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LINEAR PRESERVERS OF SYMMETRIC ARCTIC RANK

OVER THE BINARY BOOLEAN SEMIRING

LeRoy B. Beasley and Seok-Zun Song

Abstract. A Boolean rank one matrix can be factored as uvt for vectors
u and v of appropriate orders. The perimeter of this Boolean rank one
matrix is the number of nonzero entries in u plus the number of nonzero
entries in v. A Boolean matrix of Boolean rank k is the sum of k Boolean
rank one matrices, a rank one decomposition. The perimeter of a Boolean
matrix A of Boolean rank k is the minimum over all Boolean rank one
decompositions of A of the sums of perimeters of the Boolean rank one
matrices. The arctic rank of a Boolean matrix is one half the perime-
ter. In this article we characterize the linear operators that preserve the
symmetric arctic rank of symmetric Boolean matrices.

1. Introduction and preliminaries

The binary Boolean algebra consists of the set B = {0, 1} equipped with two
binary operations, addition and multiplication. The operations are defined as
usual except that 1 + 1 = 1.

Let Mm,n(B) denote the set of all m × n Boolean matrices with entries in
B. If m = n, we use the notation Mn(B) instead of Mn,n(B). The matrix In
is the n× n identity matrix, Jm,n is the m× n matrix of all ones, Om,n is the
m × n zero matrix, and we write Jn for Jn,n and On for On,n. We omit the
subscripts when the order is obvious from the context and we write I, J and
O, respectively. For matrices A and B, A⊕B is the direct sum of A and B so
that A⊕B = [ A O

O B ].
Note that any subset of matrices L in Mm,n(B) that is closed under addition

(and scalar multiplication) has a unique “basis”, that is a set of matrices such
that any member A ∈ L is a linear combination of elements of that set and no
member of that set is a linear combination of the remaining members of that
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set. Further, the linear combination of elements of a basis that equals A is
unique, no other different linear combination of elements of the basis equals A
(See [4] or [8]). The elements of a basis are called base elements.

A matrix in Mm,n(B) is called a cell if it has exactly one nonzero entry, that
being a 1. We denote the cell whose nonzero entry is in the (i, j)th position by
Ei,j . Let E = {Ei,j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}. Then, E is the unique basis for
Mm,n(B).

We let Sn(B) denote the set of all n×n symmetric Boolean matrices. For 1 ≤
i < j ≤ n let Di,j = Ei,j +Ej,i. The matrix Di,j is called a digon. In Mm,n(B)
base elements are all the cells in E , whereas in Sn(B) the base elements are
digons and diagonal cells. For convenience of notation, we occasionally use Di,i

to represent Ei,i.
For A ∈ Mm,n(B) let |A| denote the number of nonzero entries in A. That

is | · | : Mm,n(B) → Z+ is the function such that |A| is the number of nonzero
entries in A, where Z+ is the set of nonnegative integers.

For X, Y ∈ Mm,n(B), X dominates Y , written X ⊒ Y , if yi,j 6= 0 implies
xi,j 6= 0 for all i and j. Thus, for A ∈ Mm,n(B), |A| is the number of base
elements of Mm,n(B) that are dominated by A. If X ⊒ Y , then X \ Y = Z is
the matrix such that zi,j = xi,j if yi,j = 0 and is 0 otherwise.

For A ∈ Sn(B), we let #(A) denote the number of base elements of Sn(B)
that A dominates. That is # : Sn(B) → Z+ is the function such that #(A) is
the number of base elements of Sn(B) that A dominates. Note that if A is not
symmetric, then #(A) is undefined.

Example 1.1. Since Di,j ∈ Sn(B) and Di,j is also in Mn(B), we have that for

i 6= j |Di,j | = 2 while #(Di,j) = 1. For another example, let Kv,v =
[

Iv Jv

Jv Iv

]

.

Then, |Kv,v| = 2v2 + 2v and #(Kv,v) = v2 + 2v.

For A, B ∈ Mm,n(B) the Hadamard or Schur product of A and B is the
matrix C if the (i, j)th entry of C is ci,j = ai,jbi,j, and we write A ◦B = C.

The (Boolean) rank or factor rank, b(A), of a nonzero A ∈ Mm,n(B) is
defined as the least integer k for which there exist B ∈ Mm,k(B) and C ∈
Mk,n(B) such that A = BC. The rank of the zero matrix is zero.

The rank of A ∈ Mm,n(B) is 1 if and only if there exist nonzero (Boolean)

vectors b ∈ B
m = Mm,1(B) and c ∈ B

n = Mn,1(B) such that A = bct. It is
easy to verify that these vectors b and c are uniquely determined by A. It is
well known ([4]) that b(A) is the least k such that A is the sum of k matrices
of rank 1 . It follows that 0 ≤ b(A) ≤ m for all nonzero A ∈ Mm,n(B).

The perimeter ([4]) of the rank-1 matrix A = bct ∈ Mm,n(B), per(A), is
|b| + |c| the sum of the number of nonzero entries in b plus the number of
nonzero entries in c.

