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SPHERE-FOLIATED MINIMAL AND CONSTANT MEAN

CURVATURE HYPERSURFACES IN PRODUCT SPACES

Keomkyo Seo

Abstract. In this paper, we prove that minimal hypersurfaces when
n ≥ 3 and nonzero constant mean curvature hypersurfaces when n ≥ 2
foliated by spheres in parallel horizontal hyperplanes in Hn × R must be

rotationally symmetric.

1. Introduction

In R3, catenoids and Riemann’s examples are the only minimal surfaces fo-
liated by circles. However, in higher-dimensional Euclidean space, there are
no examples of non-rotationally symmetric minimal hypersurfaces such as Rie-
mann’s examples in R3. In 1991, Jagy [6] proved that if Mn is a minimal
hypersurface in Rn+1 (n ≥ 3) and foliated by (n − 1)-dimensional spheres in
parallel hyperplanes, then Mn is rotationally symmetric about the axis con-
taining the centers of all the spheres. This result has been generalized to other
spaces forms: sphere, the hyperbolic and Lorentz-Minkowski space (See [7], [8],
and [11]).

In H2 ×R, Nelli and Rosenberg [9] found a rotationally symmetric minimal
surface which is called a catenoid in H2×R. In [4], Hauswirth provided several
examples of minimal surfaces foliated by horizontal curves of constant curvature
in H2 × R. In particular, he constructed a two-parameter family of Riemann
type surfaces. Recently, Bérard and Sa Earp [2] obtained some results on
total curvature and index of higher-dimensional catenoids in Hn × R. On the
other hand, Nelli et al. [10] described the geometric behavior of rotationally
symmetric constant mean curvature surfaces in H2 ×R. They showed that for
|H| > 1/2, the properties of rotationally symmetric constant mean curvature
surfaces in H2 × R are analogous to those of the Delaunay surfaces in R3.
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Rotationally symmetric constant mean curvature surfaces in H2×R have been
studied in [1, 3, 5, 12].

Throughout this paper, we consider the upper half-space model of hyperbolic
space

Hn = {(x1, . . . , xn) ∈ Rn : xn > 0}

equipped with the metric ds2 = (dx1)
2+···+(dxn)

2

xn
2 . For a product space Hn ×R,

we fix the metric ds2+εdt2 (ε = ±1). This metric is called Riemannian if ε = 1
and Lorentzian if ε = −1.

In this paper, we study hypersurfaces foliated by (n−1)-dimensional spheres
lying in parallel hyperplanes in some Riemannian and Lorentzian product
spaces. In Section 2, we shall prove that minimal hypersurfaces (n ≥ 3) and
non-zero constant mean curvature hypersurfaces (n ≥ 2) foliated by (n − 1)-
dimensional spheres in parallel horizontal hyperplanes in the Riemannian prod-
uct Hn×R should be rotationally symmetric (Theorem 2.1). As a consequence,
one can see that there is no Riemann type minimal hypersurfaces foliated by
(n−1)-dimensional spheres in Hn×R for n ≥ 3. We shall use Jagy’s idea [6] to
prove this result (See also [8]). A key ingredient of the proof is the following.
We describe a hypersurface M in Hn × R locally as the level set for a smooth
function f . If we orient M by the unit normal vector field N = − ∇f

|∇f | , then

the mean curvature H is given by

nH = −div
∇f

|∇f |
,(1.1)

where ∇ and div denote the gradient and divergence in Hn × R, respectively.
A straightforward computation using the fact that M is foliated by spheres in
parallel horizontal hyperplanes gives us the conclusion. In Section 3, applying
the similar arguments as in Section 2, we prove an analogue in the Lorentzian
product Hn × R.

The author would like to thank the referee for useful suggestions on improv-
ing the presentation of this paper.

