u, and |∆m
2 u| de-

notes the usual absolute of the function ∆
m
2 u. Then we have:

Theorem 2.2. Let G = (V,E) be a connected, locally finite and weighted
graph and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Let
h : V → R be a function satisfying the assumptions (H1) and (H2). Suppose
that f : V × R→ R satisfies the hypothesis (H4) and

(H ′3) for all x ∈ V , f(x, 0) = 0, and there exists a constant q > 0 such that
for all x ∈ V , |s| > 0,

0 < q

∫ s

0

f(x, t)dt ≤ sf(x, s).

Then there exists a nontrivial solution to

(8) Lm,pu+ h|u|p−2u = f(x, u),

where Lm,pu (m is a positive integer) is defined in the distributional sense: for
any function φ ∈ C(V ), there holds

(9)

∫
V

(Lm,pu)φdµ=

{∫
V
|∇mu|p−2Γ(∆

m−1
2 u,∆

m−1
2 φ)dµ, when m is odd,∫

V
|∇mu|p−2(∆

m
2 u)(∆

m
2 φ)dµ, when m is even.

3. Proof of Theorem 2.1

For each u ∈ H, we define a functional

(10) J(u) =

∫
V

(|∇u|p + h|u|p)dµ.

We can see that J(u) = ‖u‖pH and J is continuously differentiable on H as
follows:
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Lemma 3.1. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Suppose
h ∈ C(V ) satisfies (H1). Then the function J , defined as (10), is continuously
differentiable on H, where H defined as (5).

Proof. By direct calculation, the Fréchet derivative of J(u) at a fixed u ∈ H is
a J ′(u) ∈ H∗ with

H 3 ξ 7→ J ′(u)(ξ) = p

∫
V

(
−∆pu+ h|u|p−2u

)
ξdµ,

which implies that J ′(u) : H → H∗ is linear. By the Hölder inequality, we
know that for any vertex x ∈ V , there holds Γ(u, ξ)(x) ≤ |∇u|(x)|∇ξ|(x), then

|J ′(u)(ξ)| = p

∫
V

(
|∇u|p−2Γ(u, ξ) + h|u|p−2uξ

)
dµ

≤ p
(∫

V

|∇u|p−1|∇ξ|dµ+

∫
V

h|u|p−1|ξ|dµ
)

≤ CG,p,h‖u‖p−1
H ‖ξ‖H.

Hence, we get J ′ : H → H∗, the Fréchet derivative of J satisfies

‖J ′(u)‖H∗ ≤ CG,p,h‖u‖p−1
H .

This means J ′ is continuous, that is J is continuously differentiable on H. �

For any constant θ > 0, set

F (x, s) =

{∫ θs
0
f(x, t)dt s ≥ 0,

0 s < 0.

It is continuously differentiable with respect to s with ∂sF (x, s) = θf(x, θs)
when s ≥ 0 and ∂sF (x, s) = 0 when s < 0. In the sequel, we write F ′(x, s) =
∂sF (x, s) for short. Consider the following functional

(11) K(u) =

∫
V

F (x, u)dµ, u ∈ H.

Lemma 3.2. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Suppose
that h ∈ C(V ) satisfies (H1), (H2) and f : V × R → R satisfies (H4). Then
the function K, defined as (11), is continuously differentiable on H, where H
defined as (5).

Proof. By direct calculation, the Fréchet derivative of K(u) at a fixed u ∈ H
is a K ′(u) ∈ H∗ with

H 3 v 7→ K ′(u)(v) =

∫
V

F ′(x, u)vdµ.
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In view of (H1), there exists some constant CG,h such that

(12)
1

h
≤ CG,h,

in addition, by (H2), we know that there exists some constant CG,h,p,δ such
that ∫

V

1

h1/(p−2)
dµ ≤ C1/(p−2)−δ

G,h

∫
V

1

hδ
dµ ≤ CG,h,p,δ.