For A ∈ Mm,n(B), let F(A) be the set of ordered pairs of matrices that
factor A. That is,

F(A)={(B,C) | B ∈ Mm,k(B), C ∈ Mk,n(B) for some k such that A = BC}.
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Then per(A) = min
(B,C)∈F(A)

{|B|+ |C|}. That is, the perimeter of a matrix is a

measure of the minimum number of nonzero entries in a rank k factorization,
for any k for which there is such a factorization. An easy observation is that
every matrix in Mm,n(B) whose perimeter is either 2 or 3 has rank 1. The
arctic rank of A, Arc(A) is one half the perimeter. Note that Arc(A) may not
be an integer. (See [3]).

Let Fsym denote the matrices in Sn(B) that have a symmetric factorization,
that is if A ∈ Fsym, then for some k, there exists B ∈ Mn,k(B) such that
A = BBt. In this case, A = b1b

t
1 + b2b

t
2 + · · · + bkb

t
k where bj is the jth

column of B. Then, the symmetric perimeter of A, sper(A), is the minimum
number, |B|+ |Bt| = 2|B|, over all symmetric factorizations of A = BBt. The
symmetric arctic rank of A, ρsa(A), is one half the symmetric perimeter of
A, so ρsa(A) =

1
2sper(A), the minimum number of nonzero entries in B for a

symmetric factorization of A = BBt. Note that this symmetric arctic rank may
be much larger than the order of the given symmetric matrix. For example,
consider a 3× 3 matrix

A =





1 1 1
1 1 0
1 0 1



 =





1 1
1 0
0 1





[

1 1 0
1 0 1

]

.

Then ρsa(A) = 4 which is larger than 3.
Note that not all members of Sn(B) have a symmetric factorization, for

example, [ 0 1
1 0 ] has rank two, but no two symmetric rank one matrices sum to

[ 0 1
1 0 ]. In fact, the product of a symmetric 2 × 2 matrix and its transpose can
never equal [ 0 1

1 0 ], since if B has a nonzero entry, BtB has a nonzero entry on
the main diagonal. If A ∈ Sn(B)\Fsym, then we let sper(A) = ρsa(A) = ∞. In
fact, we can characterize all symmetric Boolean matrices that have a symmetric
factorization.

Recall that the product of two matrices can be calculated in two ways: First
by considering each entry of the product as an inner product of rows of the first
factor times columns of the second (inner products); and second by considering
the product as a sum of rank one matrices (outer products of columns of the
first and rows of the second). Let xi represent the ith column of X and xj the
jth row of X . If A = BC, with B an n × k matrix and C a k × m matrix,

then ai,j = bicj using the first method, and A =
∑k

ℓ=1 bℓc
ℓ using the second

method. The second method will be used in the proof that follows.

Theorem 1.2. Suppose A ∈ Sn(B). Then A ∈ Fsym if and only if either

A = O or for some 0 ≤ s ≤ n − 1 there exists a permutation matrix P such

that PAP t = B ⊕Os where bi,i = 1 for all i = 1, . . . , n− s.

Proof. Suppose that A 6= O and that A = XXt for X ∈ Mn,q(B). In this
case, A =

∑n

i=1

∑n

j=1 yiy
t
j where yi is the ith row of X . If ai,j = 1, then since

ai,j = yiy
t
j , we have that yi 6= 0, and hence ai,i = yiy

t
i = 1. Thus any row of

A that contains a nonzero entry has a nonzero entry on the diagonal. Let P be
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a permutation matrix which permutes the nonzero rows of A to the first n− s

rows, if there are n− s such rows. Then PAP t has nonzero entries in the first
n− s rows/columns and only zero entries in the last s rows/columns. That is
PAP t = B ⊕ Os. Since any row of A that has a nonzero entry has a nonzero
diagonal entry, bi,i = 1 for all i = 1, . . . , n− s.

For the converse, if A = O, then A = On,1O
t
n,1 so that A has a symmetric

factorization,
Now suppose that A 6= O and for some 0 ≤ s ≤ n−1 and for some permuta-

tion matrix P, PAP t = B⊕Os such that bi,i = 1 for 1 ≤ i ≤ n−s. Then, A has
a nonzero diagonal entry in every row which has a nonzero entry. Let Ai,i =
ai,iEi,i and for 1 ≤ i < j ≤ n let Ai,j = ai,j(Ei,i+Ej,j+Di,j). Note that Ai,i =
ai,ieie

t
i and if i < j, Ai,j = ai,j [(ei + ej)(ei + ej)

t], so for 1 ≤ i ≤ j ≤ n, either
Ai,j = O or Ai,j is a rank 1 matrix. Further, A =

