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LOCAL WELL-POSEDNESS

FOR THE NONLINEAR SCHRÖDINGER EQUATION

WITH HARMONIC POTENTIAL IN Hs

Shan Zhang, Zuhan Liu, and Zhongxue Lü

Abstract. We establish the local well-posedness for the Cauchy problem
of the nonlinear Schrödinger equation with harmonic potential in Hs(Rn),
where s ∈ R, s > 0.

1. Introduction and preliminaries

In this paper we study the Cauchy problem for the nonlinear Schrödinger
equation with harmonic potential

(1.1) i∂tu+
1

2
△u =

1

2
ω2|x|2u+ λ|u|αu, u(0, x) = ϕ(x).

Here u = u(t, x) is a complex valued function defined on [0, T ) × Rn for some
T > 0, λ is a real number, ω > 0, α > 0. The initial condition ϕ is a complex
valued function defined on Rn. This model has applications in many problems,
especially in Bose-Einstein condensates (BECs). By Duhamel’s formula [5],
(1.1) is equivalent to the integral equation below

(1.2) u(t) = S(t)ϕ− iλ

∫ t

0

S(t− τ)[|u(τ)|αu(τ)]dτ,

where S(t) is the unitary group e
it
2 (△+ω2|x|2) determined by the linear Schrödi-

nger equation, i.e., when λ = 0.
For the Cauchy problem (1.1) or the integral equation (1.2), Oh [7] show

the local well-posedness in H = {u ∈ H1(Rn), xu ∈ L2(Rn)}: Let ϕ ∈ H, then
there exists a solution u of the Cauchy problem (1.1) in C([0, T );H) for some
T ∈ [0,∞), and T = ∞ or T < ∞ and limt→T ∥∇u(t)∥L2 = ∞. Furthermore
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u(t, x) satisfies the following two conservations

(1.3) ∥u(t)∥L2 = ∥ϕ∥L2

and

(1.4) E(u(t)) =
1

2
∥∇u∥2L2 +

1

2
ω2∥xu∥2L2 +

2λ

α+ 2
∥u∥α+2

Lα+2 = E(ϕ).

By Carles [3], when α < 4/n, the solution of Cauchy problem (1.1) exists
globally; when 4/n ⩽ α ⩽ 4/(n−2), (4/n < α <∞(n = 1, 2)) there is blow-up
solution to exist for the problem (1.1); and when α > 4/(n − 2), the integral
term in (1.2) seems to be too singular, H1 theory has been limited.

In [6], authors study the Cauchy problem (1.1) without harmonic potential

(1.5) i∂tu+
1

2
△u = λ|u|αu, u(0, x) = ϕ(x)

in Hs(Rn). They show the local well-posedness for (1.5) as 0 ⩽ s < n/2, 0 <
α < 4/(n− 2s).

In this paper, we try to extend the existing theory of (1.1) to include all
α > 0. We will consider local well-posedness for the Cauchy problem (1.1) in
Hs(Rn) ∩ {xu ∈ L2(Rn)}. As we will see, the existence result follows from
a Fixed point argument of Kato and relies heavily on Strichartz estimates
corresponded to linear Schrödinger equations with harmonic potential given by
Carles in [3, 2] (see Lemma 2.1 below). By following the H1 argument, we also
show the following blow-up condition and blow-up rate of the local solution in
Hs(Rn) ∩ {xu ∈ L2(Rn)} (see Theorem 3.4 below).

We define a space Σ by

Σ := {u ∈ Hs(Rn), xu ∈ L2(Rn)}
with the inner product

(u, v) = (u, v)Hs(Rn) + |x|2(u, v)L2(Rn)

for all u, v ∈ Σ. The norm of Σ is denoted by ∥ · ∥Σ, thus Σ becomes a Hilbert
space, continuously embedded in Hs(Rn).

Definition 1.1 ([4]). The pair (q, r) is admissible if 2 ⩽ r < 2n/(n− 2s) and
2/q = n(1/2− 1/r) (If n = 1 or 2, 2 ⩽ r <∞ is allowed).

Note that if (q, r) is a admissible pair, then 2 < q ⩽ ∞. The following two
conditions describe the relationship between α and s needed for our arguments:

(1.6) 0 ⩽ s < n/2,

(1.7) 0 < α ⩽ 4/(n− 2s).