Hence, using the Hölder inequality and (H1), we have∫
V

|u1 − u2||v|dµ ≤
(∫

V

|v|pdµ
)1/p(∫

V

|u1 − u2|
p
p−1 dµ

) p−1
p

≤ CG,h,p‖v‖H
(∫

V

1

h1/(p−2)
dµ
) p−2

p
(∫

V

h|u1 − u2|pdµ
) 1
p

≤ CG,h,p,δ‖v‖H‖u1 − u2‖H.(13)

If u1(x) > 0, u2(x) > 0, using (H4) and (13), we have

|(K ′(u1)−K ′(u2))v| ≤ Lθ2

∫
V

|u1 − u2||v|dµ

≤ CG,h,p,δ,L,θ‖v‖H‖u1 − u2‖H.
Noting that

f(x, 0) = 0 for all x ∈ V,
and checking other cases for the sign of u1(x), u2(x), there also holds

|(K ′(u1)−K ′(u2))v| ≤ CG,h,p,δ,L,θ‖v‖H‖u1 − u2‖H.
Hence, we get K ′ : H → H∗, the Fréchet derivative of K satisfies

‖K ′(u1)−K ′(u2)‖H∗ ≤ CG,h,p,δ,L,θ‖u1 − u2‖H.
This implies that K is continuously differentiable on H. �

Now, we consider the functional J(u) under the constraint K(u) = 1. Since
J(u) ≥ 0,

γ = inf{J(u) : u ∈ H, K(u) = 1}
is well defined. Obviously, γ ≥ 0. Choose a sequence {un}n≥1 in H with
J(un)→ γ, J(un) < γ + 1 and K(un) = 1. At each vertex x ∈ V , we have

h(x)µ(x)|un(x)|p ≤
∫
V

h|un|pdµ ≤ J(un) ≤ γ + 1.

This means |un(x)| ≤ CG,h,p,γ for all x ∈ V and all n ≥ 1. In other words,
{un}n≥1 are uniformly bounded. Noting that V is a countable set of points.
Hence, there exists some ū such that up to a subsequence, un → ū on V . We
may well denote this subsequence as un. Because G is locally finite, |∇un| →
|∇ū| at each vertex x ∈ V . According to Fatou’s lemma, we obtain∫

V

(|∇ū|p + h|ū|p)dµ ≤ γ,
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(14) K(ū) =

∫
V

F (x, ū)dµ ≤ 1,

which implies ū ∈ H.

Claim 1. ū, as above, is not identically zero on V .

Proof. Let x0 ∈ V be fixed. For any ε > 0, in view of (H2), there exists some
R > 0 such that

(15)
(∫

T

( 1

h

)δ
dµ
) 1
δ ≤ ε

p
δ(p−2) ,

where T = {x ∈ V : d(x, x0) > R} and d(x, x0) denotes the distance between
x and x0 on G.

If un(x) ≥ 0, by (H4), we obtain

f(x, θun(x)) = |f(x, θun(x))− f(x, 0)| ≤ Lθun(x),

this leads to∫
{x∈T :un(x)≥0}

unf(x, θun)dµ ≤ CL,θ
∫
{x∈T :un(x)≥0}

un
2dµ.(16)

Noting that 0 < δ ≤ 1
p−2 , by the Hölder inequality and (12), (15), we get

∫
T

|un|2dµ ≤

(∫
T

(
1

h

) 2
p−2

dµ

) p−2
p (∫

T

h|un|pdµ
) 2
p

≤ CG,h,p,δ

(∫
T

(
1

h

)δ
dµ

) p−2
p

‖un‖2H

≤ CG,h,p,δ‖un‖2H ε.(17)

Combining (H3), (16) and (17) with the definition of F (x, s), we get∫
T

F (x, un)dµ =

∫
{x∈T :un(x)≥0}

(∫ θun(x)

0

f(x, t)dt
)
dµ

≤ 1

q

∫
{x∈T :un(x)>0}

θunf(x, θun)dµ

≤ CL,θ,q
∫
{x∈T :un(x)>0}

un
2dµ

≤ CG,h,L,θ,δ,p,q‖un‖2H ε.

Hence, according to K(un) = 1, we have∫
{x:d(x,x0)≤R}

F (x, un)dµ = 1−
∫
T

F (x, un)dµ ≥ 1− CG,h,L,θ,δ,p,q‖un‖2H ε.
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Let n → ∞ and note that {x ∈ V : d(x, x0) ≤ R} is a bounded domain and
‖un‖pH = J(un)→ γ, we obtain

K(ū) =

∫
V

F (x, ū)dµ ≥
∫
{x:d(x,x0)≤R}

F (x, ū)dµ ≥ 1− CG,h,L,θ,δ,p,qγ
2
p ε.

Further, let ε→ 0, we have K(ū) ≥ 1. By (14), we see K(ū) = 1, which implies
that ū is not identically zero. �

Claim 2. ū, as above, is positive everywhere on V .