2. Sphere-foliated hypersurfaces in the Riemannian product Hn × R

In Hn × R, a one-parameter family of hyperplanes Hn × {t} for t ∈ R are
called parallel horizontal hyperplanes. We will deal with hypersurfaces foliated
by spheres in parallel horizontal hyperplanes in the Riemannian product space
Hn × R.

Theorem 2.1. Let M be an n-dimensional hypersurface with constant mean
curvature H in the Riemannian product Hn × R and foliated by spheres in
parallel horizontal hyperplanes. If H ̸= 0 or H = 0 and n ≥ 3, then M is a
rotationally symmetric hypersurface.

Before proving the above theorem, we need the following well-known fact.
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Lemma 2.2 ([13], pp. 81–82). If an (n−1)-dimensional sphere has Euclidean
center (0, . . . , 0, k) ∈ Rn

+ := {(x1, . . . , xn) : xn > 0} and a Euclidean radius r,
then it has the hyperbolic center (0, . . . , 0,K) ∈ Rn

+ and the hyperbolic radius
R, where

K =
√
k2 − r2 and R =

1

2
ln

k + r

k − r
.

Proof of Theorem 2.1. Let Pt1 = Hn×{t1} and Pt2 = Hn×{t2} be two horizon-
tal hyperplanes of the foliation for t1 < t2. Let M

∗ be the piece of M between
Pt1 and Pt2 . The boundary ∂M∗ of M∗ consists of two (n − 1)-dimensional
spheres (M∗∩Pt1)∪(M∗∩Pt2). After an isometric transformation in Hn×R, we
may assume that the hyperbolic centers of the two boundary spheres are given
by (0, . . . , 0, k1, t1) and (0, . . . , 0, k2, t2) in Rn

+×R for some constants k1, k2 > 0,
respectively. Note that these two boundary spheres are symmetric to the hy-
perplanes {x1 = 0}, . . . , {xn−1 = 0}. The well-known Aleksandrov reflection
principle shows that M∗ inherits the symmetries of its boundary ∂M∗. There-
fore, for each t1 ≤ t ≤ t2, the hyperbolic center of each level M ∩{xn+1 = t} is
symmetric to the hyperplanes {x1 = 0}, . . . , {xn−1 = 0}. Hence it follows that
the hyperbolic center of each level lies in the 2-plane {x1 = · · · = xn−1 = 0}.

Using Lemma 2.2, we parametrize the hyperbolic centers of the (n − 1)-
dimensional spheres by t 7−→ (0, . . . , 0,K(t), t) ∈ Hn × R for t ∈ [t1, t2], and
hence the Euclidean centers of the spheres by t 7−→ (0, . . . , 0, k(t), t) ∈ Hn ×R.
Then it follows from Lemma 2.2 that

K(t) =
√

k(t)2 − r(t)2,

where r(t) is the Euclidean radius of M ∩ Hn × {t}. Note that K(t) > 0 for
t ∈ [t1, t2]. Moreover, we see that M∗ is the level set {f = 0} of a function f
given by

f(x1, . . . , xn, t) =
n−1∑
i=1

x2
i + (xn − k(t))2 − r(t)2.(2.1)

To prove the theorem, it is sufficient to show that

dK(t)

dt
= 0,

which means that M is a rotationally symmetric hypersurface whose rotation
axis is the geodesic γ(t) = {(0, . . . , 0,K, t)} for some constant K. Note that
the metric on Hn × R is given by∑

i,j

gijdxi ⊗ dxj =
1

x2
n

dx2
1 + · · ·+ 1

x2
n

dx2
n + dt2.

Since

∇f =
∑
i,j

gij
∂f

∂xi

∂

∂xj
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= (2x2
nx1, . . . , 2x

2
nxn−1, 2x

2
n(xn − k),−2(xn − k)k′ − 2rr′),

we have

|∇f |2 = 4
(
x2
nx

2
1 + · · ·+ x2

nx
2
n−1 + x2

n(xn − k)2 + ((xn − k)k′ + rr′)2
)
.

Now we compute the mean curvature of M∗ using the equation (1.1).

