RELATIVE ISOPERIMETRIC INEQUALITY FOR MINIMAL SUBMANIFOLDS IN SPACE FORMS

Keomkyo Seo

Abstract

Let C be a closed convex set in \mathbb{S}^{m} or \mathbb{H}^{m}. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$ and $\partial \Sigma$ lies on a geodesic sphere centered at a fixed point $p \in \partial \Sigma \cap \partial C$ and that r is the distance in \mathbb{S}^{m} or \mathbb{H}^{m} from p. We make use of a modified volume $M_{p}(\Sigma)$ of Σ and obtain a sharp relative isoperimetric inequality $$
\frac{1}{2} n^{n} \omega_{n} M_{p}(\Sigma)^{n-1} \leq \operatorname{Vol}(\partial \Sigma \sim \partial C)^{n}
$$ where ω_{n} is the volume of a unit ball in \mathbb{R}^{n}. Equality holds if and only if Σ is a totally geodesic half ball centered at p.

1. Introduction

Let Σ be a domain in a complete simply connected surface with constant Gaussian curvature K. The classical isoperimetric inequality says that

$$
4 \pi \operatorname{Area}(\Sigma)-K \operatorname{Area}(\Sigma)^{2} \leq \operatorname{Length}(\partial \Sigma)^{2}
$$

where equality holds if and only if Σ is a geodesic disk. One natural way to extend this optimal inequality is to find the corresponding relative isoperimetric inequality. Let C be a closed convex set in a complete simply connected surface S with constant Gaussian curvature $K \leq 0$. It has been known that if Σ is a relatively compact subset in $S \sim C$, then

$$
\begin{equation*}
2 \pi \operatorname{Area}(\Sigma)-K \operatorname{Area}(\Sigma)^{2} \leq \operatorname{Length}(\partial \Sigma \sim \partial C)^{2} \tag{1.1}
\end{equation*}
$$

where equality holds if and only if Σ is a geodesic half disk [1]. Here \sim denotes the set minus operator. The inequality (1.1) is called the

Received May 13, 2010. Revised June 4, 2010. Accepted June 7, 2010.
2000 Mathematics Subject Classification: 58E35, 49Q20.
Key words and phrases: isoperimetric inequality, minimal submanifold, convex set.
relative isoperimetric inequality for Σ. Recently this inequality has been generalized to various directions. (See $[2,3,4,6,7,8,9]$.)

In this paper we study relative isoperimetric inequalities for an n dimensional minimal submanifold Σ outside a closed convex set C in space forms. Under the assumption that the relative boundary $\partial \Sigma \sim \partial C$ lies on a geodesic sphere centered at $p \in \partial \Sigma \cap \partial C$, we prove a sharp relative isoperimetric inequality. More precisely our main theorem is stated as follows.

Theorem. Let C be a closed convex set in \mathbb{S}^{m} or \mathbb{H}^{m}. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$ and $\partial \Sigma$ lies on a geodesic sphere centered at a fixed point $p \in \partial \Sigma \cap \partial C$ and that r is the distance in \mathbb{S}^{m} or \mathbb{H}^{m} from p. Furthermore, in case of $\Sigma \subset \mathbb{S}^{m}$, assume $r \leq \frac{\pi}{2}$. Then

$$
\frac{1}{2} n^{n} \omega_{n} M_{p}(\Sigma)^{n-1} \leq \operatorname{Vol}(\partial \Sigma \sim \partial C)^{n}
$$

where ω_{n} is the volume of a unit ball in \mathbb{R}^{n}. Equality holds if and only if Σ is a totally geodesic half ball centered at p.

2. Proof of main theorem

Let p be a point in the m-dimensional sphere $\mathbb{S}^{m} \subset \mathbb{R}^{m+1}$ and let $r(x)$ be the distance from p to x in \mathbb{S}^{m}. Choe and Gulliver [5] defined the modified volume $M_{p}(\Sigma)$ of Σ with center at p as

$$
M_{p}(\Sigma)=\int_{\Sigma} \cos r
$$

Similarly for Σ in the m-dimensional hyperbolic space \mathbb{H}^{m}, they defined the modified volume of Σ by

$$
M_{p}(\Sigma)=\int_{\Sigma} \cosh r
$$

Using the concept of the modified volume, they were able to prove the isoperimetric inequalities for minimal submanifolds in \mathbb{S}^{m} or \mathbb{H}^{m}. In order to prove our main theorem, we need the following monotonicity property which holds for minimal submanifolds outside a closed convex set in space forms.

