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SCALE TRANSFORMATIONS FOR PRESENT

POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS

Dong Hyun Cho

Abstract. Let C[0, t] denote a generalized Wiener space, the space of
real-valued continuous functions on the interval [0, t] and define a random

vector Zn : C[0, t] → R
n by Zn(x) = (

∫
t1
0

h(s)dx(s), . . . ,
∫
tn
0

h(s)dx(s)),
where 0 < t1 < · · · < tn < t is a partition of [0, t] and h ∈ L2[0, t]
with h 6= 0 a.e. In this paper we will introduce a simple formula for a
generalized conditional Wiener integral on C[0, t] with the conditioning
function Zn and then evaluate the generalized analytic conditional Wiener

and Feynman integrals of the cylinder function F (x) = f(
∫
t

0
e(s)dx(s))

for x ∈ C[0, t], where f ∈ Lp(R)(1 ≤ p ≤ ∞) and e is a unit element in
L2[0, t]. Finally we express the generalized analytic conditional Feynman
integral of F as two kinds of limits of non-conditional generalized Wiener
integrals of polygonal functions and of cylinder functions using a change of
scale transformation for which a normal density is the kernel. The choice
of a complete orthonormal subset of L2[0, t] used in the transformation is
independent of e and the conditioning function Zn does not contain the
present positions of the generalized Wiener paths.

1. Introduction

Let C0[0, t] denote the Wiener space, the space of continuous real-valued
functions x on [0, t] with x(0) = 0. As mentioned in [1, 2], the Wiener measure
and Wiener measurability behave badly under change of scale transformation
and under translation. Various kinds of change of scale formulas for Wiener
integrals of bounded and unbounded functions were developed on the classical
and abstract Wiener spaces [3, 10, 13, 14, 15]. Furthermore the author and
his coauthors [5, 8, 11] introduced various kinds of change of scale formulas
for the conditional Wiener integrals of functions defined on C0[0, t], the infinite
dimensional Wiener space and C[0, t], an analogue of Wiener space [9] which
is the space of real-valued continuous paths on [0, t].
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Let h ∈ L2[0, t] with h 6= 0 a.e. on [0, t]. Define a stochastic process Z :
C[0, t]× [0, t] → R by

Z(x, s) =

∫ s

0

h(u)dx(u)

for x ∈ C[0, t] and s ∈ [0, t], where the integral denotes the Paley-Wiener-
Zygmund integral. Let

Zn(x) = (Z(x, t1), . . . , Z(x, tn))

and

Zn+1(x) = (Z(x, t1), . . . , Z(x, tn), Z(x, tn+1))

for x ∈ C[0, t], where 0 < t1 < · · · < tn < tn+1 = t is a partition of [0, t].
On the space C[0, t] the author [6] derived a simple formula for a generalized
conditional Wiener integral given the vector-valued conditioning function Zn+1.
Using the formula with Zn+1, Yoo and the author [12] evaluated a generalized
analytic conditional Wiener integral of the function Gr having the form

Gr(x) = F (x)Ψ

(∫ t

0

v1(s)dx(s), . . . ,

∫ t

0

vr(s)dx(s)

)

for F in a Banach algebra which corresponds to the Cameron-Storvick’s Banach
algebra S [4] and for Ψ = f + φ which need not be bounded or continuous,
where f ∈ Lp(R

r)(1 ≤ p ≤ ∞), {v1, . . . , vr} is an orthonormal subset of L2[0, t]
and φ is the Fourier transform of a measure of bounded variation over Rr. They
then established various kinds of change of scale formulas for the generalized
analytic conditional Wiener integral of Gr with the conditioning function Zn+1.
Further works were done by the author. In fact he [7] evaluated generalized
analytic conditional Wiener and Feynman integrals of the cylinder function G
having the form

G(x) = f((e, x))φ((e, x))

for x ∈ C[0, t], where f ∈ Lp(R)(1 ≤ p ≤ ∞), e is a unit element in L2[0, t] and
φ is the Fourier transform of a measure of bounded variation over R. He then
expressed the generalized analytic conditional Feynman integral of G as limits
of non-conditional generalized Wiener integrals using a change of scale trans-
formation. Except for the results in [7, 10], the choices of orthonormal bases
of L2[0, t] in the existing change of scale formulas depend on the orthonormal
set {v1, . . . , vr} used in the definition of cylinder function and the conditioning
function Zn+1 contains the present positions of the generalized Wiener paths.