∑

1≤i≤j≤n Ai,j . Let xi,i =

ai,iei and for i < j let xi,j = ai,j(ei + ej). Observe that either xi,j is the zero

vector or a vector with one or two nonzero entries. Consider the n× n(n+1)
2 ma-

trix X = [x1,1,x1.2, . . . ,x1,n,x2,2, . . . ,x2,n, . . . ,xi,i,xi,i+1, . . . ,xi,n, . . . ,xn,n].
Then,

XXt =

n
∑

i=1

n
∑

j=i

xi,jx
t
i,j =

n
∑

i=1

n
∑

j=i

a2i,j(ei + ej)(ei + ej)
t =

n
∑

i=1

n
∑

j=i

Ai,j

since a2i,j = ai,j and ei + ei = ei over the Boolean semiring B. That is,

XXt = A. (Note that the fact that X may have many zero columns does not
change the fact that A has a symmetric factorization.) �

Let SAk denote the set of all matrices in Mn(B) whose symmetric arctic
rank is k and note that SA∞ is the set of all matrices in Sn(B) that do not
have a symmetric factorization.

A matrix of special interest in our investigations is D+
i,j = Ei,i +Ej,j +Di,j .

Note that:
If ρsa(A) = 1, then A is a diagonal cell. That is, SA1 is the set of all diagonal

cells;
If ρsa(A) = 2, then for some i 6= j, A = D+

i,j = Ei,i + Ej,j + Di,j or
A = Ei,i + Ej,j ; and

If ρsa(A) = 3, then up to permutational similarity, A = J3⊕O,A = I3⊕O+
D1,2 = J2 ⊕ [1]⊕ O, or A = I3 ⊕O. Note that when ρsa(A) = 3, #(A) = 3, 4
or 6 only.

A mapping T : Sn(B) → Sn(B) is called a (Boolean) linear operator if
T (A+B) = T (A)+T (B) for all A,B ∈ Sn(B), and T (O) = O. A linear operator
T : Sn(B) → Sn(B) is called a (P, P t)-operator if there exists a permutation
matrix P such that T (X) = PXP t for all X ∈ Sn(B), where Xt denotes the
transpose of X . A linear operator T is said to preserve a set Q if A ∈ Q
implies T (A) ∈ Q. Also, T strongly preserves the set Q if A ∈ Q if and only if
T (X) ∈ Q.
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Lately there have been many articles on linear preserver problems. For an
excellent survey see [6, 7]. In [10], the linear operators that preserve perimeters
of matrices over semirings were characterized. In this article we investigate the
linear operators that preserve symmetric arctic rank of symmetric matrices
over the binary Boolean semirings.

It is well known that the adjacency matrix of an undirected graph is a
symmetric (Boolean) (0,1)-matrix and that the adjacency matrix of a clique
(a graph whose nonisolated vertices induce a complete graph) is a symmetric
rank one Boolean matrix. So the symmetric arctic rank is the minimum over all
decompositions of the graph into a union of cliques of the sum of the orders of
the cliques. Let A be the adjacency matrix of the complete balanced bipartite
graph on n = 2ℓ vertices, that is A = A(Kℓ,ℓ), and let Z = I+A, the adjacency
matrix of Kℓ,ℓ with loops added at each vertex. Then the factor rank of Z,
b(Z), is n, the symmetric factor rank of Z (the smallest number of symmetric

rank one matrices whose sum is Z) is n2

4 , and the symmetric arctic rank of

Z, ρsa(A), is
n2

2 . So the symmetric rank of a Boolean matrix may be much
larger than any other rank. For more on the connection between clique covers
of graphs and the ranks of Boolean matrices see [2].

2. Preservers of symmetric arctic ranks

We begin this section with an example to show that preservers of the three
sets SA1, SA2, and SA3 do not have the same characterization as, for example,
strong preservers of SA4.

Example 2.1. Let T : Sn(B) → Sn(B) be defined by T (Ei,i) = Ei,i, T (Di,j) =
Ei,i + Ej,j and extend linearly. Then T strongly preserves SA1, T strongly
preserves SA2 and T preserves (not strongly) SA3. Further T does not preserve

any other SAk, 4 ≤ k ≤ n, since, for example, for A =
[

1 1 1
1 1 0
1 0 1

]

⊕ Ik−4 ⊕

On−k+1 =
[

1 1
1 0
0 1

]

[ 1 1 0
1 0 1 ]⊕ Ik−4 ⊕On−k+1, ρsa(A) = k while ρsa(T (A)) = k − 1,

since T (A) = Ik−1 ⊕On−k+1.

An easy observation is that if a linear operator T : Sn(B) → Sn(B) preserves
SA1, then the image of a diagonal cell is a diagonal cell.

Lemma 2.2. If a linear operator T : Sn(B) → Sn(B) preserves SA1 and SAk

for any k, 2 ≤ k ≤ n, then T maps the set of diagonal cells bijectively onto the

set of diagonal cells. That is T is bijective on SA1.

