Nonlinear Functional Analysis and Applications
Vol. 27, No. 2 (2022), pp. 349-361
ISSN: 1229-1595(print), 2466-0973(online)
https://doi.org/10.22771/nfaa.2020.27.02.10
http://nfaa.kyungnam.ac.kr/journal-nfaa
Copyright © 2022 Kyungnam University Press

EXISTENCE AND MULTIPLICITY OF SOLUTIONS OF $p(x)$-TRIHARMONIC PROBLEM

Adnane Belakhdar ${ }^{1}$, Hassan Belaouidel ${ }^{2}$, Mohammed Filali ${ }^{3}$ and Najib Tsouli ${ }^{4}$
${ }^{1}$ Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st, Oujda, 60000, Morocco
e-mail: ad.belakhdar@gmail.com
${ }^{2}$ Laboratory Nonlinear Analysis, National School of Business and Management University Mohammed 1st, Oujda, 60000, Morocco
e-mail: belaouidelhassan@hotmail.fr
${ }^{3}$ Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st, Oujda, 60000, Morocco
e-mail: filali1959@yahoo.fr
${ }^{3}$ Laboratory Nonlinear Analysis, Department of Mathematics, Faculty of Science University Mohammed 1st, Oujda, 60000, Morocco
e-mail: tsouli@hotmail.com

Abstract. In this paper, we study the following nonlinear problem:

$$
\left\{\begin{array}{l}
-\Delta_{p}^{3}(x) u=\lambda V_{1}(x)|u|^{q(x)-2} u \quad \text { in } \Omega, \\
u=\Delta u=\Delta^{2} u=0 \quad \text { on } \partial \Omega
\end{array}\right.
$$

under adequate conditions on the exponent functions p, q and the weight function V_{1}. We prove the existence and nonexistence of eigenvalues for $p(x)$-triharmonic problem with Navier boundary value conditions on a bounded domain in \mathbb{R}^{N}. Our technique is based on variational approaches and the theory of variable exponent Lebesgue spaces.

[^0]
1. Introduction

We study the properties of the eigenvalue of the $p(x)$-triharmonic problem:

$$
\begin{cases}-\Delta_{p}^{3}(x) u=\lambda V_{1}(x)|u|^{q(x)-2} u & \text { in } \Omega, \tag{1.1}\\ u=\Delta u=\Delta^{2} u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with smooth boundary, $(N>3)$, $p, q \in$ $C(\bar{\Omega}), 1<p(x)<\frac{N}{3}, 1<q(x)<\frac{N}{3}$ for all $x \in \bar{\Omega}, \lambda$ is a nonnegative real parameter, V_{1} is an indefinite weight function that can change the sign in Ω, $\Delta_{p(x)}^{3} u:=\operatorname{div}\left(\Delta\left(|\nabla \Delta u|^{p(x)-2} \nabla \Delta u\right)\right)$ is $p(x)$-triharmonic operator. Note that $p(x)$-triharmonic operator which is not consistent and is related to the variable exponent Lebesgue space $L^{p(x)}(\Omega)$ and the variable exponent Sobolev space $W^{1, p(x)}(\Omega)$. It is also worth mentioning that the problems with the growth conditions $p(x)$-triharmonic have more complicated nonlinearities than the constant cases. Indeed, firstly the problem is not homogeneous, and secondly, the Lagrange multiplier theorem is not be useful in such a case because $p(x)$ is variable. We find this kind of problem in the modeling of electrorheological fluids $[12,13]$ and of elastic mechanics. For more details, we invite the reader to an overview of references $[3,4,9,15]$.

In the literature, several authors treat the eigenvalues of biharmonic problems for example Ge et al. [8] considered the eigenvalues of the $p(x)$-biharmonic problem with an indefinite weight:

$$
\begin{cases}\Delta\left(|\Delta u|^{p(x)-2} \Delta u\right)=\lambda V(x)|u|^{q(x)-2} u & \text { in } \Omega, \tag{1.2}\\ u=\Delta u=0 & \text { on } \partial \Omega,\end{cases}
$$

where p, q are continuous functions and V is an indefinite weight function. Under appropriate conditions on p and q, they showed the existence of a continuous family of eigenvalues of the problem.

In [1] Ayoujil studied a class of $p(\cdot)$-biharmonic of the form

$$
\left\{\begin{array}{l}
\Delta\left(|\Delta u|^{p(x)-2} \Delta u\right)=\lambda V(x)|u|^{q(x)-2} u \quad \text { in } \Omega, \tag{1.3}\\
u=\Delta u=0 \text { on } \partial \Omega,
\end{array}\right.
$$

and he established the existence and non-existence of eigenvalues for a $p(x)$ biharmonic equation function of weight on a bounded domain in $\mathbb{R}^{\mathbb{N}}$.

In this paper, if not otherwise stated, we will always suppose that exponent $p(x)$ is continuous on $\bar{\Omega}$ with

$$
p^{-}:=\inf _{x \in \Omega} p(x) \leq p(x) \leq p^{+}:=\sup _{x \in \Omega} p(x)<\frac{N}{3},
$$

and $p^{*}(x)$ denotes the critical variable exponent related to $p(x)$, defined for all $x \in \bar{\Omega}$ by the pointwise relation $p_{3}^{*}(x)=\frac{N p(x)}{N-3 p(x)}$.

