Browse > Article
http://dx.doi.org/10.4134/JKMS.j150285

SCALE TRANSFORMATIONS FOR PRESENT POSITION-INDEPENDENT CONDITIONAL EXPECTATIONS  

Cho, Dong Hyun (Department of Mathematics Kyonggi University)
Publication Information
Journal of the Korean Mathematical Society / v.53, no.3, 2016 , pp. 709-723 More about this Journal
Abstract
Let C[0, t] denote a generalized Wiener space, the space of real-valued continuous functions on the interval [0, t] and define a random vector $Z_n:C[0,t]{\rightarrow}{\mathbb{R}}^n$ by $Zn(x)=(\int_{0}^{t_1}h(s)dx(s),{\cdots},\int_{0}^{t_n}h(s)dx(s))$, where 0 < $t_1$ < ${\cdots}$ < $t_n$ < t is a partition of [0, t] and $h{\in}L_2[0,t]$ with $h{\neq}0$ a.e. In this paper we will introduce a simple formula for a generalized conditional Wiener integral on C[0, t] with the conditioning function $Z_n$ and then evaluate the generalized analytic conditional Wiener and Feynman integrals of the cylinder function $F(x)=f(\int_{0}^{t}e(s)dx(s))$ for $x{\in}C[0,t]$, where $f{\in}L_p(\mathbb{R})(1{\leq}p{\leq}{\infty})$ and e is a unit element in $L_2[0,t]$. Finally we express the generalized analytic conditional Feynman integral of F as two kinds of limits of non-conditional generalized Wiener integrals of polygonal functions and of cylinder functions using a change of scale transformation for which a normal density is the kernel. The choice of a complete orthonormal subset of $L_2[0,t]$ used in the transformation is independent of e and the conditioning function $Z_n$ does not contain the present positions of the generalized Wiener paths.
Keywords
analytic conditional Feynman integral; analytic conditional Wiener integral; conditional Wiener integral; Wiener integral; Wiener space;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 R. H. Cameron, The translation pathology of Wiener space, Duke Math. J. 21 (1954), 623-627.   DOI
2 R. H. Cameron and W. T. Martin, The behavior of measure and measurability under change of scale in Wiener space, Bull. Amer. Math. Soc. 53 (1947), 130-137.   DOI
3 R. H. Cameron and D. A. Storvick, Change of scale formulas for Wiener integral, Rend. Circ. Mat. Palermo (2) Suppl. 17 (1987), 105-115.
4 R. H. Cameron and D. A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, Lecture Notes in Math. 798, Springer, Berlin-New York, 1980.
5 D. H. Cho, Change of scale formulas for conditional Wiener integrals as integral transforms over Wiener paths in abstract Wiener space, Commun. Korean Math. Soc. 22 (2007), no. 1, 91-109.   DOI
6 D. H. Cho, A simple formula for a generalized conditional Wiener integral and its applications, Int. J. Math. Anal. 7 (2013), no. 29, 1419-1431.   DOI
7 D. H. Cho, Scale transformations for present position-dependent conditional expectations over continuous paths, (2015), preprint.
8 D. H. Cho, B. J. Kim, and I. Yoo, Analogues of conditional Wiener integrals and their change of scale transformations on a function space, J. Math. Anal. Appl. 359 (2009), no. 2, 421-438.   DOI
9 M. K. Im and K. S. Ryu, An analogue of Wiener measure and its applications, J. Korean Math. Soc. 39 (2002), no. 5, 801-819.   DOI
10 B. S. Kim, Relationship between the Wiener integral and the analytic Feynman integral of cylinder function, J. Chungcheong Math. Soc. 27 (2014), no. 2, 249-260.   DOI
11 I. Yoo, K. S. Chang, D. H. Cho, B. S. Kim, and T. S. Song, A change of scale formula for conditional Wiener integrals on classical Wiener space, J. Korean Math. Soc. 44 (2007), no. 4, 1025-1050.   DOI
12 I. Yoo and D. H. Cho, Change of scale formulas for a generalized conditional Wiener integral on a function space, Bull. Iranian Math. Soc. (2015), submitted.
13 I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces, Internat. J. Math. Math. Sci. 17 (1994), no. 2, 239-247.   DOI
14 I. Yoo and D. L. Skoug, A change of scale formula for Wiener integrals on abstract Wiener spaces II, J. Korean Math. Soc. 31 (1994), no. 1, 115-129.
15 I. Yoo, T. S. Song, B. S. Kim, and K. S. Chang, A change of scale formula for Wiener integrals of unbounded functions, Rocky Mountain J. Math. 34 (2004), no. 1, 371-389.   DOI