Moreover, since we are working in space of order s differentiability, we need the
nonlinear map f(u) = λ|u|αu to have a certain amount of regularity. This will
sometimes be expressed by the condition:

(1.8) [s] < α.
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Finally, for α and s just specified, there is a particular admissible pair (γ, ρ),
defined by

(1.9) γ =
4(α+ 2)

α(n− 2s)
, ρ =

α+ 2

1 + αs/n
.

The rest of this paper is organized as follows. In Section 2, we show
Lq(0, T ; Ḃs

r,b) estimates for inhomogenous linear Schrödinger equation and the

estimates for the nonlinear map f(u) = λ|u|αu between Besov spaces. In Sec-
tion 3, we give the main result of this paper. In Section 4, we prove the result
given in Section 3.

2. Estimates

In this section, we show the estimates for the linear Schrödinger equation
and estimates for the nonlinear term. We consider the homogeneous linear
Schrödinger equation

(2.1) i∂tu+
1

2
△u =

1

2
ω2|x|2u, u(0, x) = ϕ(x)

and the inhomogeneous linear Schrödinger equation

(2.2) i∂tu+
1

2
△u =

1

2
ω2|x|2u+ g, u(0, x) = ϕ(x).

Where g = g(t). The solution of (2.1) is u(t) = S(t)ϕ = e
it
2 (△+ω2|x|2)ϕ, the

solution of (2.2) is u(t) = −iGg(t), where

(2.3) Gg(t) =
∫ t

0

S(t− τ)g(t)dτ.

Lemma 2.1 ([3, 2]). Let (q, r) be any admissible pair, and I be any interval
contained in [0, π/2ω]. Then it holds that:

(1) S(t) is unitary on L2, i.e., ∥S(t)∥L2→L2 = 1, and we have S(t)⋆ = S(−t),
where S(t)⋆ is the dual operator of S(t).

(2) If 0 < t ⩽ π/ω, then S(t) : L1 → L∞ satisfies ∥S(t)∥L1→L∞ ⩽
1/| sinωt|n/2.

(3) If ϕ ∈ L2, then S(·)ϕ ∈ Lq(I;Lr(Rn)); there exists a constant C such
that

(2.4) ∥S(·)ϕ∥Lq(I;Lr) ⩽ C∥ϕ∥L2 .

(4) If g ∈ Lγ′
(I;Lρ′

(Rn)) for some admissible pair (γ, ρ), then Gg ∈ Lq(0, T ;
Lr(Rn))∩C([0, T ];L2(Rn)) for some T ∈ (0, π

2ω ]; there exists a constant C such
that

(2.5) ∥
∫
I∩{τ⩽t}

S(t− τ)dτ∥Lq(I;Lr) ⩽ C∥g∥Lγ′ (I;Lρ′).

In order to get the estimates with respect to the homogeneous Sobolev space
Ḣs(Rn) and the homogeneous Besove space Ḃs

r,2(Rn), we need following lemma.
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Lemma 2.2 ([8], Rizse potential estimates). Let 0 < α < n, 1 < p < q <
∞, 1/q = 1/p− α/n. Define Riesz potential by

(−△)−α/2(f) =
1

γ(α)

∫
Rn

|x− y|−n+αf(y)dy,

where γ(α) = πn/22αΓ(α/2)/Γ(n/2− α/2). If f ∈ Lp, then

∥(−△)−α/2(f)∥Lq ⩽ C∥f∥Lp .

By Lemma 2.2, we can get:

Proposition 2.3. If t ̸= 0, |t| ⩽ π/2ω, then S(t) : Ḃs
r′,2 → Ḃs

r,2 is a bounded
map. Furthermore, there exists a constant C such that

∥S(t)ϕ∥Ḃs
r,2

⩽ C|t|−2/q∥ϕ∥Ḃs
r′,2

for every ϕ ∈ Ḃs
r′,2(Rn).