Let us introduce some conditions for Problem (1.1) as follows:
$\left(\mathbf{H}_{1}\right) p^{+}<q^{-} \leq q^{+}<p^{*}(x), r_{1}(x)>\frac{p_{3}^{*}(x)}{p_{3}^{*}(x)-p(x)} ;$
$\left(\mathbf{H}_{2}\right) V_{1} \in L^{r_{1}(x)}(\Omega)$.
Based on the use of Mountain Pass lemma here, Problem (1.1) is stated in the framework of the generalized Sobolev space:

$$
X:=W_{0}^{1, p(\cdot)}(\Omega) \cap W^{3, p(\cdot)}(\Omega)
$$

equipped with the norm:

$$
\|u\|=\inf \left\{\mu>0: \int_{\Omega}\left(\left|\frac{\nabla \Delta u(x)}{\mu}\right|^{p(x)}\right) d x \leq 1\right\}
$$

X endowed with the above norm is a separable and reflexive Banach space.
The paper is structured as follows. In Section 2, we present a mathematical background of variable exponent Lebesgue spaces and Sobolev spaces. In Section 3, we give our main results and the proofs.

2. Preliminaries

As preliminaries, we need some results on the variable exponent spaces $L^{p(\cdot)}(\Omega)$ and $W^{k, p(\cdot)}(\Omega)$ and some properties. Let Ω be a bounded domain of \mathbb{R}^{N} and denote

$$
C_{+}(\bar{\Omega})=\{h(x): \quad h(x) \in C(\bar{\Omega}), \quad h(x)>1, \quad \forall x \in \bar{\Omega}\} .
$$

For any $h \in C_{+}(\bar{\Omega})$, we define

$$
h^{+}=\max \{h(x): x \in \bar{\Omega}\}, \quad h^{-}=\min \{h(x): x \in \bar{\Omega}\} .
$$

For any $p \in C_{+}(\bar{\Omega})$, we define the variable exponent Lebesgue space

$$
L^{p(\cdot)}(\Omega)=\left\{u: \Omega \rightarrow \mathbb{R} \text { measurable and } \int_{\Omega}|u(x)|^{p(x)} d x<\infty\right\},
$$

endowed with the so-called Luxemburg norm

$$
|u|_{p(\cdot)}=\inf \left\{\mu>0: \int_{\Omega}\left|\frac{u(x)}{\mu}\right|^{p(\cdot)} d x \leq 1\right\} .
$$

Then $\left(L^{p(\cdot)}(\Omega),|\cdot|_{p(\cdot)}\right)$ becomes a Banach space.

Proposition 2.1. ([14]) Let $\left(L^{p(\cdot)}(\Omega),|\cdot|_{p(\cdot)}\right)$ be separable, uniformly convex, reflexive and its conjugate space be $L^{q(\cdot)}(\Omega)$ where $q(\cdot)$ is the conjugate function of $p(\cdot)$, i.e.,

$$
\frac{1}{p(\cdot)}+\frac{1}{q(\cdot)}=1 .
$$

Then for $u \in L^{p(\cdot)}(\Omega)$ and $v \in L^{q(\cdot)}(\Omega)$, we have

$$
\left|\int_{\Omega} u v d x\right| \leq\left(\frac{1}{p^{-}}+\frac{1}{q^{-}}\right)|u|_{p(\cdot)}|v|_{q(\cdot)} \leq 2|u|_{p(\cdot)}|v|_{q(\cdot)} .
$$

A fundamental tool in the manipulation of generalized Lebesgue spaces which is the mapping $\rho: L^{p(x)}(\Omega) \rightarrow \mathbb{R}$, called the modular of the $L^{p(x)}(\Omega)$ space, defined by:

$$
\rho_{p(x)}(u)=\int_{\Omega}|u|^{p(x)} d x .
$$

We remember the following, (see $([7,11]))$.
Proposition 2.2. For all $u \in L^{p(x)}(\Omega)$, we have
(1) $|u|_{p(x)}^{p^{-}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{+}} \quad$ if $\quad|u|_{p(x)}>1$;
(2) $|u|_{p(x)}^{p^{+}} \leq \rho_{p(x)}(u) \leq|u|_{p(x)}^{p^{-}} \quad$ if $\quad|u|_{p(x)} \leq 1$.