Proof. Since T preserves SA1, the image of a diagonal cell is a diagonal cell.
Suppose that the image of two diagonal cells is the same diagonal cell. Without
loss of generality assume that T (E1,1) = T (E2,2). Then T (Ik ⊕ On−k) is the
sum of at most k − 1 diagonal cells and hence ρsa(T (Ik ⊕ On−k)) ≤ k − 1,
a contradiction, since T preserves SAk. Since SA1 is finite, T is bijective on
SA1. �
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Theorem 2.3. Let L : Sn(B) → Sn(B) be a linear operator. Then, L preserves

SA1 and SAk for some 4 ≤ k ≤ n−1 if and only if there exist scalars αi,j , βi,j ∈
B for 1 ≤ i < j ≤ n and a permutation matrix P such that

L(X) = P



X +
∑

1≤i<j≤n

xi,j(αi,jEi,i + βi,jEj,j)



P t

for all X ∈ Sn(B).

Proof. Since L preserves both SA1 and SAk for some 4 ≤ k ≤ n − 1, by
Lemma 2.2, L is bijective on the set of diagonal cells. Permute by P so that
T (X) = P tL(X)P for all X and such that T (Ei,i) = Ei,i for all i. Since
permutational similarity preserves all symmetric arctic ranks we also have that
T preserves SA1 and SAk.

Now suppose that T (D+
i,j) dominates at least three diagonal cells. Let I ′

be the sum of k − 2 diagonal cells such that ρsa(D
+
i,j + I ′) = k and such that

T (D+
i,j + I ′) dominates k + 1 diagonal cells. This is always possible since T

is bijective on the set of diagonal cells. Then, ρsa(T (D
+
i,j + I ′)) ≥ k + 1, a

contradiction since ρsa(D
+
i,j + I ′) = k.

Now suppose that T (Di,j) dominates two digons. Then there is some k such
that T (D+

i,j) dominates Dk,ℓ for some ℓ, but does not dominate Ek,k. Let I ′

be the sum of k − 2 diagonal cells whose image does not dominate Ek,k and

such that ρsa(D
+
i,j + I ′) = k. We then have arrived at a contradiction since

ρsa(T (D
+
i,j + I ′)) = ∞, since T (D+

i,j + I ′) 6∈ Fsym. Thus, for each (i, j) there is

some (p, q) such that T (D+
i,j) ⊑ D+

p.q.

Now suppose that T (D+
i,j) ⊑ D+

p,q and T (D+
k,ℓ) ⊑ D+

p.q for (i, j) 6= (k, ℓ). Let

I ′ be the sum of either k− 3 or k− 4 diagonal cells such that ρsa(D
+
i,j +D+

k,ℓ+

I ′) = k. Then, T (D+
i,j +D+

k,ℓ + I ′) ⊑ D+
p,q + T (I ′) which has symmetric arctic

rank at most k-1, a contradiction.
We now have that T (D+

i,j) ⊑ D+
i,j for all (i, j). Suppose that T (D+

i,j) 6=

D+
i,j . Then, T (D+

i,j) = Ei,i + Ej,j . Without loss of generality, assume that

T (D+
1,2) = E1,1 + E2,2. Then, ρsa(D

+
1,2 + D+

1,3 + E4,4 + · · · + Ek−1,k−1) = k

(See Example 2.1), while ρsa(E2,2 +D+
1,3 +E4,4 + · · ·+Ek−1,k−1) = k− 1, but

T (D+
1,2+D+

1,3+E4,4+ · · ·+Ek−1,k−1) = T (E2,2+D+
1,3+E4,4+ · · ·+Ek−1,k−1),

a contradiction. Thus, T (D+
i,j) = D+

i,j for all (i, j).

Further, T (Di,j) ⊑ D+
i,j , so let αi,j and βi,j be defined by T (Di,j) = Di,j +

αi,jEi,i + βi,jEj,j . Since to get T we permuted by P , it follows that L(X) =

P
(

X +
∑

1≤i<j≤n xi,j(αi,jEi,i + βi,jEj,j)
)

P t for all X ∈ Sn(B).

For the converse, if L(X) = P
(

X +
∑

1≤i<j≤n xi,j(αi,jEi,i + βi,jEj,j)
)

P t

for all X ∈ B, then L preserves all symmetric arctic ranks except ρsa(A) =
∞. �
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Theorem 2.4. Let L : Sn(B) → Sn(B) be a linear operator. Then, L preserves

SA2 and SAk for some 4 ≤ k ≤ n−1 if and only if there exist scalars αi,j , βi,j ∈
B for 1 ≤ i < j ≤ n and a permutation matrix P such that

T (X) = P



X +
∑

1≤i<j≤n

xi,j(αi,jEi,i + βi,jEj,j)



P t

for all X ∈ Sn(B).

Proof. We first show that T preserves SA1.
Suppose that for some i, ρsa(T (Ei,i)) 6= 1, and assume without loss of gen-

erality that i = 1. Either T (E1,1) ⊒ Di,j for some i 6= j or T (E1,1) ⊑ In and
#(T (E1,1)) ≥ 2.