Proof. We calculate the Euler-Lagrange equation at ū under the constraint
condition K(ū) = 1. By Lemma 3.2 and (2), for any ϕ ∈ Cc(V ), there holds

0 =
d

dt

∣∣∣
t=0

{
J(ū+ tϕ)− λ

(∫
V

F (x, ū+ tϕ)dµ− 1
)}

= p

∫
V

|∇ū|p−2Γ(ū, ϕ)dµ+

∫
V

(
ph|ū|p−2ū− λF ′(x, ū)

)
ϕdµ

=

∫
V

(
− p∆pū+ ph|ū|p−2ū− λF ′(x, ū)

)
ϕdµ.

Hence, we get

(18) − p∆pū+ ph|ū|p−2ū = λF ′(x, ū).

Multiplying ū on both sides of the equation (18), and taking integration, we
get ∫

V

(−pū∆pū+ ph|ū|p) dµ = λ

∫
V

ūF ′(x, ū)dµ.

By Claim 1, ū 6≡ 0 on V , we know

LHS = p

∫
V

(|∇ū|p + h|ū|p)dµ > 0,

and

RHS = λ

∫
{x∈V :ū(x)>0}

ūF ′(x, ū)dµ = λθ

∫
{x∈V :ū(x)>0}

ūf(x, θū)dµ.

Using (H3), we get ūf(x, θū) > 0 when ū > 0. These lead to λ > 0.
If ū(x) < 0, at some vertex x ∈ V , then by the equation (18), we see

∆pū(x) < 0.

However, by the definition of ∆p, there is a y ∼ x with ū(y) < ū(x) < 0. In
view of the connectedness of the graph G = (V,E), by induction, we obtain a
sequence x = x1 ∼ x2 ∼ x3 ∼ · · · such that

· · · < ū(xi) < ū(xi−1) < · · · < ū(x1) < 0.

Then we have
n∑
i=1

|ū(xi)|pµ(xi)→ +∞ as n→ +∞,
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which contradicts ū ∈ H ⊆ Lp(V ). Hence ū is nonnegative on V . If ū is not
positive everywhere on V , we can always find two vertices x, y with y ∼ x,
ū(x) = 0, ū(y) > 0. Then it follows ∆pū(x) > 0 by the definition of ∆p, which
contradicts to the equation (18). Hence ū is positive everywhere on V . �

Claim 3. The p-th nonlinear equation (6) has a strictly positive solution.

Proof. By Claims 1, 2, we know that ū is positive everywhere on V , and it
satisfies

(19) − p∆pū+ phūp−1 = λθf(x, θū).

Choosing θ = ( pλ )1/p, and taking θū by u in (19), we know that u is positive
everywhere on V , and u satisfies the following equation

−∆pu+ hup−1 = f(x, u),

which completes the proof. �

4. Proof of Theorem 2.2

The proof of Theorem 2.2 is analogous to that of Theorem 2.1. We define a
space of functions

(20) H1 =

{
u ∈ Lp(V ) :

∫
V

(|∇mu|p + h|u|p) dµ < +∞
}

with a norm

(21) ‖u‖H1
=

(∫
V

(|∇mu|p + h|u|p) dµ
)1/p

,

where |∇mu| is defined as (7).
For each u ∈ H1, we define a functional

J1(u) =

∫
V

(|∇mu|p + h|u|p)dµ.

It is easy to see that J1(u) = ‖u‖pH1
. And similar proof of Lemma 3.1, we can

see J1 is continuously differentiable. For any constant θ > 0, we set

(22) K1(u) =

∫
V

∫ θu(x)

0

f(x, t)dtdµ, u ∈ H1.

Now, we consider the functional J1(u) under the constraint K1(u) = 1. Since
J1(u) ≥ 0,

γ1 = inf{J1(u) : u ∈ H1, K1(u) = 1}
is well defined. Obviously, γ1 ≥ 0. Choose a sequence {un}n≥1 in H1 with
J1(un) → γ1, J1(un) < γ1 + 1 and K1(un) = 1. Similarly, at each vertex
x ∈ V , we have

h(x)µ(x)|un(x)|p ≤
∫
V

h|un|pdµ ≤ J1(un) ≤ γ1 + 1.
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This means |un(x)| ≤ CG,h,p,γ1 for all x ∈ V and all n ≥ 1, that is, {un}n≥1 are
uniformly bounded. Hence, there exists some û such that up to a subsequence,
un → û on V . We may well denote this subsequence as un. Because G is
locally finite, |∇mun| → |∇mû| at each vertex x. According to Fatou’s lemma,
we obtain

(23)

∫
V

(|∇mû|p + h|û|p)dµ ≤ γ1,

K1(û) =

∫
V

∫ θû(x)

0

f(x, t)dtdµ ≤ 1,

which implies û ∈ H1.