The Sobolev space with variable exponent $W^{k, p(\cdot)}(\Omega)$ is defined as

$$
W^{k, p(\cdot)}(\Omega)=\left\{u \in L^{p(\cdot)}(\Omega): D^{\alpha} u \in L^{p(\cdot)}(\Omega),|\alpha| \leq k\right\},
$$

where $D^{\alpha} u=\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \partial x_{2}^{\alpha} \ldots \partial x_{N}^{\alpha_{N}}} u$, with $\alpha=\left(\alpha_{1}, \cdots, \alpha_{N}\right)$ is a multi-index and $|\alpha|=\sum_{i=1}^{N} \alpha_{i}$. The space $W^{k, p(\cdot)}(\Omega)$ equipped with the norm

$$
\|u\|_{k, p(\cdot)}=\sum_{|\alpha| \leq k}\left|D^{\alpha} u\right|_{p(\cdot)},
$$

also becomes a separable and reflexive Banach space. For more details, see to ([14]). Denote

$$
p_{k}^{*}(\cdot)= \begin{cases}\frac{N p(\cdot)}{N-k p(\cdot)} & \text { if } k p(\cdot)<N, \\ +\infty & \text { if } k p(\cdot) \geq N,\end{cases}
$$

for any $k \geq 1$.
Proposition 2.3. ([2]) For $p, q \in C_{+}(\bar{\Omega})$ such that $q(\cdot) \leq p_{k}^{*}(\cdot)$, there is a continuous embedding

$$
W^{k, p(\cdot)}(\Omega) \hookrightarrow L^{q(\cdot)}(\Omega)
$$

If we replace \leq with $<$, the embedding is compact.
Similarly to Proposition 2.3, we have:
Proposition 2.4. ([6]) Let $I_{p(x)}(u)=\int_{\Omega}|\nabla \Delta u(x)|^{p(x)} d x$. Then for $u \in X$, we have
(1) for $\|u\| \leq 1, \quad\|u\|^{p^{+}} \leq I_{p(x)}(u) \leq\|u\|^{p^{-}}$;
(2) for $\|u\| \geq 1, \quad\|u\|^{p^{-}} \leq I_{p(x)}(u) \leq\|u\|^{p^{+}}$.

The following result (see ([2]), Theorem 3.2), which will be used later, is an embedding result between the spaces X and $L^{q(x)}(\Omega)$.
Theorem 2.5. Let $p, q \in C_{+}(\bar{\Omega})$. Assume that

$$
p(x)<\frac{N}{3} \quad \text { and } \quad q(x)<p_{3}^{*}(x)
$$

Then, there is a continuous and compact embedding X into $L^{q(x)}(\Omega)$.
We remember as well the next proposition, which will be needed later.
Proposition 2.6. ([5]) Let $p(x)$ and $q(x)$ be measurable functions such that $p(x) \in L^{\infty}(\Omega)$ and $1 \leq p(x) q(x) \leq \infty$, for a.e. $x \in \Omega$. Let $u \in L^{q(x)}(\Omega)$, $u \neq 0$. Then, we have
(1) for $|u|_{p(x) q(x)} \leq 1, \quad|u|_{p(x) q(x)}^{p^{+}} \leq\left||u|^{p(x)}\right|_{q(x)} \leq|u|_{p(x) q(x)}^{p^{-}}$,
(2) for $|u|_{p(x) q(x)}>, 1 \quad|u|_{p(x) q(x)}^{p^{-}} \leq\left||u|^{p(x)}\right|_{q(x)} \leq|u|_{p(x) q(x)}^{p^{+}}$.

Let the functionals $I, J: X \rightarrow \mathbb{R}$ defined as

$$
\begin{equation*}
I(u)=\int_{\Omega} \frac{|\nabla \Delta u|^{p(x)}}{p(x)} d x, \quad \forall u \in X \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
J(u)=\int_{\Omega} \frac{V_{1}(x)|u|^{q(x)}}{q(x)} d x, \quad \forall u \in X . \tag{2.2}
\end{equation*}
$$

Applying a standard argument, we can show the next lemma.
Lemma 2.7. Assume that $\left(\boldsymbol{H}_{1}\right)$ and $\left(\boldsymbol{H}_{2}\right)$ hold. Then, the functionals I and J are well defined, I is coercive, and J is weakly continuous. Moreover, $I, J \in$ $C^{1}(X, \mathbb{R})$ with the derivatives are respectively given by

$$
\begin{equation*}
\left\langle I^{\prime}(u), \phi\right\rangle=\int_{\Omega}|\nabla \Delta u|^{p(x)-2} \nabla \Delta u \nabla \Delta \phi d x \tag{2.3}
\end{equation*}
$$

and

$$
\left\langle J^{\prime}(u), \phi\right\rangle=\int_{\Omega} V_{1}(x)|u|^{q(x)-2} u \phi d x
$$

for all $u, \phi \in X$, where $\langle.,$.$\rangle denotes the duality between X$ and its dual space X^{*}.

We give an auxiliary result which will help us further in the demonstration.
Proposition 2.8. (i) I is weakly lower semi-continuous, namely $u_{n} \rightharpoonup u$ implies that $I(u) \leq \lim \inf I\left(u_{n}\right)$.
(ii) I is a weakly-strongly continuous functional, namely $u_{n} \rightharpoonup u$ implies that $I\left(u_{n}\right) \longrightarrow I(u)$.
Proof. (i) By coercivity, we get

$$
\begin{aligned}
0 & \leq\left\langle I\left(u_{n}-u\right), u_{n}-u\right\rangle \\
& =\left\langle I\left(u_{n}\right), u_{n}\right\rangle-\left\langle I\left(u_{n}\right), u\right\rangle-\left\langle I(u), u_{n}\right\rangle+\langle I(u), u\rangle .
\end{aligned}
$$