Proof. By Lemma 2.1(2), we know that S(t) : Lr′ → Lr is a bounded
map. When |t| ⩽ π/2ω, we get | sinωt| ⩾ 2ω

π |t|, it yields that ∥S(t)ϕ∥Lr ⩽
C|t|−2/q∥ϕ∥Lr′ , where −2

q = −n( 12 − 1
r ). Since Ḣs,r(Rn) = (−△)−s/2Lr(Rn),

from Lemma 2.2, we have

∥S(t)ϕ∥Ḣs,r = ∥(−△)−s/2S(t)ϕ∥Lr ⩽ C∥S(t)ϕ∥Lnr/(n+rs)

⩽ C|t|−2/q∥ϕ∥Lnr/(rn−n−rs) .

By Sobolev embedding theorem:

Ḣs,r′(Rn) ↪→ Lnr′/(n−r′s)(Rn) = Lnr/(rn−n−rs)(Rn),

we get
∥S(t)ϕ∥Ḣs,r ⩽ C|t|−2/q∥ϕ∥Ḣs,r′ .

Then by interpolation, the result follows. Indeed, by Theorem 6.3.1 in [1],

(Ḣs0,r, Ḣs1,r)θ,2 = Ḃs
r,2, (and likewise with r replaced by r′) where s0 ̸= s1, 0 <

θ < 1, s = (1− θ)s0 + θs1, we can get ∥S(t)ϕ∥Ḃs
r,2

⩽ C|t|−2/q∥ϕ∥Ḃs
r′,2

. □

Using the same method as in [6], we can prove the following proposition.

Proposition 2.4. Let s ∈ R, and let (q, r) be any admissible pair, t, T ∈
(0, π/2ω].

(1) If ϕ ∈ Ḣs, then S(·)ϕ ∈ Lq(0, T ; Ḃs
r,2); and there exists a constant C

such that

(2.6) ∥S(·)ϕ∥Lq(0,T ;Ḃs
r,2)

⩽ C∥ϕ∥Ḣs .

(2) If g ∈ Lγ′
(0, T ; Ḃs

ρ′,2) for some admissible pair (γ, ρ) and some T >

0 (T ∈ (0, π
2ω ]), then Gg ∈ Lq(0, T ; Ḃs

r,2) ∩ C([0, T ]; Ḣs); and there exists a
constant C such that

(2.7) ∥Gg∥Lq(0,T ;Ḃs
r,2)

⩽ C∥g∥Lγ′ (0,T ;Ḃs
ρ′,2)

.
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Now we recall the estimates for the nonlinear term f(u)=λ|u|αu by Cazenave
and Weissler in [6].

Lemma 2.5 ([6]). Suppose that α and s > 0 satisfy (1.6), (1.7); and also if α
is not an even integer, (1.8) is satisfied. Let (γ, ρ) be the admissible pair given
by (1.9), and define ρ∗ by

(2.8) ρ∗ =
1

ρ
− s

n
.

Let m = [s] + 1, so that s < m, and (in the case where (1.8) is satisfied)
m < α+1. Suppose f : C → C is m times real continuously differentiable, and
satisfies |f (k)(u)| ⩽ C|u|α+1−k, 0 ⩽ k ⩽ m, where |f (k)(u)| denotes the norm
of the real k-linear mapping f (k)(u). If α is an even integer, we suppose also
that f (k)(u) ≡ 0 in case α+ 1 < k ⩽ m. Then f maps the homogeneous Besov

space Ḃs
ρ,2(Rn) into the homogeneous Besov space Ḃs

ρ′,2(Rn) and satisfies the
inequality

∥f(u)∥Ḃs
ρ′,2

⩽ C{∥u∥Ḃs
ρ,2

}α+1.

Proposition 2.6. Let u, v ∈ Lγ(0, T ;Bs
ρ,2(Rn)). Set δ = 1 − (α + 2)/γ. Let

(q, r) be any admissible pair. Then

(2.9)
∥Gf(u)− Gf(v)∥Lq(0,T ;Lr)

⩽ CT δ{∥u∥α
Lγ(0,T ;Ḃs

ρ,2)
+ ∥v∥α

Lγ(0,T ;Ḃs
ρ,2)

}∥u− v∥Lγ(0,T ;Lρ)

and

(2.10) ∥Gf(u)∥Lq(0,T ;Ḃs
r,2)

⩽ CT δ∥u∥α+1

Lγ(0,T ;Ḃs
ρ,2)

.