−nH = div
∇f

|∇f |
=

∑
i,j

1
√
g

∂

∂xj

(√
g

gij

|∇f |
∂f

∂xi

)
=

∑
j

∂Zj

∂xj
+
∑
j

1
√
g

(∂√g

∂xj

)
Zj ,

where Zj =
∑

i
gij

|∇f |
∂f
∂xi

and g = det(gij) = x−2n
n . Then we have

−nH =
x2
n

S
− (x2

nx1)
2

S3
+ · · ·+ x2

n

S
− (x2

nxn−1)
2

S3

+
x2
n + 2xn(xn − k)

S
− x2

n(xn − k){xnr
2 + x2

n(xn − k) +Ak′}
S3

+
B

S
− A{x2

n(xn − k)k′ +AB}
S3

+ xn
n(−nx−n−1

n )
x2
n(xn − k)

S
,

where A = (xn − k)k′ + rr′, B = k′2 − (xn − k)k′′ − r′2 − rr′′, and

S =
|∇f |
2

=
√
x2
nx

2
1 + · · ·+ x2

nx
2
n−1 + x2

n(xn − k)2 + ((xn − k)k′ + rr′)2

=
√
x2
nr

2 +A2.

Thus we have

−nHS3 = 2A2x2
n + (n− 1)kr2x3

n + (n− 2)kxnA
2

+ r2x2
nB − 2x3

nk
′A+ 2kk′x2

nA.

Squaring the above equation, we obtain

n2H2S6 = n2H2{x2
nr

2 + (k′xn + rr′ − kk′)2}3

=
[
{2rr′k′ + (n− 2)kk′2 + (n− 1)kr2 − r2k′′}x3

n(2.2)

+ {(k′2 + r′2 − rr′′ + kk′′)r2 + 2(n− 3)kk′rr′ − 2(n− 2)k′2k2}x2
n

+ k(n− 2)(rr′ − kk′)2xn

]2
.

Suppose that H ̸= 0. Let us fix a section t. Since xn is varied, we regard (2.2)
as an equation on xn where the coefficients are functions of the independent
variable t. Comparing the degree 0-terms in both sides of (2.2), we get

n2H2(rr′ − kk′)6 = 0.
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Therefore it follows that

dK(t)

dt
=

d

dt

√
k(t)2 − r(t)2 =

kk′ − rr′√
k2 − r2

= 0.

Now suppose that H = 0 and n ≥ 3. Comparing the coefficients of the degree
2-terms in both sides of (2.2), we have

k(n− 2)(rr′ − kk′)2 = 0.

Therefore rr′ − kk′ = 0, which also implies that

dK(t)

dt
= 0.

Hence we can conclude that M is a rotationally symmetric hypersurface in both
cases. □

Remark. In H2 × R, Hauswirth [4] constructed several Riemann type mini-
mal surfaces foliated by circles. However, as mentioned in the introduction, it
follows from the above theorem that there is no Riemann type minimal hyper-
surface which is not rotationally symmetric and foliated by (n−1)-dimensional
spheres lying in parallel horizontal hyperplanes in Hn × R when n ≥ 3.

3. Sphere-foliated hypersurfaces in the Lorentzian product Hn × R

An immersed hypersurface M in the Lorentz product space Hn×R endowed
with the Lorentzian metric

ds2 =
(dx1)

2 + · · ·+ (dxn)
2

xn
2

− (dt)2

is called spacelike if the induced metric on M is a Riemannian metric. If the
hypersurface is locally the level set of a smooth function f , the fact that M is
spacelike means that ∇f is a timelike vector:

⟨∇f,∇f⟩ < 0.