If T (E1,1) ⊒ Di,j , then T (E1,1) ⊑ D+
i,j , and for any q, 1 ≤ q ≤ n, T (Eq,q) ⊑

T (E11 + Eq,q) ⊑ D+
i,j since E11 + Ej,j is in SA2 and the only member of SA2

that dominates Di,j is D+
i,j . But then, T (Ik ⊕ On−k) ⊑ D+

i,j , a contradiction

since ρsa(Ik⊕On−k) = k and ρsa(D
+
i,j) = 2. Thus, T (Ei,i) ⊑ In for all i, and for

some i #(T (Ei,i)) ≥ 2. But then without loss of generality we may assume that
E1,1+E2,2 ⊑ T (D+

1,2), and hence, we must have that T (E1,1) ⊒ T (I2⊕On−2) so

that we have that T (E1,1) = E1,1+E2,2. But then, T (Ej,j) ⊑ T (E1,1+Ej,j) ⊑
I2 ⊕ On−2, for all j since ρsa(E1,1 + Ej,j) = 2. We now must have that
T (Ik) ⊑ I2⊕On−2, and as above we have a contradiction. That is, T preserves
SA1.

By Theorem 2.3 the theorem follows. �

3. Bijective preservers of symmetric arctic ranks

In this section we shall classify all bijective linear operators on Sn(B) that
preserve the set of matrices of symmetric arctic rank k. We begin with some
lemmas.

Lemma 3.1. If A ∈ Fsym and |A ◦ I| ≥ k, then ρsa(A) ≥ k. Further if

|A ◦ I| > k, then ρsa(A) > k.

Proof. Let A = A1 + A2 + · · · + Aℓ be a rank one decomposition of A such

that ρsa(A) =
∑ℓ

i=1 ρsa(Ai) and let αi = |Ai ◦ I| so that αi = ρsa(Ai). Then

|A ◦ I| = |(
∑ℓ

i=1 Ai) ◦ I| ≤
∑ℓ

i=1 |Ai ◦ I| =
∑ℓ

i=1 αi = ρsa(A). That is,
k ≤ ρsa(A), and if |A ◦ I| > k, then ρsa(A) > k. �

Lemma 3.2. If A ∈ Fsym and #(A) > k2+k
2 , then ρsa(A) > k.

Proof. Suppose A ∈ Fsym and #(A) > k2+k
2 . If |A◦I| ≤ k, then all the nonzero

entries of A lie in the intersection of |A ◦ I| columns and the same |A ◦ I| rows

of A, so that #(A) ≤ k2+k
2 , a contradiction. Thus |A ◦ I| > k, so by Lemma

3.1, ρsa(A) > k. �
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Lemma 3.3. If A ∈ Fsym, ρsa(A) = k and #(A) = k2+k
2 , then there exists a

permutation matrix P such that A = P t(Jk ⊕On−k)P .

Proof. Let P be a permutation matrix such that P (A◦I)P t = Iℓ⊕On−ℓ. Since
ρsa(A) = k, ℓ ≤ k by Lemma 3.1. Thus, since A ∈ Fsym, A ⊑ P t(Jk⊕On−k)P .

But #(Jk ⊕On−k) =
k2+k

2 , so we must have that A = P t(Jk ⊕On−k)P . �

Let Z∈Sn(B). In the following lemma we use the notation Z[1, . . . , k|1, . . . , k]
to denote the submatrix of Z consisting of the intersection of the first k rows
and the first k columns. We use Z(1, . . . , k|1, . . . , k) to denote the submatrix
of Z consisting of the intersection of the last n − k rows and the last n − k

columns.

Lemma 3.4. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective and

preserves SAk for some 3 ≤ k ≤ n, then T preserves SA1.

Proof. Since T is bijective on Sn(B), T is bijective on the set of base elements.
Suppose that T (Ei,i) = Dr,s for some r 6= s. We may assume that i = 1.

Consider T (Jk ⊕ On−k). Since T is bijective on the set of base elements,

#(T (Jk ⊕On−k)) = #(Jk ⊕ On−k) =
k2+k

2 and since ρsa(T (Jk ⊕ On−k)) = k,
by Lemma 3.3 there is some permutation matrix P such that T (Jk ⊕On−k) =
P t(Jk ⊕ On−k)P . Without loss of generality, by permuting, we may assume
that T (Jk ⊕On−k) = (Jk ⊕On−k).

As in the paragraph above, there is some permutation matrix Q such that
QtT (O1⊕Jk⊕On−k−1)Q = Jk⊕On−k so that we have that T (O1⊕Jk⊕On−k−1)
is a rank one matrix.

Let Z = T (O1⊕Jk⊕On−k−1) and let P1 be a permutation matrix such that
P1Z[1, . . . , k|1, . . . , k]P t

1 = Ok−ℓ ⊕ Jℓ. Let Q1 be a permutation matrix such
that Q1Z(1, . . . , k|1, . . . , k)Qt

1 = Jk−ℓ ⊕On−2k+ℓ. Then,

(P1 ⊕Q1)Z(P1 ⊕Q1)
t =









Ok−ℓ O A B

O Jℓ C D

At Ct Jk−ℓ O

Bt Dt O On−2k+ℓ









.