In this paper we will introduce a simple formula for a generalized conditional
Wiener integral on C[0, t] with the conditioning function Zn and then evaluate
the generalized analytic conditional Wiener and Feynman integrals of the cylin-
der function G. Finally we express the generalized analytic conditional Feyn-
man integral of G as two kinds of limits of non-conditional generalized Wiener
integrals of polygonal functions and of cylinder functions using a change of
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scale transformation. In fact, as a function of ξn+1 ∈ R, the following normal
density

[
λ

2π[b(t)− b(tn)]

] 1

2

exp

{
−
λ(ξn+1 − ξn)

2

2[b(t)− b(tn)]

}

plays a role of the kernel for the transformation, where ξn is a real number, λ
is a complex number with positive real part and b is a variance function. The
choice of a complete orthonormal subset of L2[0, t] used in the transformation
is independent of e and the conditioning function Zn does not contain the
present positions of the generalized Wiener paths. We note that the results of
this paper are different from those in [5, 7, 8, 11, 12].

2. A generalized Wiener space

LetC and C+ denote the sets of complex numbers and complex numbers with
positive real parts, respectively. Let (C[0, t],B(C[0, t]), wϕ) be the analogue of
Wiener space associated with a probability measure ϕ on the Borel class of
R, where B(C[0, t]) denotes the Borel class of C[0, t]. For v ∈ L2[0, t] and

x ∈ C[0, t] let (v, x) =
∫ t

0
v(s)dx(s) denote the Paley-Wiener-Zygmund integral

of v according to x [9]. The inner product on the real Hilbert space L2[0, t] is
denoted by 〈·, ·〉.

Let F : C[0, t] → C be integrable and let X be a random vector on C[0, t].
Then we have the conditional expectation E[F |X ] given X from a well-known
probability theory. Furthermore there exists a PX -integrable function ψ on the
value space of X such that E[F |X ](x) = (ψ ◦ X)(x) for wϕ-a.e. x ∈ C[0, t],
where PX is the probability distribution of X . The function ψ is called the
conditional Wiener wϕ-integral of F given X and it is also denoted by E[F |X ].

Let 0 = t0 < t1 < · · · < tn < tn+1 = t be a partition of [0, t], where n
is a fixed nonnegative integer. Let h ∈ L2[0, t] with h 6= 0 a.e. on [0, t]. For
j = 1, . . . , n+ 1 let

αj =
1

‖χ(tj−1,tj ]h‖
χ(tj−1,tj ]h

and let V be the subspace of L2[0, t] generated by {α1, . . . , αn+1}. Let V
⊥ be

the orthogonal complement of V and P⊥ : L2[0, t] → V ⊥ be the orthogonal
projection. For x ∈ C[0, t] define a stochastic process Z : C[0, t]× [0, t] → R by

Z(x, s) =

∫ s

0

h(u)dx(u), 0 ≤ s ≤ t

and let Zn : C[0, t] → R
n be given by

Zn(x) = (Z(x, t1), . . . , Z(x, tn)).(1)

Let b(s) =
∫ s

0
(h(u))2du and for x ∈ C[0, t] define the polygonal function

[Z(x, ·)]b of Z(x, ·) by

[Z(x, ·)]b(s)(2)
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=

n+1∑

j=1

χ(tj−1,tj ](s)

[
Z(x, tj−1) +

b(s)− b(tj−1)

b(tj)− b(tj−1)
(Z(x, tj)− Z(x, tj−1))

]

for s ∈ [0, t], where χ(tj−1,tj ] denotes the indicator function on the interval

(tj−1, tj ]. Similarly for ~ξn+1 = (ξ1, . . . , ξn, ξn+1) ∈ R
n+1 the polygonal function

[~ξn+1]b of ~ξn+1 is given by (2) replacing Z(x, tj) by ξj (j = 1, . . . , n + 1) with

ξ0 = 0 and for ~ξn = (ξ1, . . . , ξn) ∈ R
n let [~ξn]b = χ[0,tn][

~ξn+1]b. For a, b, u ∈ R

and λ ∈ C let

Ψ(λ, u, a, b) =

(
λ

2πb

) 1

2

exp

{
−
λ

2b
(u− a)2

}
with b 6= 0.(3)

For a function F : C[0, t] → C let FZ(x) = F (Z(x, ·)). If FZ is integrable over
x, then by an application of Theorem 2.12 in [6]

E[FZ |Zn](~ξn) =

∫

R

Ψ(1, ξn+1, ξn, b(t)− b(tn))(4)

× E[F (Z(x, ·)− [Z(x, ·)]b + [~ξn+1]b)]dξn+1

for PZn
-a.e. ~ξn = (ξ1, . . . , ξn) ∈ R

n (for a.e. ~ξn ∈ R
n), where ~ξn+1 = (ξ1, . . . , ξn,

ξn+1) and PZn
is the probability distribution of Zn on the Borel class B(Rn) of

R
n. For λ > 0 let Fλ

Z (x) = FZ(λ
−

1

2x) and Zλ
n(x) = Zn(λ

−
1

2x) for x ∈ C[0, t],
where Zn is given by (1). Suppose that E[Fλ

Z ] exists. By the definition of the
conditional Wiener wϕ-integral and (4)