Hence,

$$
\left\langle I\left(u_{n}\right), u\right\rangle+\left\langle I(u), u_{n}\right\rangle-\langle I(u), u\rangle \leq\left\langle I\left(u_{n}\right), u_{n}\right\rangle .
$$

Now, I is continuous, so by $u_{n} \rightharpoonup u$ it follows that $\left\langle I\left(u_{n}\right), u\right\rangle \rightarrow\langle I(u), u\rangle$. Then,

$$
\left\langle I\left(u_{n}\right), u\right\rangle+\left\langle I(u), u_{n}\right\rangle-\langle I(u), u\rangle \rightarrow\langle I(u), u\rangle \quad \text { as } \quad n \rightarrow \infty .
$$

As consequence, we have

$$
\begin{aligned}
\langle I(u), u\rangle & =\lim \inf _{n}\left(\left\langle I\left(u_{n}\right), u\right\rangle+\left\langle I\left(u_{n}\right), u_{n}\right\rangle-\langle I(u), u\rangle\right) \\
& \leq \lim \inf _{n \longrightarrow \infty}\left\langle I\left(u_{n}\right), u_{n}\right\rangle .
\end{aligned}
$$

(ii) Let's consider $\left\{u_{n}\right\}$ a sequence in X such that $u_{n} \rightharpoonup u$ in X. Denote by $r_{1}^{\prime}(x)$ the conjugate exponent of the function $r_{1}(x)$ (i.e. $\left.r_{1}^{\prime}(x)=\frac{r_{1}(x)}{r_{1}(x)-1}\right)$. Hence, as $q(x) r_{1}^{\prime}(x)<p_{3}^{*}(x)$, Theorem 2.5 involves $u_{n} \rightharpoonup u$ in $L^{q(x) r^{\prime}(x)}(\Omega)$. This, together with the continuity of Nemytski operator $\mathcal{N}_{V_{1}, q}$ defined by $\mathcal{N}_{V_{1}, q}(u)(x)=V_{1}(x)|u(x)|^{q(x)}$ if $u \neq 0$ and $\mathcal{N}_{V_{1}, q}(u)(x)=0$ if not, give $I\left(u_{n}\right) \rightarrow I(u)$.

3. Main results

Definition 3.1. We say that $u \in X$ is a weak solution of Problem (1.1) if u satisfies

$$
\begin{equation*}
-\int_{\Omega}|\nabla \Delta u|^{p(x)-2} \nabla \Delta u \nabla \Delta v d x-\lambda \int_{\Omega} V_{1}(x)|u|^{q(x)-2} u v d x=0 \tag{3.1}
\end{equation*}
$$

for all $v \in X$.

The energy functional corresponding to Problem (1.1) is defined by L_{λ} : $X \rightarrow \mathbb{R}$,

$$
L_{\lambda}(u)=I(u)-\lambda J(u) .
$$

We consider

$$
F(u)=\int_{\Omega}|\nabla \Delta u|^{p(x)} d x
$$

and

$$
G(u)=\int_{\Omega} V_{1}(x)|u|^{q(x)} d x
$$

for every $(u, v) \in X$. Define

$$
\lambda^{*}=\inf \left\{\frac{I(u)}{J(u)}, u \in X \text { and } J(u)>0\right\}
$$

and

$$
\lambda_{*}=\inf \left\{\frac{F(u)}{G(u)}, u \in X \text { and } G(u)>0\right\} .
$$

We begin with the next lemma, which plays a fundamental role in the proof of Theorem 3.3.

Lemma 3.2. Assume that $\left(\boldsymbol{H}_{1}\right)$ and $\left(\boldsymbol{H}_{2}\right)$ are verified and

$$
\begin{equation*}
2 q^{+}-p^{-}<2 q^{-} \tag{3.2}
\end{equation*}
$$

hold. Then

$$
\begin{equation*}
\lim _{\|u\| \rightarrow 0} \frac{I(u)}{J(u)}=\infty \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{\|u\| \longrightarrow \infty} \frac{I(u)}{J(u)}=\infty . \tag{3.4}
\end{equation*}
$$

Proof. Since $J(u)=\int_{\Omega} \frac{V_{1}(x)|u|^{q(x)}}{q(x)} d x$,

$$
\begin{aligned}
|J(u)| & =\left|\int_{\Omega} \frac{V_{1}(x)|u|^{q(x)}}{q(x)} d x\right| \\
& \leq \int_{\Omega}\left|\frac{V_{1}(x)|u|^{q(x)}}{q(x)}\right| d x .
\end{aligned}
$$

By applying the Hölder's inequality, we get

$$
|J(u)| \leq\left.\left.\frac{2}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}| | u\right|^{q(x)}\right|_{r_{1}^{\prime}(x)} .
$$