If we orient M by the unit normal vector field N = − ∇f
|∇f | , then the mean

curvature H is given by

nH = −div
∇f

|∇f |
,(3.1)

where |∇f | =
√
−⟨∇f,∇f⟩ and div denotes the divergence with respect to the

Lorentzian metric on the product space Hn × R.
As in the proof of Theorem 2.1, consider two horizontal hyperplanes of the

foliation Pt1 = Hn × {t1} and Pt2 = Hn × {t2} for t1 < t2. Applying the
Aleksandrov reflection principle in Hn × R, we see that the piece M∗ between
Pt1 and Pt2 has the symmetries of its boundary ∂M∗ = (M∗∩Pt1)∪(M∗∩Pt2).
Therefore, for each t1 ≤ t ≤ t2, the hyperbolic center of each level M ∩{xn+1 =
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t} lies in the same 2-plane. After a translation in Hn×R, we may assume that
this 2-plane is defined by x1 = · · · = xn−1 = 0.

Using Lemma 2.2 again, we can parametrize the hyperbolic centers of the
(n− 1)-dimensional spheres by t 7−→ (0, . . . , 0,K(t), t) ∈ Hn ×R for t ∈ [t1, t2],
and the Euclidean centers of the spheres by t 7−→ (0, . . . , 0, k(t), t) ∈ Hn × R,
where K(t) =

√
k(t)2 − r(t)2 and r(t) is the Euclidean radius of M ∩Hn×{t}.

Then M∗ is the level set {f = 0} of a function f defined as in (2.1). Note that
the metric on the Lorentzian product Hn × R is given by∑

i,j

gijdxi ⊗ dxj =
1

x2
n

dx2
1 + · · ·+ 1

x2
n

dx2
n − dt2.

Since

∇f =
∑
i,j

gij
∂f

∂xi

∂

∂xj

=
(
2x2

nx1, . . . , 2x
2
nxn−1, 2x

2
n(xn − k), 2((xn − k)k′ + rr′)

)
,

we get

−⟨∇f,∇f⟩ = 4
(
− x2

nx
2
1 − · · · − x2

nx
2
n−1 − x2

n(xn − k)2 + ((xn − k)k′ + rr′)2
)
.

Using the mean curvature equation (3.1), we have

−nH = div
∇f

|∇f |
=

∑
i,j

1√
|g|

∂

∂xj

(√
|g| gij

|∇f |
∂f

∂xi

)
,

where |∇f | =
√
−⟨∇f,∇f⟩ and |g| = | det(gij)| = x−2n

n .

A similar computation as in the proof of Theorem 2.1 shows that

n2H2{−x2
nr

2 + (k′xn + rr′ − kk′)2}3

=
[
{2rr′k′ − (n− 2)kk′2 − (n− 1)kr2 + r2k′′}x3

n(3.2)

+ {(k′2 + r′2 − rr′′ + kk′′)r2 − 2(n− 1)kk′rr′ + 2(n− 2)k′2k2}x2
n

− k(n− 2)(rr′ − kk′)2xn

]2
.

Suppose that H ̸= 0. Comparing the degree 0-terms in both sides of the
equation (3.2) of variable xn, we obtain

n2H2(rr′ − kk′)6 = 0.

Therefore it follows that

dK(t)

dt
=

d

dt

√
k(t)2 − r(t)2 =

kk′ − rr′√
k2 − r2

= 0.(3.3)
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Now suppose that H = 0 and n ≥ 3. Comparing the coefficients of the degree
2-terms in both sides of (3.2), we have

k(n− 2)(rr′ − kk′)2 = 0.

So we have rr′ − kk′ = 0, which also implies that

dK(t)

dt
= 0.(3.4)

From (3.3) and (3.4), it follows that the hyperbolic center of each hypersphere
in parallel horizontal hyperplane lies in a vertical geodesic line of the Lorentzian
product Hn × R. Therefore we obtain the following.

Theorem 3.1. Let M be an n-dimensional spacelike hypersurface with constant
mean curvature H in the Lorentzian product Hn × R and foliated by spheres
in parallel horizontal hyperplanes. If H ̸= 0 or H = 0 and n ≥ 3, then M is
rotationally symmetric.
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