E[Fλ
Z |Z

λ
n ](
~ξn) =

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))(5)

× E[F (λ−
1

2 (Z(x, ·) − [Z(x, ·)]b) + [~ξn+1]b)]dξn+1

for PZλ
n
-a.e. ~ξn ∈ R

n, where PZλ
n

is the probability distribution of Zλ
n on

(Rn,B(Rn)). Let IλFZ
(~ξn) be the right hand side of (5). If IλFZ

(~ξn) has an

analytic extension J∗

λ(FZ)(~ξn) on C+, then it is called the conditional analytic
Wiener wϕ-integral of FZ given Zn with the parameter λ and denoted by

Eanwλ [FZ |Zn](~ξn) = J∗

λ(FZ)(~ξn)

for ~ξn ∈ R
n. Moreover if for nonzero real q, Eanwλ [FZ |Zn](~ξn) has a limit

as λ approaches to −iq through C+, then it is called the conditional analytic
Feynman wϕ-integral of FZ given Zn with the parameter q and denoted by

Eanfq [FZ |Zn](~ξn) = lim
λ→−iq

Eanwλ [FZ |Zn](~ξn).

Applying Theorem 3.5 in [9] we can easily prove the following theorem.

Theorem 2.1. Let {h1, h2, . . . , hr} be an orthonormal system of L2[0, t]. For

i = 1, 2, . . . , r, let Xi(x) = (hi, x) on C[0, t]. Then X1, . . . , Xr are independent
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and each Xi has the standard normal distribution. Moreover if f : Rr → R is

Borel measurable, then∫

C[0,t]

f(X1(x), . . . , Xr(x))dwϕ(x)

∗
=

(
1

2π

) r
2
∫

Rr

f(u1, u2, . . . , ur) exp

{
−
1

2

r∑

j=1

u2j

}
d(u1, u2, . . . , ur),

where
∗
= means that if either side exists, then both sides exist and they are

equal.

The following lemma is obvious from Theorem 2.1 in [10].

Lemma 2.2. Let a and b be positive real numbers. Then for any real u
∫

R

exp{−av2 − b(v − u)2}dv =

(
π

a+ b

) 1

2

exp

{
−

ab

a+ b
u2

}
.

Lemma 2.3. Let v ∈ L2[0, t], ~ξn+1 = (ξ1, . . . , ξn, ξn+1) ∈ R
n+1 and (v, [~ξn]b) =∑n

j=1〈vαj , αj〉(ξj − ξj−1), where ξ0 = 0 and ~ξn = (ξ1, . . . , ξn). Then

(v, [~ξn+1]b) =
n+1∑

j=1

〈vαj , αj〉(ξj − ξj−1) = (v, [~ξn]b) + 〈vαn+1, αn+1〉(ξn+1 − ξn).

Proof. By the definition of polygonal function

(v, [~ξn+1]b) =

n+1∑

j=1

ξj − ξj−1

b(tj)− b(tj−1)

∫ tj

tj−1

v(s)db(s)

=

n+1∑

j=1

∫ t

0
v(s)[χ(tj−1,tj ](s)h(s)]

2ds

‖χ(tj−1,tj ]h‖
2

(ξj − ξj−1)

=
n+1∑

j=1

〈vαj , αj〉(ξj − ξj−1)

which proves the first equality of the lemma. The second equality is obvious
and the proof is now completed. �

3. Generalized analytic conditional Feynman integrals

In this section we establish the analytic conditional Wiener and Feynman
integrals of cylinder functions.

Let e be in L2[0, t] with ‖e‖ = 1. For 1 ≤ p ≤ ∞ let A(p) be the space of
cylinder functions having the following form

F (x) = f((e, x))(6)

for wϕ-a.e. x ∈ C[0, t], where f ∈ Lp(R). We note that without loss of gener-
ality we can take f to be Borel measurable.
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Theorem 3.1. Let 1 ≤ p ≤ ∞. Let Zn and F ∈ A(p) be given by (1) and (6),

respectively. Then for λ ∈ C+, E
anwλ [FZ |Zn](~ξn) exists for a.e. ~ξn ∈ R

n and

it is given by

Eanwλ [FZ |Zn](~ξn)(7)

=

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2 + 〈eαn+1, αn+1〉

2[b(t)− b(tn)])du

if P⊥(eh) 6= 0 (i.e., eh 6∈ V ) or 〈eαn+1, αn+1〉 6= 0, where Ψ is given by

(3). Furthermore if p = 1, then for a nonzero real q, Eanfq [FZ |Zn](~ξn) is

given by the right hand side of (7) replacing λ by −iq. If P⊥(eh) = 0 and

〈eαn+1, αn+1〉 = 0, then for λ ∈ C+, nonzero real q and a.e. ~ξn ∈ R
n

(8) Eanwλ [FZ |Zn](~ξn) = Eanfq [FZ |Zn](~ξn) = f((e, [~ξn]b)).