Lemma 4.1. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Suppose that
h ∈ C(V ) satisfies (H1), (H2) and f : V × R → R satisfies (H4). Then the
function K1, defined as (22), is continuously differentiable on H1, where H1

defined as (20).

Proof. By direct calculation, the Fréchet derivative of K1(u) at a fixed u ∈ H1

is a K ′1(u) ∈ H∗1 with

H 3 v 7→ K ′1(u)(v) = θ

∫
V

f(x, θu(x))v(x)dµ.

Similar to the calculation of (13), we have

(24)

∫
V

|u1 − u2||v|dµ ≤ CG,h,p,δ‖v‖H1
‖u1 − u2‖H1

.

Using (H4) and (24), we have

|(K ′1(u1)−K ′1(u2))v| ≤ θ
∫
V

|f(x, θu1)− f(x, θu2)||v|dµ

≤ Lθ2

∫
V

|u1 − u2||v|dµ

≤ CG,h,p,δ,L,θ‖v‖H1
‖u1 − u2‖H1

.

Hence, we get K ′1 : H1 → H∗1, the Fréchet derivative of K1 satisfies

‖K ′1(u1)−K ′1(u2)‖H∗
1
≤ CG,h,p,δ,L,θ‖u1 − u2‖H1

. �

Claim 4. û, as above, is not identically zero on V .

Proof. Analogous proof of Claim 1, we will show K1(û) = 1.
Let x0 ∈ V be fixed. For any ε > 0, in view of (H2), there exists some R > 0

such that

(25)
(∫

T

( 1

h

)δ
dµ
) 1
δ ≤ ε

p
δ(p−2) ,

where T = {x ∈ V : d(x, x0) > R}.
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By (H4), we obtain

|f(x, θun)| = |f(x, θun)− f(x, 0)| ≤ Lθ|un|,
this leads to∫

T

unf(x, θun)dµ =

∫
T

|unf(x, θun)|dµ ≤ CL,θ
∫
T

|un|2dµ.(26)

Similar to the calculation of (17), we get

(27)

∫
T

|un|2dµ ≤ CG,h,p,δ‖un‖2H1
ε.

Combining (H ′3), (26) and (27), we get∫
T

∫ θun(x)

0

f(x, t)dtdµ ≤ θ

q

∫
T

unf(x, θun)dµ ≤ Lθ2

q

∫
T

|un|2dµ

≤ CG,h,L,θ,δ,p,q‖un‖2H1
ε.

Since K1(un) = 1, we have∫
V \T

∫ θun(x)

0

f(x, t)dtdµ ≥ 1− CG,h,L,θ,δ,p,q‖un‖2H1
ε.

Let n→∞ and note that V \T = {x ∈ V : d(x, x0) ≤ R} is a bounded domain
and ‖un‖pH1

= J1(un)→ γ1, we obtain

K1(û) ≥
∫
V \T

∫ θû

0

f(x, t)dtdµ ≥ 1− CG,h,L,θ,δ,p,qγ1
2
p ε.

Further, let ε → 0, we have K1(û) ≥ 1. By (23), we see K1(û) = 1, which
implies that û is not identically zero. �

In the following, we show the equation (8) has a nontrivial solution on V .
Before this, we first prove the following two lemmas:

Lemma 4.2. Let G = (V,E) be a connected, locally finite and weighted graph.
For any positive integer k and any ϕ ∈ H1, there holds

d

dt

∣∣∣
t=0

∆k(u+ tϕ)(x) = ∆kϕ(x), ∀x ∈ V,

where ∆u is defined as (1) and the space H1 is defined as (20).

Proof. By induction on k, ∆k(u + tϕ)(x) is continuous when ∆k(u + tϕ)(x)
is considered as a function of t. For k = 1, since the operator ∆ is a linear
operator, for any x ∈ V , there holds

d

dt

∣∣∣
t=0

∆(u+ tϕ)(x) = ∆ϕ(x).

