• 제목/요약/키워드: $H^s(\mathbb{R}^n)$ space

검색결과 15건 처리시간 0.021초

ESTIMATES FOR RIESZ TRANSFORMS ASSOCIATED WITH SCHRÖDINGER TYPE OPERATORS

  • Wang, Yueshan
    • 대한수학회보
    • /
    • 제56권5호
    • /
    • pp.1117-1127
    • /
    • 2019
  • Let ${\mathcal{L}}_2=(-{\Delta})^2+V^2$ be the $Schr{\ddot{o}}dinger$ type operator, where nonnegative potential V belongs to the reverse $H{\ddot{o}}lder$ class $RH_s$, s > n/2. In this paper, we consider the operator $T_{{\alpha},{\beta}}=V^{2{\alpha}}{\mathcal{L}}^{-{\beta}}_2$ and its conjugate $T^*_{{\alpha},{\beta}}$, where $0<{\alpha}{\leq}{\beta}{\leq}1$. We establish the $(L^p,\;L^q)$-boundedness of operator $T_{{\alpha},{\beta}}$ and $T^*_{{\alpha},{\beta}}$, respectively, we also show that $T_{{\alpha},{\beta}}$ is bounded from Hardy type space $H^1_{L_2}({\mathbb{R}}^n)$ into $L^{p_2}({\mathbb{R}}^n)$ and $T^*_{{\alpha},{\beta}}$ is bounded from $L^{p_1}({\mathbb{R}}^n)$ into BMO type space $BMO_{{\mathcal{L}}1}({\mathbb{R}}^n)$, where $p_1={\frac{n}{4({\beta}-{\alpha})}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})}}$.

RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

  • Seo, Keomkyo
    • Korean Journal of Mathematics
    • /
    • 제18권2호
    • /
    • pp.195-200
    • /
    • 2010
  • Let C be a closed convex set in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$. Assume that ${\Sigma}$ is an n-dimensional compact minimal submanifold outside C such that ${\Sigma}$ is orthogonal to ${\partial}C$ along ${\partial}{\Sigma}{\cap}{\partial}C$ and ${\partial}{\Sigma}$ lies on a geodesic sphere centered at a fixed point $p{\in}{\partial}{\Sigma}{\cap}{\partial}C$ and that r is the distance in ${\mathbb{S}}^m$ or ${\mathbb{H}}^m$ from p. We make use of a modified volume $M_p({\Sigma})$ of ${\Sigma}$ and obtain a sharp relative isoperimetric inequality $$\frac{1}{2}n^n{\omega}_nM_p({\Sigma})^{n-1}{\leq}Vol({\partial}{\Sigma}{\sim}{\partial}C)^n$$, where ${\omega}_n$ is the volume of a unit ball in ${\mathbb{R}}^n$ Equality holds if and only if ${\Sigma}$ is a totally geodesic half ball centered at p.

HOLONOMY DISPLACEMENTS IN THE HOPF BUNDLES OVER $\mathcal{C}$Hn AND THE COMPLEX HEISENBERG GROUPS

  • Choi, Young-Gi;Lee, Kyung-Bai
    • 대한수학회지
    • /
    • 제49권4호
    • /
    • pp.733-743
    • /
    • 2012
  • For the "Hopf bundle" $S^1{\rightarrow}S^{2n,1}{\rightarrow}\mathbb{C}H^n$, horizontal lifts of simple closed curves are studied. Let ${\gamma}$ be a piecewise smooth, simple closed curve on a complete totally geodesic surface $S$ in the base space. Then the holonomy displacement along ${\gamma}$ is given by $$V({\gamma})=e^{{\lambda}A({\gamma})i}$$ where $A({\gamma})$ is the area of the region on the surface $S$ surrounded by ${\gamma}$; ${\lambda}=1/2$ or 0 depending on whether $S$ is a complex submanifold or not. We also carry out a similar investigation for the complex Heisenberg group $\mathbb{R}{\rightarrow}\mathcal{H}^{2n+1}{\rightarrow}\mathbb{C}^n$.