Proof. Suppose that P⊥(eh) 6= 0. For λ > 0 and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

we have by Lemma 2.3 and Theorem 2.1 in [7]

IλFZ
(~ξn)

=

∫

R

E[F (λ−
1

2 (Z(x, ·)− [Z(x, ·)]b) + [~ξn+1]b)]Ψ(λ, ξn+1 − ξn, 0, b(t)− b(tn))

dξn+1

=

∫

R

∫

R

f(u)Ψ(λ, u, (e, [~ξn+1]b), ‖P
⊥(eh)‖2)Ψ(λ, ξn+1 − ξn, 0, b(t)− b(tn))

dudξn+1

=

∫

R

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b) + 〈eαn+1, αn+1〉(ξn+1 − ξn), ‖P
⊥(eh)‖2)Ψ(λ,

ξn+1 − ξn, 0, b(t)− b(tn))dudξn+1,

where ~ξn+1 = (ξ1, . . . , ξn, ξn+1) for ξn+1 ∈ R. If 〈eαn+1, αn+1〉 6= 0, then by
Lemma 2.2

IλFZ
(~ξn)

=

[
λ

2π‖P⊥(eh)‖2

] 1

2

[
λ

2π[b(t)− b(tn)]

] 1

2
∫

R

f(u)

∫

R

exp

{
−
λ〈eαn+1, αn+1〉

2

2‖P⊥(eh)‖2

×

(
u− (e, [~ξn]b)

〈eαn+1, αn+1〉
− z

)2

−
λz2

2[b(t)− b(tn)]

}
dzdu

=

[
λ

2π[‖P⊥(eh)‖2 + 〈eαn+1, αn+1〉2[b(t)− b(tn)]]

] 1

2
∫

R

f(u) exp

{
−

λ

2[‖P⊥(eh)‖2 + 〈eαn+1, αn+1〉2[b(t)− b(tn)]]
(u− (e, [~ξn]b))

2

}
du

=

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2 + 〈eαn+1, αn+1〉

2[b(t)− b(tn)])du
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so that we have (7) for λ > 0. If 〈eαn+1, αn+1〉 = 0, it is not difficult to show

IλFZ
(~ξn)

=

∫

R

f(u)

∫

R

Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2)Ψ(λ, ξn+1, ξn, b(t)− b(tn))dξn+1du

=

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2)du

since Ψ is a normal density so that we have (7) for λ > 0. Suppose that
P⊥(eh) = 0. By Lemma 2.3, Theorem 2.1 in [7] and the change of variable
theorem

IλFZ
(~ξn) =

∫

R

f((e, [~ξn+1]b))Ψ(λ, ξn+1 − ξn, 0, b(t)− b(tn))dξn+1

=

∫

R

f((e, [~ξn]b) + 〈eαn+1, αn+1〉(ξn+1 − ξn))Ψ(λ, ξn+1 − ξn,

0, b(t)− b(tn))dξn+1

=

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), 〈eαn+1, αn+1〉
2[b(t)− b(tn)])du

if 〈eαn+1, αn+1〉 6= 0 so that we also have (7) for λ > 0. Now we have proved (7)
for λ > 0 when P⊥(eh) 6= 0 or 〈eαn+1, αn+1〉 6= 0. By the Morera’s theorem we

have (7) for λ ∈ C+. If p = 1, then the existence of Eanfq [FZ |Zn](~ξn) follows
from the dominated convergence theorem.

Finally if P⊥(eh) = 0 and 〈eαn+1, αn+1〉 = 0, then

IλFZ
(~ξn) =

∫

R

f((e, [~ξn]b))Ψ(λ, ξn+1 − ξn, 0, b(t)− b(tn))dξn+1 = f((e, [~ξn]b))

so that we have (8) trivially. �

Let M̂(R) be the space of all functions φ on R defined by

φ(u) =

∫

R

exp{iuz}dρ(z),(9)

where ρ is a complex Borel measure of bounded variation over R. By the
boundedness of φ and Theorem 3.1 we have the following theorem.