Remark 2.7. It follows γ = 4(α+2)/α(n−2s), δ = 1−(α+2)/γ = 1−α(n−2s)/4
that δ ⩾ 0, with δ = 0 if and only if α = 4/(n− 2s).

Proof of Proposition 2.6. We first prove that

|f(u)− f(v)| ∈ Lγ′
(0, T ;Lρ′

(Rn)).

Since f(u) = λ|u|αu, by a direct computation, we have |f(u)−f(v)| ⩽ C(|u|α+
|v|α)|u− v|, so

∥f(u)− f(v)∥Lρ′ ⩽ ∥C(|u|α + |v|α)|u− v|∥Lρ′

⩽ C(∥u∥α
Lρ∗ + ∥v∥α

Lρ∗ )∥u− v∥Lρ .

By Sobolev embedding theorem Ḃs
ρ,2(Rn) ↪→ Lρ∗

(Rn), we can get that

∥f(u)− f(v)∥Lρ′ ⩽ ∥C(|u|α
Ḃs

ρ,2
+ |v|α

Ḃs
ρ,2

)∥u− v∥Lρ .

It yields that

(2.11)
∥f(u)− f(v)∥Lγ′ (0,T ;Lρ′ )

⩽ C(|u|αLγ(0,T ;Bs
ρ,2)

+ |v|αLγ(0,T ;Bs
ρ,2)

)∥u− v∥Lp(0,T ;Lρ),
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where 1/p = [4− α(n− 2s)]/4 + 1/γ, p < γ. Applying Hölder’s inequality on
∥u− v∥Lp(0,T ;Lρ), we have

(2.12) ∥u− v∥Lp(0,T ;Lρ) =
(∫ T

0

∥u− v∥Lρdt
)1/p

⩽ T δ∥u− v∥Lγ(0,T ;Lρ).

From Lemma 2.1, (2.11), (2.12) we can get (2.8). (2.9) follows from Lemma
2.5 and Proposition 2.4(2). Indeed,

∥Gf(u)∥Lq(0,T ;Ḃs
r,2)

⩽ C∥f(u)∥Lγ′ (0,T ;Ḃs
ρ′,2)

= C(
∫ T

0
∥f(u)∥γ

′

Ḃs
ρ′,2

dt)1/γ
′

⩽ C(
∫ T

0
∥u∥(α+1)γ′

Ḃs
ρ,2

dt)1/γ
′

⩽ CT δ∥u∥α+1

Lγ(0,T ;Ḃs
ρ,2)

. □

3. Main result

Theorem 3.1. Suppose that α and s > 0 satisfy (1.6), (1.7) and also, if α is
not an even integer, (1.8) is satisfied. Let (γ, ρ) be the admissible pair given
by (1.9). Then, for every ϕ ∈ Σ, there exists a solution u ∈ C

(
[0, T ∗]; Σ

)
∩

Lγ
loc

(
0, T ∗;Bs

ρ,2(Rn)
)
of the integral equation (1.2) for some T ∗ = T ∗(ϕ) ∈

(0, π/2ω] (maximal existence time). Moreover T ∗ satisfies: T ∗ = π/2ω or else
T ∗ < π/2ω and limt→T∗ ∥u(t)∥Ḣs = ∞. Furthermore, this solution has the
following additional properties:

(1) u is unique in Lγ(0, T ;Bs
ρ,2) for every T < T ∗.

(2) u satisfies (1.3) for every t < T ∗.
(3) If s ⩾ 1, then u satisfies (1.4) for every t < T ∗.
(4) u depends continuously on ϕ in the following sense. There exists 0 <

T < T ∗(ϕ) such that if {ϕk} is a sequence in Σ with ϕk → ϕ in Σ, then, for
sufficiently large k, T < T ∗(ϕk) and the solutions uk (of (1.2) with ϕ replaced by
ϕk) form a bounded sequence in Lq

(
0, T ;Bs

r,2(Rn)∩{xu ∈ L2(Rn)}
)
. Moreover,

uk → u in Lq
(
0, T ;Lr(Rn) ∩ {xu ∈ L2(Rn)}

)
for every admissible pair (q, r).

In particular, uk → u in C
(
[0, T ];Hs−ε(Rn)∩{xu ∈ L2(Rn)}

)
for every ε > 0.