The inductive step from k to k + 1:

d

dt

∣∣∣
t=0

∆k+1(u+ tϕ)(x)
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=
1

µ(x)

∑
y∼x

ωxy

( d
dt

∣∣∣
t=0

∆k(u+ tϕ)(y)− d

dt

∣∣∣
t=0

∆k(u+ tϕ)(x)
)

=
1

µ(x)

∑
y∼x

ωxy

(
∆kϕ(y)−∆kϕ(x)

)
= ∆k+1ϕ(x). �

Lemma 4.3. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. For any positive integer m and any ϕ ∈ H1, there holds

d

dt

∣∣∣
t=0

∫
V

|∇m(u+ tϕ)|pdµ = p

∫
V

(Lm,pu)ϕdµ,

where |∇mu| is defined as (7), the operator Lm,p is defined in the distributional
sense as (9).

Proof. In view of the definition of the operator Lm,p, we split the proof into
two cases.
Case 1. When m is even, using (7), Lemma 4.2 and (9), we obtain

d

dt

∣∣∣
t=0

∫
V

|∇m(u+ tϕ)|pdµ =
d

dt

∣∣∣
t=0

∫
V

|∆m
2 (u+ tϕ)|pdµ

= p

∫
V

|∆m
2 u|p−2(∆

m
2 u)(∆

m
2 ϕ)dµ

= p

∫
V

(Lm,pu)ϕdµ.

Case 2. When m is odd,

d

dt

∣∣∣
t=0

∫
V

|∇m(u+ tϕ)|pdµ

=
d

dt

∣∣∣
t=0

∫
V

|∇∆
m−1

2 (u+ tϕ)|pdµ

=
d

dt

∣∣∣
t=0

∑
x∈V

( 1

2µ(x)

∑
y∼x

ωxy
(
∆

m−1
2 (u+ tϕ)(y)−∆

m−1
2 (u+ tϕ)(x)

)2) p2
µ(x)

=
p

2

∑
x∈V
|∇∆

m−1
2 (u+ tϕ)|p−2(x)

( 1

µ(x)

∑
y∼x

ωxy
(
∆

m−1
2 (u+ tϕ)(y)

−∆
m−1

2 (u+ tϕ)(x)
)
·
(
∆

m−1
2 ϕ(y)−∆

m−1
2 ϕ(x)

))
µ(x)

∣∣∣
t=0

= p
∑
x∈V
|∇mu|p−2(x)Γ(∆

m−1
2 u,∆

m−1
2 ϕ)(x)µ(x)

= p

∫
V

(Lm,pu)ϕdµ.
�

Claim 5. The equation (8) has a nontrivial solution on G.
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Proof. We calculate the Euler-Lagrange equation at û under the constraint
condition K1(û) = 1. For any ϕ ∈ H1, using Lemma 4.1 and Lemma 4.3, there
holds

0 =
d

dt

∣∣∣
t=0

{
J1(û+ tϕ)− λ1

(∫
V

∫ θ(û+tϕ)(x)

0

f(x, t)dtdµ− 1
)}

=
d

dt

∣∣∣
t=0

{∫
V

(|∇m(û+ tϕ)|p + h|(û+ tϕ)|p)dµ

− λ1

(∫
V

∫ θ(û+tϕ)(x)

0

f(x, t)dtdµ− 1
)}

=

∫
V

(
pLm,pû+ ph|û|p−2û− λ1θf(x, θû)

)
ϕdµ.

Hence, we get

(28) pLm,pû+ ph|û|p−2û = λ1θf(x, θû).

Using (3), (7) and (9), we obtain

(29)

∫
V

(Lm,pu)udµ =

∫
V

|∇mu|pdµ.

Multiplying û on both sides of the equation (28), and taking integration, we
get ∫

V

(pûLm,pû+ ph|û|p) dµ = λ1

∫
V

θûf(x, θû)dµ.

By (29), (H1) and Claim 4, û 6≡ 0 on V , we know

LHS = p

∫
V

(|∇mû|p + h|û|p)dµ > 0.

Moreover, using (H ′3), we get θû(x)f(x, θû(x)) > 0 as û(x) 6= 0. These lead to
λ1 > 0. From (9), for any φ ∈ C(V ), we have∫

V

(Lm,p
u

θ
)φdµ =

1

θp−1

∫
V

(Lm,pu)φdµ,

which implies

(30) Lm,p
u

θ
=

1

θp−1
Lm,pu.