Theorem 3.2. Let G(x) = φ((e, x))F (x) for wϕ-a.e. x ∈ C[0, t], where F ∈

A(p)(1 ≤ p ≤ ∞) and φ are given by (6) and (9), respectively. Then for λ ∈ C+

and a.e. ~ξn ∈ R
n

Eanwλ [GZ |Zn](~ξn) =

∫

R

f(u)φ(u)Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2(10)

+ 〈eαn+1, αn+1〉
2[b(t)− b(tn)])du

if P⊥(eh) 6= 0 (i.e., eh 6∈ V ) or 〈eαn+1, αn+1〉 6= 0, where Ψ is given by (3).

Furthermore if p = 1, then for a nonzero real q, Eanfq [GZ |Zn](~ξn) is given
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by (10) replacing λ by −iq. If P⊥(eh) = 0 and 〈eαn+1, αn+1〉 = 0, then for

λ ∈ C+, nonzero real q and a.e. ~ξn ∈ R
n

Eanwλ [GZ |Zn](~ξn) = Eanfq [GZ |Zn](~ξn) = f((e, [~ξn]b))φ((e, [~ξn]b)).

4. Change of scale formulas using the polygonal function

In this section we derive a change of scale formula for the generalized condi-
tional Wiener integrals of cylinder functions on the analogue of Wiener space
using the polygonal function.

Throughout this paper let {e1, e2, . . .} be a complete orthonormal basis of
L2[0, t]. For v ∈ L2[0, t] let

cj(v) = 〈v, ej〉 for j = 1, 2, . . . .(11)

For m ∈ N, λ ∈ C and x ∈ C[0, t] let

Km(λ, x) = exp

{
1− λ

2

m∑

j=1

(ej, x)
2

}
.(12)

Lemma 4.1. Let m be a positive integer and Km be given by (12). Let 1 ≤
p ≤ ∞ and F ∈ A(p) be given by (6). Suppose that P⊥(eh) 6= 0 (i.e., eh 6∈ V )

or 〈eαn+1, αn+1〉 6= 0. For λ ∈ C+ and ~ξn = (ξ1, . . . , ξn) ∈ R
n let

Γ(F, λ,m, ~ξn) =

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Km(λ, x)

× F (Z(x, ·)− [Z(x, ·)]b + [~ξn+1]b)]dξn+1,

where ~ξn+1 = (ξ1, . . . , ξn, ξn+1) for ξn+1 ∈ R and Ψ is given by (3). Then

Γ(F, λ,m, ~ξn) = λ−
m
2

∫

R

Ψ(λ, u, (e, [~ξn]b), A(m,λ,P
⊥(eh))(13)

+ 〈eαn+1, αn+1〉
2[b(t)− b(tn)])f(u)du,

where for v ∈ L2[0, t]

A(m,λ, v) =

m∑

j=1

[cj(v)]
2 + λ

[
‖v‖2 −

m∑

j=1

[cj(v)]
2

]
,(14)

and the cjs are given by (11).

Proof. Let λ > 0 and suppose that P⊥(eh) 6= 0. If {e1, . . . , em,P
⊥(eh)} is

linearly independent, then by the proof of Lemma 3.1 in [7]

‖P⊥(eh)‖2 −

m∑

j=1

[cj(P
⊥(eh))]2 > 0

and hence A(m,λ,P⊥(eh)) > 0. If {e1, . . . , em,P
⊥(eh)} is linearly dependent,

then

A(m,λ,P⊥(eh)) = A(m, 0,P⊥(eh))(15)
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=

m∑

j=1

[cj(P
⊥(eh))]2 = ‖P⊥(eh)‖2 > 0.

Now for ~ξn ∈ R
n

Γ(F, λ,m, ~ξn)

= λ−
m
2

∫

R

∫

R

f(u)Ψ(λ, u, (e, [~ξn+1]b), A(m,λ,P
⊥(eh)))Ψ(λ, ξn+1 − ξn, 0, b(t)

− b(tn))dudξn+1

by Lemma 3.1 in [7] and Corollary 3.2 in [7]. Using the same process as used
in the proof of Theorem 3.1

Γ(F, λ,m, ~ξn) = λ−
m
2

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), A(m,λ,

P⊥(eh)) + 〈eαn+1, αn+1〉
2[b(t)− b(tn)])du

so that we have (13) for λ > 0. If P⊥(eh) = 0 and 〈eαn+1, αn+1〉 6= 0, then
A(m,λ,P⊥(eh)) = 0 and hence by Theorem 2.1

Γ(F, λ,m, ~ξn) =

(
1

2π

)m
2
∫

R

f((e, [~ξn+1]b))Ψ(λ, ξn+1, ξn, b(t)− b(tn))

∫

Rm

exp

{
−

1

2

m∑

j=1

u2j +
1− λ

2

m∑

j=1

u2j

}
d(u1, . . . , um)dξn+1

= λ−
m
2

∫

R

f((e, [~ξn+1]b))Ψ(λ, ξn+1, ξn, b(t)− b(tn))dξn+1.