Note that if X ∈ Fsym and the ith row or column of X has a nonzero entry, then
xi,i 6= 0. Thus, A,B, and D are all zero matrices. Since Z is rank one, we must
have that C = Jℓ.k−ℓ. It now follows that (P1⊕Q1)Z(P1⊕Q1)

t = Ok−ℓ⊕Jk⊕
On−2k+ℓ. Further, (P1 ⊕Q1)(Jk ⊕On−k)(P1 ⊕Q1)

t = P1JkP
t
1 ⊕Q1On−kQ

t
1 =

Jk ⊕On−k so that (P1 ⊕Q1)T (Jk ⊕On−k)(P1 ⊕Q1)
t = Jk ⊕On−k.

Let L : Sn(B) → Sn(B) be defined by L(X) = (P1 ⊕ Q1)T (X)(P1 ⊕ Q1)
t.

Then, L is bijective on the set of base elements, L(E1,1) = Dp,q for some p 6= q,
L(Jk⊕On−k) = Jk ⊕On−k, and L(O1⊕Jk ⊕On−k−1) = Ok−ℓ⊕Jk ⊕On−2k+ℓ.
Since O1⊕Jk−1⊕On−k ⊑ Jk⊕On−k and O1⊕Jk−1⊕On−k ⊑ O1⊕Jk⊕On−k−1,
we must have that L(O1 ⊕ Jk−1 ⊕ On−k) ⊑ L(Jk ⊕ On−k) = Jk ⊕ On−k and
L(O1 ⊕ Jk−1 ⊕On−k) ⊑ L(O1 ⊕ Jk ⊕On−k−1) = Ok−ℓ ⊕ Jk ⊕On−2k+ℓ. Since
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#(O1 ⊕ Jk−1 ⊕On−k) =
(k−1)2+(k−1)

2 and L is bijective on the base elements,
it follows that ℓ = k− 1. That is, L(O1⊕Jk−1⊕On−k) = (O1⊕Jk−1⊕On−k).

We now have that L(E1,1+(O1⊕Jk−1⊕On−k)) = Dp,q+(O1⊕Jk−1⊕On−k),
and that Dp,q = L(E1,1) 6⊑ L(O1 ⊕ Jk−1 ⊕On−k) = O1 ⊕ Jk−1 ⊕On−k since L

is bijective on the base elements. This is a contradiction since ρsa(E1,1+(O1⊕
Jk−1 ⊕On−k)) = k and ρsa(Dp,q + (O1 ⊕ Jk−1 ⊕On−k)) = ∞.

Thus L, and hence T , preserves SA1. �

Corollary 3.5. Let T : Sn(B) → Sn(B) be a linear operator. Then T is

bijective and preserves SAk for some 4 ≤ k ≤ n − 1 if and only if T is a

(P, P t)-operator.

Proof. Suppose T is bijective and preserves SAk for some 4 ≤ k ≤ n − 1.
By Lemma 3.4 T preserves SA1. Now, by Theorem 2.3 there exist scalars
αi,j , βi,j ∈ B for 1 ≤ i < j ≤ n and a permutation matrix P such that

T (X) = P



X +
∑

1≤i<j≤n

xi,j(αi,jEi,i + βi,jEj,j)



P t

for all X ∈ Sn(B). If αi,j = 1, then T (Di,j) = T (Di,j + Ei,i), contradicting
that T is bijective. Thus, αi,j = 0 for all i 6= j. Similarly βi,j = 0 for all i 6= j.
That is T (X) = PXP t for all X ∈ Sn(B).

The converse is routinely established. �

Lemma 3.6. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective and

preserves SA2, then T preserves SA1.

Proof. Suppose T is bijective. Then T is bijective on the set of base elements
since B is antinegative and each member of Sn(B) is a unique combination of
base elements.

Suppose that T (Ei,i) = Dp,q for some i and p 6= q. Let T (Ej,j) = F , a
base element. Then T (Ei,i + Ej,j) = Dp,q + F . However ρsa(Ei,i + Ej,j) = 2
while the sum of Dp,q plus any base element is never in SA2. Thus we have a
contradiction and hence, T preserves SA1. �

Theorem 3.7. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective

and preserves SA2, then T is a (P, P t)-operator.

Proof. Suppose that T is bijective and preserves SA2. By Lemma 3.6, T pre-
serves SA1 and hence T is bijective on SA1. Let P be the permutation matrix
such that T (Ei,i) = PEi,iP

t for all i = 1, . . . , n, and let T (Di,j) = Fi,j , a base
element. Then T (D+

i,j) = T (Ei,i+Ej,j +Di,j) = T (Ei,i)+T (Ej,j)+T (Di,j) =

PEi,iP
t + PEj,jP

t + Fi,j . Since the only base element that can be added to
PEi,iP

t + PEj,jP
t to get an element of SA2 is PDi,jP

t, we must have that
F = PDi,jP

t. That is, T (X) = PXP t for all X ∈ Sn(B). �
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Lemma 3.8. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective and

preserves SA3, then T preserves SA2.