Choosing θ = ( p
λ1

)1/p, and taking θû by u in (28), we know that u is nontrivial
on V , and u satisfies the following equation

Lm,pu+ h|u|p−2u = f(x, u),

which completes the proof. �
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5. Extensions

In [17, 18], Ge considered another definition of the discrete p-Laplacian op-
erator ∆p : C(V )→ C(V ), that is

(31) ∆pu(x) =
1

µ(x)

∑
y∼x

ωxy|u(y)− u(x)|p−2(u(y)− u(x))

for u ∈ C(V ) and x ∈ V . The length of gradient ∇pu is defined as

(32) |∇pu(x)| =

(
1

2µ(x)

∑
y∼x

ωxy|u(y)− u(x)|p
) 1
p

for any u ∈ C(V ) and x ∈ V . And we can see

(33)

∫
V

|∇pu|pdµ =
∑
x,y∈V
x∼y

ωxy|u(y)− u(x)|p.

We consider the following space of functions

(34) H2 =

{
u ∈ Lp(V ) :

∫
V

(|∇pu|p + h|u|p) dµ < +∞
}

with a norm

‖u‖H2 =

(∫
V

(|∇pu|p + h|u|p) dµ
)1/p

,

where |∇pu| is defined as (32) and h ∈ C(V ).
Let h : V → R and f : V × R → R be two functions. Now we consider the

following p-th nonlinear equation

(35) −∆pu+ h|u|p−2u = f(x, u),

where ∆p is defined as (31). If (35) holds for all x ∈ V , we also say that
u : V → R is a solution to the nonlinear equation (35).

We shall prove the following:

Theorem 5.1. Let G = (V,E) be a connected, locally finite and weighted
graph and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Let
h : V → R be a function satisfying the assumptions (H1) and (H2). Suppose
that f : V × R→ R satisfies the hypothesis (H3) and (H4). Then the equation
(35) has a strictly positive solution.

For each u ∈ H2, we set a functional

(36) J2(u) =

∫
V

(|∇pu|p + h|u|p) dµ.

Then we have:
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Lemma 5.2. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Suppose
h ∈ C(V ) satisfies (H1). Then the function J2, defined as (36), is continuously
differentiable on H2, where H2 defined as (34).

Proof. By direct calculation, the Fréchet derivative of J2(u) at a fixed u ∈ H2

is a J ′2(u) ∈ H∗2 with

H2 3 ξ 7→ J ′2(u)(ξ) =

∫
V

(
−p

2
∆pu+ ph|u|p−2u

)
ξdµ,

which implies that J ′2(u) : H2 → H∗2 is linear. By the Hölder inequality, we
know that for each vertex x ∈ V , there holds

|∆pu(x)| ≤ 1

µ(x)

∑
y∼x

ωxy|u(y)− u(x)|p−1

≤ 1

µ(x)

(∑
y∼x

ωxy

) 1
p
(∑
y∼x

ωxy|u(y)− u(x)|p
) p−1

p

=
1

(µ(x))
p−1
p

(∑
y∼x

ωxy|u(y)− u(x)|p
) p−1

p

.

In view of (H1), then

|J ′2(u)(ξ)| ≤ p
∫
V

(
|∆pu|+ h|u|p−1

)
|ξ|dµ

≤ p
∑
x∈V

(∑
y∼x

ωxy|u(y)− u(x)|p
) p−1

p

(µ(x))
1
p |ξ(x)|

+ p

∫
V

h|u|p−1|ξ|dµ

≤ CG,p,h‖u‖p−1
H2
‖ξ‖H2

.

Hence, we get J ′2 : H2 → H∗2, the Fréchet derivative of J2 satisfies

‖J ′2(u)‖H∗
2
≤ CG,p,h‖u‖p−1

H2
.

This means J ′2 is continuous, that is J2 is continuously differentiable on H. �

For any constant θ > 0, we still set

F (x, s) =

{∫ θs
0
f(x, t)dt s ≥ 0,

0 s < 0.

It is continuously differentiable with respect to s with ∂sF (x, s) = θf(x, θs)
when s ≥ 0 and ∂sF (x, s) = 0 when s < 0. We still write F ′(x, s) = ∂sF (x, s)
for short. Consider the following functional

(37) K2(u) =

∫
V

F (x, u)dµ, u ∈ H2.
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Similar to the proof of Lemma 3.2, we have:

Lemma 5.3. Let G = (V,E) be a connected, locally finite and weighted graph
and p > 2. Assume its measure satisfies inf{µ(x) : x ∈ V } > 0. Suppose that
h ∈ C(V ) satisfies (H1), (H2) and f : V × R → R satisfies (H4). Then the
function K2, defined as (37), is continuously differentiable on H2, where H2

defined as (34).