Thanks to Proposition 2.6, it follows

$$
\begin{equation*}
|J(u)| \leq \frac{2}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}|u|_{q(x) r_{1}^{\prime}(x)}^{q^{i}}, \tag{3.5}
\end{equation*}
$$

where $i=+$ if $|u|_{q(x) r_{1}^{\prime}(x)}>1$ and $i=-$ if $|u|_{q(x) r_{1}^{\prime}(x)}<1$.
On the one hand, using $\left(\mathbf{H}_{1}\right)$, we have $p(x)<q(x) r_{1}^{\prime}(x)<p^{*}(x)$. Hence, from Proposition 2.2, X is continuously embedded in $L^{q(x) r_{1}^{\prime}(x)}(\Omega)$. So, there exists $c_{1}>0$ such that

$$
\begin{equation*}
|J(u)| \leq \frac{2 c_{1}}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}|u|^{q^{i}} \tag{3.6}
\end{equation*}
$$

Then, we proceed as follows

$$
\begin{aligned}
I(u) & =\int_{\Omega} \frac{|\nabla \Delta u|^{p(x)}}{p(x)} d x \\
& \geq \frac{1}{p^{+}} \int_{\Omega}|\nabla \Delta u|^{p(x)} d x \\
& \geq \frac{1}{p^{+}}\|u\|^{p^{+}} \\
& \geq \frac{1}{p^{+}}\|u\|^{p^{+}} .
\end{aligned}
$$

For each $u \in X$ small enough with $\|u\| \leq 1$, by using (3.5) and (3.6), we infer

$$
\begin{equation*}
\frac{I(u)}{J(u)} \geq \frac{\frac{1}{p^{+}}\|u\|^{p^{+}}}{\frac{2 c_{1}}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}\|u\|^{i^{2}}} \tag{3.7}
\end{equation*}
$$

Since $p^{+}<q^{-} \leq q^{+}$, passing to the limit as $\|u\| \longrightarrow 0$ in the above inequality, we conclude that assertion (3.3) stay true.

Next, we prove that assertion (3.4) remains true. From (3.2), there exists a positive constant δ such that $2 q^{+}-p^{-}<\delta<2 q^{-}$. Hence we get

$$
\begin{equation*}
p^{-}>2\left(q^{+}-\delta\right)>2\left(q^{-}-\delta\right) \tag{3.8}
\end{equation*}
$$

Let $s_{1}(x)$ be a measurable function such that

$$
\begin{equation*}
\frac{p^{*}(x)}{p^{*}(x)+\delta-q(x)} \leq s_{1}(x) \leq \frac{p^{*}(x) r_{1}(x)}{p^{*}(x)+\delta r_{1}(x)}, \tag{3.9}
\end{equation*}
$$

for almost all $x \in \Omega$ and

$$
\begin{equation*}
\delta\left(\frac{s_{1}^{+}}{s_{1}^{-}}+1\right) \leq q^{-} . \tag{3.10}
\end{equation*}
$$

It's clear that $s_{1} \in L^{\infty}(\Omega), 1<s_{1}(x)<r_{1}(x)$. In addition, we have

$$
\begin{equation*}
\delta t_{1}(x) \leq p^{*}(x) \quad \text { and } \quad(q(x)-\delta) s_{1}^{\prime}(x) \leq p^{*}(x), \quad \forall x \in \bar{\Omega}, \tag{3.11}
\end{equation*}
$$

where $t_{1}(x):=\frac{r_{1}(x) s_{1}(x)}{r_{1}(x)-s_{1}(x)}$ and $s_{1}^{\prime}(x)=\frac{s_{1}(x)}{s_{1}(x)-1}$.
Let $u \in X$ with $\|u\|>1$. From Hölder's inequality, we have

$$
\begin{equation*}
|J(u)| \leq\left.\left.\left.\left.\frac{2}{q^{-}}\left|V_{1}\right| u\right|^{\delta}\right|_{s_{1}(x)}| | u\right|^{q(x)-\delta}\right|_{s_{1}^{\prime}(x)} . \tag{3.12}
\end{equation*}
$$

Without loss of generality, we assume that $\left.\left.\left|V_{1}\right| u\right|^{\delta}\right|_{s_{1}(x)}>1$. So, from Proposition 2.2 and from Hölder's inequality, we obtain

$$
\begin{align*}
|J(u)| & \leq\left.\left.\frac{2}{q^{-}}\left(\left(\left.\rho_{s_{1}(x)}\left|V_{1}\right| u\right|^{\delta}\right)\right)^{\frac{1}{s_{1}^{-}}}| | u\right|^{q(x)-\delta}\right|_{s_{1}^{\prime}(x)} \\
& =\left.\left.\frac{2}{q^{-}}\left(\left.\int_{\Omega}| | V_{1}\right|^{s_{1}(x)}|u|^{\delta s_{1}(x)} \mid\right)^{\frac{1}{s_{1}^{-}}}| | u\right|^{q(x)-\delta}\right|_{s_{1}^{\prime}(x)} \\
& \leq\left.\left.\left.\left.\left.\left.\frac{4}{q^{-}}| | V_{1}\right|^{s_{1}(x)}\right|_{\frac{r_{1}(x)}{\frac{1}{s_{1}}(x)}} ^{\frac{r_{1}^{-}}{s_{1}}}| | u\right|^{\delta s_{1}(x)}\right|_{\frac{r_{1}(x)}{r_{1}(x)-s_{1}(x)}}| | u\right|^{q(x)-\delta}\right|_{s_{1}^{\prime}(x)} . \tag{3.13}
\end{align*}
$$