Proof. If T is bijective and preserves SA3, then by Lemma 3.4, T preserves
SA1. It now follows that T is bijective on SA1 and T is bijective on the set of
digons.

Let P be a permutation matrix such that L(X) = P tT (X)P for all X ∈
Sn(B) and such that L(Ei,i) = Ei,i for all i. Further, L is bijective on the set of
digons and preserves sets SA1 and SA3. Suppose that L does not preserve SA2.
Then since L is the identity on the SA1, we must have that L(Di,j) 6= Di,j for
some i 6= j. Say L(Di,j) = Dr,s with s 6= i, j. Let k be any integer, k 6= i, j, s.
Then ρsa(Ei,i + Ej,j + Ek,k + Di,j + Di,k + Dj,k) = 3 and L(Ei,i + Ej,j +
Ek,k +Di,j +Di,k +Dj,k) = Ei,j + Ej,j +Ek,k +Dr,s + L(Di,k +Dj,k). Since
Es,s 6⊑ Ei,i + Ej,j + Ek,k +Dr,s + L(Di,k +Dj,k), ρsa(L(Ei,i + Ej,j + Ek,k +
Di,j +Di,k +Dj,k)) = ∞, a contradiction. Thus T preserves SA2. �

Theorem 3.9. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective

and preserves SA3, then T is a (P, P t)-operator.

Proof. By Lemma 3.8, T preserves SA2, and then by Theorem 3.7 the theorem
follows. �

Lemma 3.10. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective

and preserves SAn, then T preserves SA2.

Proof. If T is bijective and preserves SAn, then T preserves SA1 by Lemma 3.4.
Thus, T is bijective on the set of diagonal cells. Let P be a permutation matrix
such that L(X) = P tT (X)P for all X ∈ Sn(B) and such that L(Ei,i) = Ei,i

for all i. Further, L is bijective on the set of digons and preserves sets SA1 and
SAn. By Lemma 3.8 we may assume that n ≥ 4.

Suppose that L(Di,j) 6= Di,j for some i 6= j. Without loss of generality
we may assume that (i, j) = (1, 2). Then L(D1,2) = Dp.q for some q ≥ 4.
Then, L(E1,1 +E2,2 + · · ·+Eq−1,q−1 +Eq+1,q+1 + · · ·+En,n +D1,2 +D1,3) =
E1,1+E2,2+ · · ·+Eq−1,q−1+Eq+1,q+1+ · · ·+En,n+Dp,q+Dr,s for some r < s.
But, ρsa(E1,1+E2,2+ · · ·+Eq−1,q−1+Eq+1,q+1+ · · ·+En,n+D1,2+D1,3) = n

by Example 2.1, while ρsa(E1,1+E2,2+ · · ·+Eq−1,q−1+Eq+1,q+1+ · · ·+En,n+
Dp,q + Dr,s) = ∞ for any choice of r 6= s since the (q, q) entry is zero while
the (p, q) entry is nonzero, which is not possible in any member of Fsym. This
contradicts that L preserves SAn. Thus, L preserves SA2. �

Theorem 3.11. Let T : Sn(B) → Sn(B) be a linear operator. If T is bijective

and preserves SAn, then T is a (P, P t)-operator.

Proof. By Lemma 3.10, T preserves SA2, and then by Theorem 3.7 the theorem
follows. �
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4. Strong preservers of symmetric arctic rank

In this section we shall classify all linear operators on Sn(B) that strongly
preserve the set of matrices of symmetric arctic rank k.

Theorem 4.1. Let T : Sn(B) → Sn(B) be a linear operator. If T strongly

preserves SAk for some 3 ≤ k ≤ n, then T is bijective on the set of base

elements.

Proof. Suppose that T (X) = O for some X ∈ Sn(B). Then, for some i ≤ j

T (Di,j) = O. Without loss of generality, we may assume that 1 ≤ i, j ≤ 2.
Then, T ((Jk ⊕O) \Di,j) = T (Jk ⊕O), contradicting that T strongly preserves
SAk since ρsa(Jk⊕O) = k while ρsa((Jk⊕O)\Di,j) is ∞ if i = j or is 2k−2 6= k

if i 6= j since k ≥ 3. Thus T is nonsingular. Note that this does not mean that
T is bijective, just that T (X) = O only for X = O.