Remark 3.2. When s → n/2, the upper bound of α tends to +∞, thus the
existing theory can be extended to include all α > 0.

Remark 3.3. Here T ∗ gets its maximal value π
2ω . The standard argument to

extend T ∗ to +∞ needs ∥u(T ∗)∥Ḣs < ∞, but the conversation laws we got
can’t afford this.

By following the H1 argument, we show the following blow-up condition and
blow-up rate of the local solution in Σ.

Theorem 3.4. Suppose α, s satisfy the hypotheses of Theorem 3.1, ϕ ∈ Σ is
a nonzero initial date.

(1) Suppose s ⩾ 1, n ⩾ 3, λ < 0, 4/n ⩽ α ⩽ 4/(n− 2s). Let ϕ satisfies

1

2
∥∇ϕ∥2L2 +

2λ

α+ 2
∥ϕ∥α+2

Lα+2 ⩽ 0,
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then the solution of integral equation (1.2) blows-up at t∗ ⩽ π/2ω, i.e.,

lim
t→t∗

∥u(t)∥Hs = ∞.

(2) If α < 4/(n − 2s), T ∗ < π/2ω, then limt→t∗ ∥u(t)∥Ḣs = ∞, and there
exists a constant C such that

∥u∥Ḣs ⩾ C

(T ∗ − t)1/α−(n−2s)/4
.

4. Proof of main results

Throughout this section α and s satisfy the hypotheses of Theorem 3.1, i.e.,
α and s > 0 satisfy (1.6), (1.7) and also, if α is not an even integer, (1.8) is
satisfied. Moreover (γ, ρ) is the admissible pair given by (1.9) and ρ∗ is defined
by (2.8). The integral equation (1.2), with the pure power term replaced by a
nonlinear term f(u) = λ|u|αu, can be written

(4.1) u(t) = S(t)ϕ− iGf(u(t)).

Wemainly prove the existence and uniqueness of the local solution of integral
equation (4.1) in Σ with a fixed point argument. Since initial date ϕ ∈ Σ,
Σ ↪→ Hs(Rn) with the injection being continuous, we first prove the existence
and uniqueness of the local solution in Hs(Rn) with initial condition ϕ ∈ Σ ⊂
Hs(Rn), then we prove this solution belongs to Σ by researching properties of
the solution.

Proposition 4.1. For any ϕ ∈ Σ, there exists T > 0 (T ∈ (0, π
2ω ]) and a solu-

tion u ∈ Lγ(0, T ;Bs
ρ,2(Rn)) of integral equation (4.1). Furthermore u belongs to

C([0, T ];Hs(Rn))∩Lq
loc(0, T ;B

s
r,2(Rn)), and u is unique in Lγ(0, T ;Bs

ρ,2(Rn)).

Proof. Let M > 0 (finite). We set

D = D(T,M) = {u ∈ Lγ(0, T ;Bs
ρ,2(Rn)) : ∥u∥Lγ(0,T ;Ḃs

ρ,2)
⩽M}

equipped with the distance

d(u, v) = ∥u− v∥Lγ(0,T ;Lρ).

Note that by Lemma 2.1 and Proposition 2.4, D is never empty. Indeed, u(t) =
S(t)η is in D(T,M) if η ∈ Hs(Rn)) and ∥η∥Ḣs is sufficiently small. We can
claim that D is a complete metric space. In what follows, we wish to find
conditions on T and M which imply that F , given by

F(u) = S(·)ϕ− iGf(u)

is a strict contraction on D.
From Lemma 2.1 and Proposition 2.4 and Proposition 2.6 we see that if

u ∈ D, then F(u) ∈ Lγ(0, T ;Bs
ρ,2). Moreover it follows from formula (2.10)

that if

(4.2) ∥S(·)ϕ∥Lγ(0,T ;Ḃs
ρ,2)

+ CT δMα+1 ⩽M,
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then also F(u) ∈ D. It follows from formula (2.9) that if

(4.3) CT δMα ⩽ 1,

then F is a strict contraction on D. By making one of the constant larger if
necessary, we may assume that the constants in (4.2) and (4.3) are the same.
Thus, if ϕ ̸= 0, (4.3) is a consequence of (4.2). By part (1) of Proposition 2.4,
the following inequality implies, but is not equivalent to (4.2)