Taking into consideration Proposition 2.6, we write

$$
\begin{gathered}
\left||u|^{\delta s_{1}(x)}\right|_{\frac{r_{1}(x)}{r_{1}(x)-s_{1}(x)}}^{\frac{1}{s_{-}^{-}}} \leq|u|_{\delta t_{1}(x)}^{\frac{\delta s_{1}^{+}}{s_{1}^{-}}}+|u|_{\delta t_{1}(x)}^{\delta}, \\
\left||u|^{q(x)-\delta}\right|_{s_{1}^{\prime}} \leq|u|_{(q(x)-\delta) s_{1}^{\prime}(x)}^{q^{+}-\delta}+|u|_{(q(x)-\delta) s_{1}^{\prime}(x)}^{q^{--\delta}}
\end{gathered}
$$

and

$$
\left|\left|V_{1}\right|^{s_{1}(x)}\right|_{\frac{r_{1}(x)}{s_{1}(x)}}^{\frac{1}{s_{1}}} \leq\left|V_{1}\right|_{r_{1}(x)}^{\nu_{1}}
$$

with

$$
\nu_{1}= \begin{cases}\frac{s_{1}^{+}}{s_{1}^{-}} & \text {if }\left|V_{1}\right|_{r_{1}(x)}>1, \\ 1 & \text { if }\left|V_{1}\right|_{r_{1}(x)} \leq 1 .\end{cases}
$$

Therefore, we replace the above inequalities into (3.12) and then by Young's inequality, it follows

$$
\left.\begin{array}{rl}
|J(u)| & \leq \frac{4}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}^{\nu_{1}}\left(|u|_{\delta t_{1}(x)}^{\frac{\delta_{1}^{s_{1}^{+}}}{s_{1}^{1}}}+|u|_{\delta t_{1}(x)}^{\delta}\right.
\end{array}\right)\left(|u|_{(q(x)-\delta) s_{1}^{\prime}(x)}^{q^{+}-\delta}+|u|_{(q(x)-\delta) s_{1}^{\prime}(x)}^{q^{-}-\delta}\right) .
$$

From (3.11), we infer by Theorem 2.5 that X is continuously embedded in both $L^{\delta\left(\frac{r_{1}(x)}{s_{1}(x)}\right)^{\prime}}(\Omega)$ and $L^{(q(x)-\delta) s_{1}^{\prime}(x)}(\Omega)$. Then, there exists positive constant c_{1} such that

$$
\begin{equation*}
|J(u)| \leq \frac{4 c_{1}}{q^{-}}\left|V_{1}\right|_{r_{1}(x)}^{\nu}\left(\|u\|^{2 \delta^{\frac{s_{1}^{+}}{s_{1}^{-}}}}+\|u\|^{2 \delta}+\|u\|^{2\left(q^{+}-\delta\right)}+\|u\|^{2\left(q^{-}-\delta\right)}\right) \tag{3.15}
\end{equation*}
$$

Therefore, we get

$$
\frac{I(u)}{J(u)} \geq \frac{q^{-}\|u\|^{p^{-}}}{4 c_{1} p^{+}\left|V_{1}\right|_{r_{1}(x)}^{\nu}\left(\|u\|^{2 \delta^{s_{1}^{+}}} \frac{s_{1}^{-}}{\nu}+\|u\|^{2 \delta}+\|u\|^{2\left(q^{+}-\delta\right)}+\|u\|^{2\left(q^{-}-\delta\right)}\right)}
$$

Combining (3.8) and (3.10), we conclude $p^{-}>2\left(q^{+}-\delta\right)>2\left(q^{-}-\delta\right)>$ $2 \delta \frac{s_{1}^{+}}{s_{1}^{-}}>2 \delta$. Hence, passing to the limit as $\|u\| \longrightarrow \infty$ in the above inequality, we conclude that relation (3.4) remains valid.

The main results of this work are presented as follows.
Theorem 3.3. Suppose $V_{1}>0$ on Ω. Assume that $\left(\boldsymbol{H}_{1}\right)$ and $\left(\boldsymbol{H}_{2}\right)$ are verified and satisfy (3.2). Then, we have
(i) $0<\lambda_{*} \leq \lambda^{*}$,
(ii) λ^{*} is an eigenvalue of Problem (1.1),
(iii) For each $\lambda>\lambda^{*}$ is an eigenvalue of Problem (1.1) while any $\lambda<\lambda^{*}$ is not an eigenvalue.
Proof. (i) We want to show that $\lambda_{*} \geq 0$ and $\frac{q^{-}}{p^{+}} \lambda_{*} \leq \lambda^{*} \leq \frac{q^{+}}{p^{-}} \lambda_{*}$. Therefore, $\lambda_{*} \leq \lambda^{*}$ since $p^{+}<q^{-}$. We use reasoning by absurdity and we suppose that $\lambda_{*}=0$, so $\lambda^{*}=0$. Let's consider $\left\{u_{n}\right\}$ a sequence in $X \backslash\{0\}$ such that