Lemma 1. Let C be a closed convex set in \mathbb{S}^{m} or \mathbb{H}^{m}. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$. Suppose that $r(\cdot)=\operatorname{dist}(p, \cdot)$ in \mathbb{S}^{m} or \mathbb{H}^{m} for any $p \in \partial \Sigma \cap \partial C$. Denote by $B(p, r)$ the geodesic ball of radius r centered at p.
(a) In case of Σ in \mathbb{S}^{m}, for $0<r<\min \left\{\frac{\pi}{2}\right.$, $\left.\operatorname{dist}(p, \partial \Sigma \sim \partial C)\right\}$

$$
\frac{M_{p}(\Sigma \cap B(p, r))}{\sin ^{n} r}
$$

is monotonically nondecreasing function of r.
(b) In case of Σ in \mathbb{H}^{m}, for $0<r<\operatorname{dist}(p, \partial \Sigma \sim \partial C)$

$$
\frac{M_{p}(\Sigma \cap B(p, r))}{\sinh ^{n} r}
$$

is monotonically nondecreasing function of r.
Proof. For (a), define $\Sigma_{r}=\Sigma \cap B(p, r)$. Then

$$
\begin{aligned}
M_{p}\left(\Sigma_{r}\right)=\int_{\Sigma_{r}} \cos r & \leq-\frac{1}{n} \int_{\Sigma_{r}} \Delta \cos r \\
& =\frac{1}{n} \int_{\partial \Sigma_{r} \sim \partial C} \sin r \frac{\partial r}{\partial \nu}+\frac{1}{n} \int_{\partial \Sigma_{r} \cap \partial C} \sin r \frac{\partial r}{\partial \nu} .
\end{aligned}
$$

Since $\frac{\partial r}{\partial \nu}=\langle\nabla r, \nu\rangle \leq 0$ on $\partial \Sigma_{r} \cap \partial C$ by the orthogonality condition, one sees that

$$
M_{p}\left(\Sigma_{r}\right) \leq \frac{1}{n} \int_{\partial \Sigma_{r} \sim \partial C} \sin r \frac{\partial r}{\partial \nu}=\frac{\sin r}{n} \int_{\partial \Sigma_{r} \sim \partial C}|\nabla r| .
$$

Denote the volume forms on Σ and $\partial \Sigma_{r}$ by $d v$ and $d \Sigma_{r}$, respectively. Then

$$
d v=\frac{1}{|\nabla r|} d \Sigma_{r} d r
$$

Thus

$$
\frac{d}{d r} \int_{\Sigma_{r}} \cos r|\nabla r|^{2} d v=\frac{d}{d r} \int_{0}^{r} \int_{\partial \Sigma_{r}} \cos r|\nabla r| d \Sigma_{r} d r=\cos r \int_{\partial \Sigma_{r}}|\nabla r| .
$$

Using the fact that $r \leq \frac{\pi}{2}$ and $|\nabla r| \leq 1$ on Σ, we get

$$
\begin{aligned}
M_{p}\left(\Sigma_{r}\right) & \leq \frac{1}{n} \frac{\sin r}{\cos r} \cos r \int_{\partial \Sigma_{r}}|\nabla r| \\
& =\frac{1}{n} \frac{\sin r}{\cos r} \cos r \frac{d}{d r} \int_{\Sigma_{r}} \cos r|\nabla r|^{2} \\
& \leq \frac{1}{n} \frac{\sin r}{\cos r} \frac{d}{d r} \int_{\Sigma_{r}} \cos r \\
& =\frac{1}{n} \frac{\sin r}{\cos r} \frac{d}{d r} M_{p}\left(\Sigma_{r}\right) .
\end{aligned}
$$

Therefore

$$
\frac{d}{d r} \log \left(\frac{M_{p}\left(\Sigma_{r}\right)}{\sin ^{n} r}\right) \geq 0
$$

which implies that the function $\frac{M_{p}\left(\Sigma_{r}\right)}{\sin ^{n} r}$ is monotonically nondecreasing. A similar proof holds for (b).

From the above monotonicity property, we can prove our main result about relative isoperimetric inequality for minimal submanifolds outside a convex set satisfying that the relative boundary $\partial \Sigma \sim \partial C$ lies on a geodesic sphere.