CHANGE OF SCALE FORMULAS FOR A GENERALIZED CONDITIONAL WIENER INTEGRAL

  • Cho, Dong Hyun;Yoo, Il
    • 대한수학회보
    • /
    • 제53권5호
    • /
    • pp.1531-1548
    • /
    • 2016
  • Let C[0, t] denote the space of real-valued continuous functions on [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}\mathbb{R}^n$ by $Z_n(x)=(\int_{0}^{t_1}h(s)dx(s),{\ldots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $ t_n=t$ is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. Using a simple formula for a conditional expectation on C[0, t] with $Z_n$, we evaluate a generalized analytic conditional Wiener integral of the function $G_r(x)=F(x){\Psi}(\int_{0}^{t}v_1(s)dx(s),{\ldots},\int_{0}^{t}v_r(s)dx(s))$ for F in a Banach algebra and for ${\Psi}=f+{\phi}$ which need not be bounded or continuous, where $f{\in}L_p(\mathbb{R}^r)(1{\leq}p{\leq}{\infty})$, {$v_1,{\ldots},v_r$} is an orthonormal subset of $L_2[0,t]$ and ${\phi}$ is the Fourier transform of a measure of bounded variation over $\mathbb{R}^r$. Finally we establish various change of scale transformations for the generalized analytic conditional Wiener integrals of $G_r$ with the conditioning function $Z_n$.

A CHARACTERIZATION OF HYPERBOLIC SPACES

  • Kim, Dong-Soo;Kim, Young Ho;Lee, Jae Won
    • 대한수학회보
    • /
    • 제55권4호
    • /
    • pp.1103-1107
    • /
    • 2018
  • Let M be a complete spacelike hypersurface in the (n + 1)-dimensional Minkowski space ${\mathbb{L}}^{n+1}$. Suppose that every unit speed curve X(s) on M satisfies ${\langle}X^{\prime\prime}(s),X^{\prime\prime}s){\rangle}{\geq}-1/r^2$ and there exists a point $p{\in}M$ such that for every unit speed geodesic X(s) of M through the point p, ${\langle}X^{\prime\prime}(s),X^{\prime\prime}s){\rangle}=-1/r^2$ holds. Then, we show that up to isometries of ${\mathbb{L}}^{n+1}$, M is the hyperbolic space $H^n(r)$.

ESTIMATES FOR THE HIGHER ORDER RIESZ TRANSFORMS RELATED TO SCHRÖDINGER TYPE OPERATORS

  • Wang, Yanhui
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.235-251
    • /
    • 2021
  • We consider the Schrödinger type operator ��k = (-∆)k+Vk on ℝn(n ≥ 2k + 1), where k = 1, 2 and the nonnegative potential V belongs to the reverse Hölder class RHs with n/2 < s < n. In this paper, we establish the (Lp, Lq)-boundedness of the higher order Riesz transform T��,�� = V2��∇2��-��2 (0 ≤ �� ≤ 1/2 < �� ≤ 1, �� - �� ≥ 1/2) and its adjoint operator T∗��,�� respectively. We show that T��,�� is bounded from Hardy type space $H^1_{\mathcal{L}_2}({\mathbb{R}}_n)$ into Lp2 (ℝn) and T∗��,�� is bounded from ��p1 (ℝn) into BMO type space $BMO_{\mathcal{L}_1}$ (ℝn) when �� - �� > 1/2, where $p_1={\frac{n}{4({\beta}-{\alpha})-2}}$, $p_2={\frac{n}{n-4({\beta}-{\alpha})+2}}$. Moreover, we prove that T��,�� is bounded from $BMO_{\mathcal{L}_1}({\mathbb{R}}_n)$ to itself when �� - �� = 1/2.

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG
    • 대한수학회지
    • /
    • 제42권5호
    • /
    • pp.1087-1100
    • /
    • 2005
  • In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

  • Cho, Dong Hyun
    • 대한수학회지
    • /
    • 제53권3호
    • /
    • pp.709-723
    • /
    • 2016
  • Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.