Using the same process as used in the proof of Theorem 3.1 we have (13) for
λ > 0. Each side of (13) is an analytic function of λ in C+ so that by the
uniqueness of an analytic extension, we have (13) for any λ ∈ C+. �

Using the same process as used in the proof of Lemma 4.1, we have the
following corollary.

Corollary 4.2. Let Γ be as given in Lemma 4.1. Suppose that {e1, . . . , em,
P⊥(eh)} is linearly dependent. If P⊥(eh) 6= 0 or equivalently eh 6∈ V , then for

λ ∈ C+ and ~ξn ∈ R
n

Γ(F, λ,m, ~ξn) = λ−
m
2

∫

R

Ψ(λ, u, (e, [~ξn]b), A(m, 0,P
⊥(eh))(16)

+ 〈eαn+1, αn+1〉
2[b(t)− b(tn)])f(u)du

= λ−
m
2

∫

R

Ψ(λ, u, (e, [~ξn]b), ‖P
⊥(eh)‖2

+ 〈eαn+1, αn+1〉
2[b(t)− b(tn)])f(u)du,
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where Ψ and A are given by (3) and (14), respectively. Furthermore if P⊥(eh) =

0 (i.e., eh ∈ V ) and 〈eαn+1, αn+1〉 = 0, then for λ ∈ C+ and ~ξn ∈ R
n

Γ(F, λ,m, ~ξn) = λ−
m
2 f((e, [~ξn]b)).

Proof. If P⊥(eh) 6= 0, then (16) immediately follows from (15) and Lemma 4.1.
Now suppose that P⊥(eh) = 0 and 〈eαn+1, αn+1〉 = 0. By Lemma 2.3

Γ(F, λ,m, ~ξn) = λ−
m
2

∫

R

f((e, [~ξn+1]b))Ψ(λ, ξn+1, ξn, b(t)− b(tn))dξn+1

= λ−
m
2 f((e, [~ξn]b))

which completes the proof of remainder part of the corollary. �

We now have the following theorem by the boundedness of φ.

Theorem 4.3. Let G and Γ be as given in Theorem 3.2 and Lemma 4.1,

respectively.

(1) Under the assumptions and notations as given in Lemma 4.1, for λ ∈

C+ and ~ξn ∈ R
n Γ(G, λ,m, ~ξn) is given by (13) replacing f by fφ.

(2) If {e1, . . . , em,P
⊥(eh)} is linearly dependent and P⊥(eh) 6= 0, then for

λ ∈ C+ and ~ξn ∈ R
n Γ(G, λ,m, ~ξn) is given by (16) replacing f by fφ.

(3) If P⊥(eh) = 0 (i.e., eh ∈ V ) and 〈eαn+1, αn+1〉 = 0, then for λ ∈ C+

and ~ξn ∈ R
n

Γ(G, λ,m, ~ξn) = λ−
m
2 f((e, [~ξn]b))φ((e, [~ξn]b)).(17)

Theorem 4.4. Let G be as given in Theorem 4.3. Then for λ ∈ C+ and a.e.
~ξn = (ξ1, . . . , ξn) ∈ R

n

Eanwλ [GZ |Zn](~ξn)(18)

= lim
m→∞

λ
m
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Km(λ, x)G(Z(x, ·)

− [Z(x, ·)]b + [~ξn+1]b)]dξn+1,

where ~ξn+1 = (ξ1, . . . , ξn, ξn+1) for ξn+1 ∈ R and Ψ, Km are given by (3), (12),
respectively. Moreover if p = 1, q is a nonzero real number and {λm}∞m=1 is a

sequence in C+ converging to −iq as m approaches ∞, then Eanfq [GZ |Zn](~ξn)
is given by the right hand side of (18) replacing λ by λm.

Proof. Suppose that P⊥(eh) 6= 0 or 〈eαn+1, αn+1〉 6= 0. Then for λ ∈ C+ and
~ξn ∈ R

n

λ
m
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Km(λ, x)G(Z(x, ·) − [Z(x, ·)]b

+ [~ξn+1]b)]dξn+1

=

∫

R

Ψ(λ, u, (e, [~ξn]b), A(m,λ,P
⊥(eh)) + 〈eαn+1, αn+1〉

2[b(t)− b(tn)])
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× f(u)φ(u)du

by Theorem 4.3. By (14) and the Parseval’s identity

lim
m→∞

A(m,λ,P⊥(eh))

= lim
m→∞

[ m∑

j=1

[cj(P
⊥(eh))]2 + λ[‖P⊥(eh)‖2 −

m∑

j=1

[cj(P
⊥(eh))]2]

]

= ‖P⊥(eh)‖2 + λ[‖P⊥(eh)‖2 − ‖P⊥(eh)‖2] = ‖P⊥(eh)‖2

so that we have (18) by Theorem 3.2 and the dominated convergence theorem.
If P⊥(eh) = 0 and 〈eαn+1, αn+1〉 = 0, then we have (18) by Theorem 3.2 and
(17) in Theorem 4.3. �

The following corollary follows immediately from the proof of Theorem 4.4.