Theorem 2. Let C be a closed convex set in \mathbb{S}^{m} or \mathbb{H}^{m}. Assume that Σ is an n-dimensional compact minimal submanifold outside C such that Σ is orthogonal to ∂C along $\partial \Sigma \cap \partial C$ and $\partial \Sigma$ lies on a geodesic sphere centered at a fixed point $p \in \partial \Sigma \cap \partial C$ and that r is the distance in \mathbb{S}^{m} or \mathbb{H}^{m} from p. Furthermore, in case of $\Sigma \subset \mathbb{S}^{m}$, assume $r \leq \frac{\pi}{2}$. Then

$$
\frac{1}{2} n^{n} \omega_{n} M_{p}(\Sigma)^{n-1} \leq \operatorname{Vol}(\partial \Sigma \sim \partial C)^{n}
$$

where ω_{n} is the volume of a unit ball in \mathbb{R}^{n}. Equality holds if and only if Σ is a totally geodesic half ball centered at p.

Proof. Assume that $\Sigma \subset \mathbb{S}^{m}$. Let $r(\cdot)=\operatorname{dist}(p, \cdot)$ in M. Let R be the radius of the geodesic sphere on which $\partial \Sigma \sim \partial C$ lies. It follows that

$$
\begin{aligned}
M_{p}(\Sigma) & \leq-\frac{1}{n} \int_{\Sigma} \Delta \cos r \\
& =\frac{1}{n} \int_{\partial \Sigma \sim \partial C} \sin r \frac{\partial r}{\partial \nu}+\frac{1}{n} \int_{\partial \Sigma \cap \partial C} \sin r \frac{\partial r}{\partial \nu} \\
& \leq \frac{1}{n} \int_{\partial \Sigma \sim \partial C} \sin r \frac{\partial r}{\partial \nu} \\
& =\frac{\sin R}{n} \int_{\partial \Sigma \sim \partial C} \frac{\partial r}{\partial \nu} \\
& \leq \frac{\sin R}{n} \operatorname{Vol}(\partial \Sigma \sim \partial C) .
\end{aligned}
$$

Since

$$
\lim _{r \rightarrow 0} \frac{M_{p}(\Sigma \cap B(p, r))}{\sin ^{n} r}=\frac{\omega_{n}}{2},
$$

we see from Lemma 1 that

$$
\frac{\omega_{n}}{2} \leq \frac{M_{p}(\Sigma)}{\sin ^{n} R}
$$

Thus we have

$$
M_{p}(\Sigma) \leq\left(\frac{2}{\omega_{n}}\right)^{\frac{1}{n}}\left(M_{p}(\Sigma)\right)^{\frac{1}{n}} \frac{1}{n} \operatorname{Vol}(\partial \Sigma \sim \partial C)
$$

which gives the desired inequality. Moreover, equality holds if and only if Σ is a cone with density at p equal to 1 with constant sectional curvature 1 and $\partial \Sigma \cap \partial C$ is totally geodesic, or equivalently Σ is a totally geodesic half ball.
Similarly one can prove the above theorem in case of $\Sigma \subset \mathbb{H}^{m}$.

References

[1] C. Bandle, Isoperimetric inequalities and applications, Pitman, 1980.
[2] J. Choe, Relative isoperimetric inequality for domains outside a convex set, Arch. Inequal. Appl. 1(2003), 241-250.
[3] J. Choe, The double cover relative to a convex set and the relative isoperimetric inequality, J. Aust. Math. Soc. 80(2006), 375-382.
[4] J. Choe, M. Ghomi and M. Ritore, The relative isoperimetric inequality outside convex domains in \mathbb{R}^{n}, Calc. Var. Partial Differential Equations 29(2007), no. 4, 421-429.
[5] J. Choe and R. Gulliver, Isoperimetric inequalities on minimal submanifolds of space forms, Manuscripta Math. 77(1992), 169-189.
[6] J. Choe and M. Ritore, The relative isoperimetric inequality in CartanHadamard 3-manifolds, J. reine angew. Math. 605(2007), 179-191.
[7] I. Kim, Relative isoperimetric inequality and linear isoperimetric inequality for minimal submanifolds, Manuscripta Math. 97(1998), 343-352.
[8] K. Seo, Relative isoperimetric inequality on a curved surface, J. Math. Kyoto Univ. 46(2006), 525-533.
[9] K. Seo, Relative isoperimetric inequality for minimal surfaces outside a convex set, Arch. Math. (Basel) 90(2008), 173-180.

Department of Mathematics
Sookmyung Women's University
Hyochangwongil 52, Yongsan-ku
Seoul, 140-742, Korea
E-mail: kseo@sookmyung.ac.kr