(4.4) C∥ϕ∥Ḣs + CT δMα+1 ⩽M,

where we may take both constant to be the same.
If α < 4/(n − 2s), then δ > 0. Given any ϕ ∈ Hs and any M > C∥ϕ∥Ḣs ,

there exists T > 0 depending only on the Hs norm of ϕ and on M , such that
(4.4) is verified. If α = 4/(n − 2s), we have δ = 0. It follows from part (1)
of Proposition 2.4 that given any ϕ ∈ Hs and M > 0 satisfying CMα < 1,
there exists T > 0 such that (4.2) is verified. In both case, for such a T there
exists a unique fixed point in D of the mapping F , i.e., a solution of (4.1) in
Lγ(0, T ;Bs

ρ,2(Rn)).

Next we will prove that if u ∈ Lγ(0, T ; Ḃs
ρ,2(Rn)) satisfies (4.1), then u ∈

Lq(0, T ;Bs
r,2) ∩ C([0, T ];Hs(Rn)), and u is unique in Lγ(0, T ;Bs

ρ,2(Rn)). In-
deed, u = F(u) = S(·)ϕ− iGf(u),

∥F(u)∥Lq(0,T ;Bs
r,2)

⩽ ∥S(t)∥Lq(0,T ;Bs
r,2)

+ ∥Guk∥Lq(0,T ;Bs
r,2)

⩽ C∥ϕ∥Hs + CT δ∥uk∥α+1
Lγ(0,T ;Bs

ρ,2)
.

From part (2) of Proposition 2.4 and proof of Proposition 2.6,

u ∈ Lγ(0, T ;Bs
ρ,2(Rn)) =⇒ f(u) ∈ Lγ′

(0, T ;Bs
ρ′,2(Rn))

=⇒ Gf(u) ∈ C([0, T ];Hs(Rn)).

Now we prove uniqueness by contradiction.
Assume that u, v ∈ Lγ(0, T ;Bs

ρ,2(Rn)) are solutions of (4.1) that satisfying
u(t) ̸= v(t) for some t ∈ [0, T ]. Let t0 = inft∈[0,T ]{u(t) ̸= v(t)}. Since both
u and v are continuous into Hs(Rn), let tk = t0 − 1/k, then tk → t0 when
k → ∞. It follows from the definition of t0 that u(tk) = v(tk), since both u and
v are continuous, we have u(t0) = v(t0) as k → ∞. Denote u(t0) = v(t0) = ψ,
then U(t) = u(t+ t0) and V (t) = v(t+ t0) both satisfy the equation

w = S(·)ψ − iGf(w)

on [0, T − t0]. Choosing (q, r) = (γ, ρ) in formula (2.9), we see that for all
t ∈ [t0, T ],

∥u− v∥Lγ(t0,t;Lρ)

= ∥Gf(u)− Gf(v)∥Lγ(t0,t;Lρ)

⩽ C(t− t0)
δ{∥u∥α

Lγ(t0,t;Ḃs
ρ,2)

+ ∥u∥α
Lγ(t0,t;Ḃs

ρ,2)
}∥u− v∥Lγ(t0,t;Lρ).
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For t > t0, but sufficiently close to t0, it follows that

C(t− t0)
δ{∥u∥α

Lγ(t0,t;Ḃs
ρ,2)

+ ∥u∥α
Lγ(t0,t;Ḃs

ρ,2)
} < 1,

and so that ∥u − v∥Lγ(t0,t;Lρ) = 0. This contradicts the choice of t0, and thus
uniqueness is proved. □
Proposition 4.2. There exists 0 < T < T ∗(ϕ) such that if {ϕk} is a sequence
in Hs(Rn) with ϕk → ϕ in Hs(Rn), then, for sufficiently large k, T < T ∗(ϕk)
and the solutions uk (of (4.1) with ϕ replaced by ϕk) form a bounded sequence in
Lq(0, T ;Bs

r,2(Rn)). Moreover, uk → u in Lq(0, T ;Lr(Rn)) for every admissible

pair (q, r). In particular, uk → u in C([0, T ];Hs−ε(Rn)) for every ε > 0.