Corollary 4.5. Let K0(λ, x) = 1 for λ ∈ C+ and x ∈ C[0, t], G be as given in

Theorem 4.3 and l be the smallest positive integer such that {e1, . . . , el, P
⊥(eh)}

is linearly dependent if P⊥(eh) 6= 0. Moreover let l = 0 if P⊥(eh) = 0.

Then for any nonnegative integer r with r ≥ l, for λ ∈ C+ and a.e. ~ξn =
(ξ1, . . . , ξn) ∈ R

n

Eanwλ [GZ |Zn](~ξn) = λ
r
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Kr(λ, x)(19)

×G(Z(x, ·) − [Z(x, ·)]b + [~ξn+1]b)]dξn+1,

where ~ξn+1 = (ξ1, . . . , ξn, ξn+1) for ξn+1 ∈ R and Ψ, Kr are given by (3), (12),
respectively.

Proof. If {e1, . . . , el,P
⊥(eh)} is linearly dependent for some positive integer l

and P⊥(eh) 6= 0, then for m ≥ l

A(m,λ,P⊥(eh)) = A(l, 0,P⊥(eh)) =
l∑

j=1

[cj(P
⊥(eh))]2 = ‖P⊥(eh)‖2.

If P⊥(eh) = 0, then A(m,λ,P⊥(eh)) = 0 for m ≥ 1. Now the corollary
immediately follows from Theorem 3.2. �

Letting λ = γ−2 in (18) and (19) we have the following change of scale
formulas for the generalized conditional Wiener integral on the analogue of
Wiener space using the polygonal function.

Corollary 4.6. (1) Under the assumptions as given in Theorem 4.4 we

have for γ > 0 and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

E[G(γZ(x, ·))|γZn(x)](~ξn)

= lim
m→∞

γ−m

∫

R

Ψ(1, ξn+1, ξn, γ
2[b(t)− b(tn)])E[Km(γ−2, x)G(Z(x, ·)
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− [Z(x, ·)]b + [~ξn+1]b)]dξn+1.

(2) Under the assumptions as given in Corollary 4.5 we have for any non-

negative integer r with r ≥ l, for γ > 0 and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

E[G(γZ(x, ·))|γZn(x)](~ξn)

= γ−r

∫

R

Ψ(1, ξn+1, ξn, γ
2[b(t)− b(tn)])E[Kr(γ

−2, x)G(Z(x, ·)

− [Z(x, ·)]b + [~ξn+1]b)]dξn+1.

5. Change of scale formulas using a cylinder function

In this section we derive change of scale formulas for the generalized con-
ditional Wiener integrals of the cylinder functions on the analogue of Wiener
space using other cylinder functions.

Theorem 5.1. Let Zn be given by (1) and F be as given in Lemma 4.1. Then

for λ ∈ C+ and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

Eanwλ [FZ |Zn](~ξn)(20)

= lim
m→∞

λ
m
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Km(λ, ·)f((v, ·)‖P⊥(eh)‖

+ (e, [~ξn+1]b))]dξn+1

for any unit v ∈ L2[0, t], where ~ξn = (ξ1, . . . , ξn, ξn+1) and Ψ, Km are given

by (3), (12), respectively. Moreover if p = 1, q is a nonzero real number and

{λm}∞m=1 is a sequence in C+ converging to −iq as m approaches ∞, then

Eanfq [FZ |Zn](~ξn) is given by the right hand side of (20) replacing λ by λm.

Proof. Let

∆(F, λ,m, ~ξn) = λ
m
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))

× E[Km(λ, ·)f((v, ·)‖P⊥(eh)‖+ (e, [~ξn+1]b))]dξn+1.

Suppose that P⊥(eh) 6= 0. Using the same process as used in the proof of

Lemma 3.1 in [7] we have for λ ∈ C+ and ~ξn ∈ R
n

∆(F, λ,m, ~ξn)

=

∫

R

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))Ψ(λ, u, 0, A(m,λ, v))f(u‖P⊥(eh)‖

+ (e, [~ξn+1]b))dξn+1du

=

∫

R

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))Ψ(λ, u, (e, [~ξn+1]b), A(m,λ, v)‖P
⊥(eh)‖2)

× f(u)dξn+1du
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by the change of variable theorem, where A is given by (14). Using the same
process as used in the proof of Theorem 3.1

∆(F, λ,m, ~ξn) =

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), A(m,λ, v)‖P
⊥(eh)‖2

+ 〈eαn+1, αn+1〉
2[b(t)− b(tn)])du.