Now, we consider the functional J2(u) under the constraint K2(u) = 1. Since
J2(u) ≥ 0,

γ2 = inf{J2(u) : u ∈ H2, K2(u) = 1}
is well defined. Obviously, γ2 ≥ 0. Choose a sequence {un}n≥1 in H2 with
J2(un)→ γ2, J2(un) < γ2 + 1 and K2(un) = 1. At each vertex x ∈ V , we have

h(x)µ(x)|un(x)|p ≤
∫
V

h|un|pdµ ≤ J2(un) ≤ γ2 + 1.

This means |un(x)| ≤ CG,h,p,γ2 for all x ∈ V and all n ≥ 1. In other words,
{un}n≥1 are uniformly bounded. Noting that V is a countable set of points.
Hence, there exists some ũ such that up to a subsequence, un → ũ on V . We
may well denote this subsequence as un. Because G is locally finite, |∇pun| →
|∇pũ| at each vertex x. According to Fatou’s lemma, we obtain

(38)

∫
V

(|∇pũ|p + h|ũ|p)dµ ≤ γ2,

K2(ũ) =

∫
V

F (x, ũ)dµ ≤ 1,

which implies ũ ∈ H2.
Analogous proof of Claim 1, we can see K2(ũ) = 1, which implies ũ is not

identically zero on V .

Claim 6. ũ, as above, is positive everywhere on V .

Proof. We calculate the Euler-Lagrange equation at ũ under the constraint
condition K2(ũ) = 1. By Lemma 5.3 and (31), (33), for any ϕ ∈ C(V ), there
holds

0 =
d

dt

∣∣∣
t=0

{
J2(ũ+ tϕ)− λ2

(∫
V

F (x, ũ+ tϕ)dµ− 1
)}

= p
∑
x,y∈V
x∼y

ωxy|u(y)− u(x)|p−2(u(y)− u(x))(ϕ(y)− ϕ(x))

+

∫
V

(
ph|ũ|p−2ũ− λ2F

′(x, ũ)
)
ϕdµ

=

∫
V

(
− p∆pũ+ ph|ũ|p−2ũ− λ2F

′(x, ũ)
)
ϕdµ.



720 Y. CHANG AND X. ZHANG

Hence, we get

(39) − p∆pũ+ ph|ũ|p−2ũ = λ2F
′(x, ũ).

Since (31) and (33), we have

(40) −
∫
V

u∆pudµ =

∫
V

|∇pu|pdµ.

Hence, by (40), (H3) and ũ 6≡ 0 on V , multiplying ũ on both sides of the
equation (39), and taking integration, we can see λ2 > 0.

If ũ(x) < 0, at some vertex x ∈ V , then by the equation (39), we see

∆pũ(x) < 0.

However, by the definition of ∆p in (31), there is a y ∼ x with ũ(y) < ũ(x) < 0.
In view of the connectedness of the graph G = (V,E), by induction, we obtain
a sequence x = x1 ∼ x2 ∼ x3 ∼ · · · such that

· · · < ũ(xi) < ũ(xi−1) < · · · < ũ(x1) < 0.

Then we have
n∑
i=1

|ũ(xi)|pµ(xi)→ +∞ as n→ +∞,

which contradicts ũ ∈ H2 ⊆ Lp(V ). Hence ũ is nonnegative on V . If ũ is not
positive everywhere on V , we can always find two vertices x, y with y ∼ x,
ũ(x) = 0, ũ(y) > 0. Then it follows ∆pũ(x) > 0 by the definition of ∆p, which
contradicts to the equation (39). Hence ũ is positive everywhere on V . �

Claim 7. The p-th nonlinear equation (35) has a strictly positive solution.

Proof. By Claim 5, we know that ũ is positive everywhere on V , and it satisfies

(41) − p∆pũ+ phũp−1 = λ2θf(x, θũ).

Choosing θ = ( p
λ2

)1/p, and taking θũ by u in (41), we know that u is positive
everywhere on V , and u satisfies the following equation

−∆pu+ hup−1 = f(x, u),

which completes the proof. �
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