Proof. We prove proposition by three steps.
Step 1. Continuous dependence. We may first assume α < 4/(n − 2s), let
ϕk → ϕ in Hs(Rn), since ∥ϕk∥Ḣs ⩽ 2∥ϕ∥Ḣs for k sufficiently large, we see that

C∥ϕk∥Ḣs + CT δMα+1 ⩽ 2C∥ϕ∥Ḣs + CT δMα+1 ⩽M.

This implies that the solutions uk (corresponding solutions with ϕ replaced by
ϕk) belong to D(T,M), where T = T (∥ϕ∥Ḣs). If α = 4/(n−2s), then δ = 0, we
see that (4.4) is verified for all T ∈ (0, π/2ω]. We also have uk ∈ D(T,M) where
T = T (∥ϕ∥Ḣs). We denote Tmax(ϕ) = T ∗(ϕ), then by fixed point argument,
we have

∥u∥Lγ(0,T ;Ḃs
ρ,2)

⩽M (T < T ∗(ϕ)),

and
∥uk∥Lγ(0,T ;Ḃs

ρ,2)
⩽M (T < T ∗(ϕ))

for k sufficiently large. Thus we have

d(uk, u) = ∥uk − u∥Lγ(0,T ;Lρ)

= ∥F(uk)−F(u)∥Lγ(0,T ;Lρ)

⩽ ∥S(t)ϕk − S(t)ϕ∥Lγ(0,T ;Lρ) + ∥Gf(uk)− Gf(u)∥Lγ(0,T ;Lρ)

⩽ C∥ϕk − ϕ∥L2 + CT δMα∥uk − u∥Lγ(0,T ;Lρ),

where the last inequality follows from Lemma 2.1 and formula (2.9).
By (4.4), we can get CT δMα ⩽ 1, so

d(uk, u) ⩽ C∥ϕk − ϕ∥L2 ⩽ C∥ϕk − ϕ∥Ḣs ,

which implies that uk → u in Lγ(0, T ;Lρ(Rn)). It follows from Lemma 2.1
that

∥uk − u∥Lq(0,T ;Lr) ⩽ C∥ϕk − ϕ∥L2 + C∥f(uk)− f(u)∥Lγ′ (0,T ;Lρ′ )

⩽ C∥ϕk − ϕ∥L2 + CT δMα∥uk − u∥Lγ(0,T ;Lρ),

which implies that uk → u in Lq(0, T ;Lr(Rn)).
Step 2. Boundedness.

∥uk∥Lq(0,T ;Ḃs
r,2)

= ∥Fuk∥Lq(0,T ;Ḃs
r,2)
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⩽ ∥S(t)∥Lq(0,T ;Ḃs
r,2)

+ ∥Guk∥Lq(0,T ;Ḃs
r,2)
.

By Proposition 2.4 and formula (2.10), for sufficiently large k we have

∥uk∥Lq(0,T ;Ḃs
r,2)

⩽ C∥ϕk∥Ḣs + CT δ∥uk∥α+1

Lγ(0,T ;Ḃs
ρ,2)

⩽ C∥ϕ∥Ḣs + CT δ∥uk∥α+1

Lγ(0,T ;Ḃs
ρ,2)

.

This implies that uk form a bounded sequence in Lq(0, T ; Ḃs
r,2(Rn)).

Step 3. Let (q, r) = (∞, 2), the convergence in C
(
[0, T ];Hs−ε(Rn)

)
follows

from the convergence in L∞(0,T ;L2(Rn)), the boundedness in L∞(0,T ;Hs(Rn)),

and the elementary interpolation estimate ∥u∥Hs−ε ⩽ ∥u∥
s−ε
s

Hs ∥u∥
ε
s

L2 . □

Definition 4.3 ([1]). Let ρ ∈ S ′, ρ is called a Fourier multiplier on Lp if the
convolution (F−1ρ) ∗ f ∈ Lp for all f ∈ S, and if sup∥f∥Lp=1 ∥(F−1ρ) ∗ f∥Lp is
finite. The linear spaces of all such ρ is denoted by Mp; the norm on Mp is the
above supremum, written ∥ · ∥Mp

Lemma 4.4 ([1]). Let Mp be defined by Definition 4.3. Then

M2 = L∞ (equal norm).