Now, suppose that #(T (Di,j)) ≥ 2 for some i ≤ j. Again, without loss
of generality we may assume that 1 ≤ i ≤ j ≤ 2. But then, there is a base
element F such that T ((Jk ⊕ O) \ F ) = T (Jk ⊕ O), again a contradiction.
Thus, T maps base elements to base elements. Suppose that E and F are
base elements, E 6= F , and T (E) = T (F ). If for some permutation matrix P,

(E + F ) ⊑ P t(Jk ⊕O)P , then

T (P t(Jk ⊕O)P ) = T ((P t(Jk ⊕O)P \ E) + E)

= T (P t(Jk ⊕O)P \E) + T (E)

= T (P t(Jk ⊕O)P \E) + T (F )

= T ((P t(Jk ⊕O)P \ E) + F )

= T (P t(Jk ⊕O)P \E),

a contradiction since ρsa(P
t(Jk ⊕ O)P \ E) 6= k while ρsa(P

t(Jk ⊕ O)P ) = k.
Note that if k ≥ 4, then it is always possible to find such a permutation matrix
P .

Thus, if there is no permutation matrix P such that P (E +F )P t ⊑ Jk ⊕O,
then k ≤ 3. However, there is a permutation P such that E ⊑ P t(Jk ⊕ O)P .
In this case, as above we have that

T (P t(Jk ⊕O)P ) = T ((P t(Jk ⊕O)P \ E) + E)

= T (P t(Jk ⊕O)P \E) + T (E)

= T (P t(Jk ⊕O)P \E) + T (F )

= T ((P t(Jk ⊕O)P \ E) + F ),

which is a contradiction since ρsa(P
t(Jk⊕O)P ) = k while (P t(Jk⊕O)P \E)+

F 6∈ Fsym if F is a digon or E is a diagonal cell, and is in SA2k+1 if E is a
digon and F is a diagonal cell, so that ρsa((P

t(Jk ⊕O)P \ E) + F ) 6= k.
We now have that T is injective on the set of base elements. Since Sn(B) is

finite, T is bijective on the set of base elements. �
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Corollary 4.2. Let T : Sn(B) → Sn(B) be a linear operator. If T strongly

preserves SAk for some 3 ≤ k ≤ n, then T is bijective on Sn(B).

Proof. By the above theorem, T is bijective on the set of base elements. Every
member of Sn(B) is a unique sum of base elements, so that T is bijective on
Sn(B). �

Theorem 4.3. Let T : Sn(B) → Sn(B) be a linear operator. Then T strongly

preserves SAk for some 4 ≤ k ≤ n− 1 if and only if T is a (P, P t)-operator.

Proof. Suppose that T strongly preserves SAk. By Corollary 4.2 we have that
T is bijective and by Lemma 3.4 that T preserves SA1. Now by Theorem 2.3,
there exist scalars αi,j , βi,j ∈ B for 1 ≤ i < j ≤ n and a permutation matrix P

such that

T (X) = P



X +
∑

1≤i<j≤n

xi,j(αi,jEi,i + βi,jEj,j)



P t

for all X ∈ Sn(B). Suppose that αi,j 6= 0 for some i, j. Without loss of
generality we may assume that (i, j) = (1, 2). Then ρsa(D1,2 + (O1 ⊕ Ik−1 ⊕
On−k)) = ∞ but T (D1,2 + (O1 ⊕ Ik−1 ⊕ On−k)) = P (D1,2 + (Ik ⊕ On−k))P

t

which has symmetric arctic rank k, a contradiction. Thus, αi,j = βi,j = 0 for
all i, j. That is T is a (P, P t)-operator. Since every (P, P t)-operator preserves
all symmetric arctic ranks, the converse follows. �

5. Summary

We summarize the above results below.

Theorem 5.1. Let T : Sn(B) → Sn(B) be a linear operator. Then the following

are equivalent:

(1) T preserves SA1 and SAk for some 4 ≤ k ≤ n− 1;
(2) T preserves SA2 and SAk for some 4 ≤ k ≤ n− 1;
(3) there exist scalars αi,j , βi,j ∈ B for 1 ≤ i < j ≤ n and a permutation

matrix P such that

T (X) = P



X +
∑

1≤i<j≤n

xi,j(αi,jEi,i + βi,jEj,j)



P t

for all X ∈ Sn(B).

Proof. (1) implies (3) by Theorem 2.3, and (2) implies (3) by Theorem 2.4, To
show (3) implies (1) and (2), one observes that such a T defined in (3) preserves
all symmetric arctic ranks except ∞. �

Theorem 5.2. Let T : Sn(B) → Sn(B) be a linear operator. Then the following

are equivalent:

(1) T is bijective and preserves SAk for some 2 ≤ k ≤ n;
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(2) T strongly preserves SAk for some 4 ≤ k ≤ n− 1;
(3) T is a (P, P t)-operator.

Proof. (1) implies (3) by Theorem 3.7, Theorem 3.9, Corollary 3.5, and Theo-
rem 3.11; (2) implies (3) by Theorem 4.3; and to show (3) implies (1) and (2)
one observes that any (P, P t)-operator is bijective and strongly preserves all
symmetric arctic ranks. �
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