$$
\lim _{n} \frac{I\left(u_{n}\right)}{J\left(u_{n}\right)}=0
$$

As in (3.7), we obtain

$$
\frac{I\left(u_{n}\right)}{J\left(u_{n}\right)} \geq C\left\|u_{n}\right\|^{p^{+}-q^{-}}
$$

for some positive constant C. Since $p^{+}<q^{-}$, we have $\left\|u_{n}\right\| \rightarrow \infty$. And we deduce from (3.3) that

$$
\lim _{n} \frac{I\left(u_{n}\right)}{J\left(v_{n}\right)}=\infty,
$$

which is a contradiction with the hypothesis.
(ii) Let $\left\{u_{n}\right\} \subset X \backslash\{0\}$ be a minimizing sequence for λ^{*}, that is,

$$
\begin{equation*}
\lim _{n} \frac{I\left(u_{n}\right)}{J\left(u_{n}\right)}=\lambda^{*} \tag{3.16}
\end{equation*}
$$

From (3.4), $\left\{u_{n}\right\}$ is bounded in X which is reflexive. Therefore, there exists $u \in X$ such that $u_{n} \rightharpoonup u$ in X. This together with Proposition 2.8 gives that

$$
\begin{equation*}
I\left(u_{n}\right) \rightarrow I(u) \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\liminf I\left(u_{n}\right) \geq I(u) \tag{3.18}
\end{equation*}
$$

Combining (3.16), (3.17) and (3.18), we get that if $u \neq 0$,

$$
\frac{I(u)}{J(u)}=\lambda^{*} .
$$

We try to show that u is non-trivial. Through using the reasoning by absurd and suppose that $u=0$. Hence, $\lim I\left(u_{n}\right)=0$ and so, by (3.16), we deduce

$$
\lim I\left(u_{n}\right)=\lim \frac{I\left(u_{n}\right)}{J\left(u_{n}\right)} J\left(u_{n}\right)=0
$$

From the above equation and Proposition 2.4 involves that $\left\|u_{n}\right\| \rightarrow 0$. According to (3.4), we get

$$
\lim \frac{I\left(u_{n}\right)}{J\left(u_{n}\right)}=\infty,
$$

which is a contradiction. As a consequence, $u \neq 0$.
(iii) Assume that $\lambda>\lambda^{*}$ is fixed and let $u \in X$ with $\|u\|>1$. It follows from inequality (3.15) that

$$
L_{\lambda}(u) \geq \frac{1}{p^{+}}\|u\|^{p^{-}}-\lambda K_{1}\left(\|u\|^{2 \delta \frac{s^{+}}{s^{-}}}+\|u\|^{2 \delta}+\|u\|^{2\left(q^{+}-\delta\right)}+\|u\|^{2\left(q^{-}-\delta\right)}\right),
$$

where $K_{1}=\frac{4 c_{1}}{q^{-}}|V|_{r_{1}(x)}^{\nu}$. As $p^{-}>2\left(q^{+}-\delta\right)>2\left(q^{-}-\delta\right)>2 \delta \frac{s_{1}^{+}}{s_{1}^{-}}$, the inequality above involves that $L_{\lambda}(u) \rightarrow \infty$ as $\|u\| \rightarrow \infty$, that is, L_{λ} is coercive. Moreover, it results from Proposition 2.8 that the functional L_{λ} is weakly lower semicontinuous. As result we conclude from [[10], Proposition 1.2, Chapter 32], that there exists a global minimizer u_{0} of L_{λ} in X. Since $\lambda>\lambda^{*}$, by definition of λ^{*} we verify that there is an element $v \in X \backslash\{0\}$ such that $\frac{I(u)}{J(u)}<\lambda$. Hence, $L_{\lambda}(v)<0$ which ensures that

$$
L_{\lambda}\left(u_{0}\right)=\inf _{u \in X \backslash\{0\}} L_{\lambda}(u)<0 .
$$

Therefore, we deduce that $u_{0} \neq 0$.

Now, suppose by contradiction that there exists $\lambda \in\left(0, \lambda^{*}\right)$ an eigenvalue of Problem (1.1). Therefore, there exists $u_{\lambda} \in X \backslash\{0\}$ such that

$$
\left\langle I^{\prime}\left(u_{\lambda}\right), v\right\rangle=\lambda\left\langle J^{\prime}\left(u_{\lambda}\right), v\right\rangle, \quad \forall v \in X
$$