If P⊥(eh) = 0 and 〈eαn+1, αn+1〉 6= 0, then

∆(F, λ,m, ~ξn)

= λ
m
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Km(λ, ·)f((e, [~ξn+1]b))]dξn+1

=

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))f((e, [~ξn+1]b))dξn+1

=

∫

R

f(u)Ψ(λ, u, (e, [~ξn]b), 〈eαn+1, αn+1〉
2[b(t)− b(tn)])du.

If P⊥(eh) = 0 and 〈eαn+1, αn+1〉 = 0, then ∆(F, λ,m, ~ξn) = f((e, [~ξn]b)). We
note that

A(m,λ, v) =
m∑

j=1

[cj(v)]
2 + λ

[
‖v‖2 −

m∑

j=1

[cj(v)]
2

]
6= 0

so that the above process is justified. Moreover

lim
m→∞

A(m,λ, v) = ‖v‖2 = 1.

Now letting m→ ∞ in each case we have (20) by Theorem 3.1 which completes
the proof of the first part of the theorem. The remainder part of the theorem
immediately follows from the dominated convergence theorem. �

Now we have the following corollaries by Theorem 5.1.

Corollary 5.2. Under the assumptions as given in Corollary 4.5 and Theorem

5.1 we have for any nonnegative integer r with r ≥ l, for λ ∈ C+ and a.e.
~ξn = (ξ1, . . . , ξn) ∈ R

n

Eanwλ [FZ |Zn](~ξn) = λ
r
2

∫

R

Ψ(λ, ξn+1, ξn, b(t)− b(tn))E[Kr(λ, ·)

× f((v, ·)‖P⊥(eh)‖+ (e, [~ξn+1]b))]dξn+1.

Corollary 5.3. (1) Under the assumptions as given in Theorem 5.1 we

have for γ > 0 and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

E[F (γZ(x, ·))|γZn(x)](~ξn)

= lim
m→∞

γ−m

∫

R

Ψ(1, ξn+1, ξn, γ
2[b(t)− b(tn)])E[Km(γ−2, ·)

× f((v, ·)‖P⊥(eh)‖+ (e, [~ξn+1]b))]dξn+1.
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(2) Under the assumptions as given in Corollary 5.2 we have for any non-

negative integer r with r ≥ l, for γ > 0 and a.e. ~ξn = (ξ1, . . . , ξn) ∈ R
n

E[F (γZ(x, ·))|γZn(x)](~ξn)

= γ−r

∫

R

Ψ(1, ξn+1, ξn, γ
2[b(t)− b(tn)])E[Kr(γ

−2, ·)

× f((v, ·)‖P⊥(eh)‖+ (e, [~ξn+1]b))]dξn+1.

Remark 5.4. (1) While the complete orthonormal set in [5, 8, 11, 12] con-
tain e used in the definition of the cylinder function, the complete
orthonormal set {e1, e2, . . .} in this paper and in [7] does not contain e.
Furthermore, v in Theorem 5.1, Corollaries 5.2 and 5.3 is independent
of both {e1, e2, . . .} and e.

(2) Let G be as given in Theorem 3.2. Replacing F and f by G and fφ,
respectively, in Theorem 5.1, Corollaries 5.2 and 5.3, the results hold
still.

(3) The change of scale formulas in this paper hold still even if P⊥(eh) = 0

and 〈eαn+1, αn+1〉 = 0. Since for γ > 0 and a.e. ~ξn ∈ R
n

E[F (γZ(x, ·))|γZn(x)](~ξn) = f((e, [~ξn]b)) = E[F (Z(x, ·))|Zn(x)](~ξn)

they are surplus in this case.
(4) The conditioning function Zn does not contain the initial position

Z(x, 0) of the path Z(x, ·) because of Z(x, 0) = 0. While the condition-
ing function in [7] contains the position Z(x, t) of the path Z(x, ·) at
the present time t, the conditioning function Zn in this paper does not.
Furthermore if h = 1 a.e., then Zn(x) = (x(t1)−x(0), . . . , x(tn)−x(0)).
Hence the formulas in this paper do not extend the existing change of
scale formulas in [5, 8, 11] but they do the formulas in [7, 12].

(5) For ~ξn = (ξ1, . . . , ξn) ∈ R
n it is possible that [~ξn] /∈ C[0, t] if ξn 6= 0.

In this case the following symbol (v, [~ξn]b) does not mean the Paley-
Wiener-Zygmund integral of v ∈ L2[0, t]. It is only the formal expres-
sion of

∑n
j=1〈vαj , αj〉(ξj − ξj−1) which is as given in Lemma 2.3.
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