In particular, for $v=u_{\lambda}$, we have

$$
I\left(u_{\lambda}\right)=\lambda J\left(u_{\lambda}\right) .
$$

As $u_{\lambda} \neq 0$, we have $J\left(u_{\lambda}\right)>0$. This, together with the fact $\lambda<\lambda_{*}$ gives

$$
I\left(u_{\lambda}\right)>\lambda_{*} J\left(u_{\lambda}\right)>\lambda J\left(u_{\lambda}\right)=I\left(u_{\lambda}\right)
$$

which is a contradiction. The proof has been completed.
In the situation when V_{1} is a sign-changing function, we define

$$
X_{1}^{+}=\left\{u \in X: \int_{\Omega} V_{1}(x)|u|^{q(x)} d x>0\right\}
$$

and

$$
X_{1}^{-}=\left\{u \in X: \int_{\Omega} V_{1}(x)|u|^{q(x)}<0\right\} .
$$

And also, we define

$$
\begin{array}{ll}
\alpha^{*}=\inf _{u \in X^{+}} \frac{I(u)}{J(u)}, & \alpha_{*}=\inf _{u \in X^{+}} \frac{F(u)}{G(u)} \\
\beta^{*}=\inf _{u \in X^{-}} \frac{I(u)}{J(u)}, & \beta_{*}=\inf _{u \in X^{-}} \frac{F(u)}{G(u)} \tag{3.20}
\end{array}
$$

Theorem 3.4. Suppose that $\left(\boldsymbol{H}_{1}\right)$ and $\left(\boldsymbol{H}_{2}\right)$ are verified and

$$
\begin{equation*}
\left|\left\{x \in \Omega: V_{1}(x)>0\right\}\right| \neq 0 \tag{3.21}
\end{equation*}
$$

are hold. Then, we get
(i) $\beta^{*} \leq \beta_{*}<0<\alpha_{*} \leq \alpha^{*}$,
(ii) $\alpha^{*}\left(\right.$ resp. $\left.\beta^{*}\right)$ is a positive (resp. negative) eigenvalue of Problem (1.1),
(iii) any $\lambda \in\left(-\infty, \beta^{*}\right) \cup\left(\alpha^{*}, \infty\right)$ is an eigenvalue of Problem (1.1) while $\lambda \in\left(\beta_{*}, \alpha^{*}\right)$ is not an eigenvalue.

Proof. Precise that if $\lambda>0$ is an eigenvalue of Problem 1.1 with weight V_{1}, hence, $-\lambda$ is an eigenvalue of Problem 1.1 with weight V_{1}. Then, it is enough to show Theorem 3.3 only for $\lambda>0$. Then, the Problem 1.1 has only to be considered in X^{+}and in this situation, the same demonstration to that of Theorem 3.3 and thus it will be neglected here.

References

[1] A. Ayoujil, Existence and Nonexistence Results for Weighted Fourth Order Eigenvalue Problems With Variable Exponent, Bol. Soc. Paran. Mat,, 37(3) (2019), 55-66.
[2] A. Ayoujil, A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable exponent, Nonlinear Anal. T.M.A., 71(10) (2009), 4916-4926.
[3] M. Dammak, R. Jaidane and C. Jerb, Positive solutions for asymptotically linear biharmonic problems, Nonlinear Funct. Anal. Appl., 22(1) (2017), 59-76
[4] L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces,, Proc. Milovy, Czech Republic, (2004), 38-58.
[5] D.E. Edmunds, J. Rákosnk, Sobolev embedding with variable exponent, Studia Math., 143(3) (2000), 267-293.
[6] A. El Amrouss and A. Ourraoui, Existence Of Solutions For A Boundary Problem Involving $p(x)$-Biharmonic Operator, Bol. Soc. Paran. Math., 31(1) (2013), 179-192 .
[7] X.L. Fan and D. Zhao, On the space $L^{p(x)}(\Omega)$ and $W^{m, p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
[8] B. Ge, Q.M. Zhou and Y.H. Wu, Eigenvalues of the $p(x)$-biharmonic operator with indefinite weight, Zeitschrift fr angewandte Mathematik und Physik, 66(3) (2015), 10071021.
[9] P. Harjulehto, P. Hästö, An overview of variable exponent Lebesgue and Sobolev spaces, in: D. Herron (Ed.), Future Trends in Geometric Function Theory, RNC Workshop, Jyväskylä, (2003), 85-93.
[10] O. Kavian, Introduction à la théorie des points critiques et Applications, SpringerVerlag, 13 (1993).
[11] O. Kovác̆ik, J.Rákosník, On spaces $L^{p(x)}$ and $W^{1, p(x)}$, Czechoslovak Math., J. 41 (1991), 592-618.
[12] K.R. Rajagopal and M. Ruzicka, Mathematical modeling of electrorheological materials, Contin. Mech. Thermodyn., 13 (2001), 59-78.
[13] M. Ruzicka, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Mathematics, Springer-Verlag, Berlin 1748 (2000).
[14] A. Zang and Y. Fu, Interpolation inequalities for derivatives in variable exponent LebesgueSobolev spaces, Nonlinear Anal T.M.A., 69(10) (2008), 3629-3636.
[15] V.V. Zhikov, On some variational problems, Russ. J. Math. Phys, 5 (1997), 105-116.

[^0]: ${ }^{0}$ Received November 12, 2021. Revised January 11, 2022. Accepted February 23, 2022.
 ${ }^{0} 2020$ Mathematics Subject Classification: 34L15, 35J55, 35J65.
 ${ }^{0}$ Keywords: Eigenvalues, $p(x)$-triharmonic operator.
 ${ }^{0}$ Corresponding author: A. Belakhdar(ad.belakhdar@gmail.com).