Proposition 4.5. (1) If u ∈ Hs(Rn), and 1 ⩽ s < n/2, then xu ∈ L2(Rn).
(2) If 0 < s < 1 and u ∈ C

(
[0, T ];Hs(Rn)

)
satisfies (4.1), then xu(t) ∈

L2(Rn).

Proof. It is well known that (1 + |ξ|2)s/2 ∈ S ′. Since S ⊂ Hs, for any u ∈ S ⊂
Hs, it follows from the definition of Hs(Rn) that F−1(1+ |ξ|2)s/2 ∗u ∈ L2. By
Definition 4.3 and Lemma 4.4

(1 + |ξ|2)s/2 ∈M2 = L∞.

It yields that

∥F−1(1 + |ξ|2)s/2 ∗ û∥L2 = ∥(1 + |ξ|2)s/2̂̂u∥L2

⩽ ∥(1 + |ξ|2)s/2∥1/2L∞∥̂̂u∥L2

= ∥(1 + |ξ|2)s/2∥1/2L∞∥u∥L2

⩽ C∥(1 + |ξ|2)s/2∥1/2L∞∥u∥Hs ,

which implies that û ∈ Hs. If 1 ⩽ s < n/2, then ∇û ∈ Hs−1 ↪→ L2, we have

∥xu∥L2 = ∥x̂u∥L2 = C∥∇û∥L2 ⩽ C∥∇û∥Hs−1 .

This implies that xu ∈ L2(Rn).
If 0 < s < 1, then α < 4/(n−2s) < 4/(n−2). By following H1 argument, for

any ϕ ∈ H, there exists T > 0, such that xu ∈ C([0, T );L2(Rn)). Approaching
ϕ ∈ Σ by a sequence {ϕk} ∈ H and take (q, r) = (∞, 2) in Proposition 4.2,
we have uk → u in L2(Rn), it yields that ûk → û in L2(Rn). Since ϕk ∈ H,

we have uk(t) ∈ H1(Rn) and xuk(t) ∈ L2(Rn). It yields that ∥∇ûk(t)∥L2 =



LOCAL WELL-POSEDNESS FOR THE NONLINEAR SCHRÖDINGER EQUATION1301

C∥x̂uk(t)∥L2 < ∞ uniformly with respect to k. By the weak compactness in

L2(Rn), there exists uα ∈ L2(Rn) such that ∇ûk(t) → uα in L2(Rn). We can

prove that ∇û(t) = uα ∈ L2(Rn), i.e., xu(t) ∈ L2(Rn). □

Proof of Theorem 3.1. It follows from Proposition 4.1 and Proposition 4.5 that
for every ϕ ∈Σ, there exists a solution u ∈C([0, T ];Σ) ∩ Lγ

loc

(
0, T ∗;Bs

ρ,2(Rn)
)

of the integral equation (1.2) for some T ∗ = T ∗(ϕ) ∈ (0, π/2ω]. Here T ∗ is the
maximal existence time satisfies T ∗ = π/2ω or T ∗ < π/2ω and ∥u(t)∥Ḣs = ∞,
as t → T ∗. Indeed, if T ∗ < π/2ω and limt→T∗ ∥u(t)∥Ḣs < ∞, then there exist
M < ∞ and a sequence tj ↑ T ∗ such that ∥u(tj)∥Ḣs < M . Let k satisfies
tk+T (M) > T ∗, we take u(0) = u(tk), by fixed point argument, we can extend
T ∗ to tk + T (M), this contradicts the choice of T ∗.

So far we have proved the first statement of Theorem 3.1, combine Proposi-
tion 4.2 with Proposition 4.5, part (4) has been proved. At last, the conversa-
tion laws (1.3) and (1.4) can be proved by using the same arguments as in the
proof of conversation laws in Theorem 1.1 by Cazenave and Weissler in [4].

This completes the proof of Theorem 3.1. □

Lemma 4.6 ([3]). Let ϕ ∈ H = {u ∈ H1(Rn) : xu ∈ L2(Rn)} be nonzero, and
if n ⩾ 3, assume λ < 0, 4/n ⩽ α ⩽ 4/(n− 2), then under the condition

1

2
∥∇ϕ∥2L2 +

2λ

α+ 2
∥ϕ∥α+2

Lα+2 ⩽ 0,

u blows up at time t∗ ⩽ π/2ω, and

lim
t→t∗

∥∇u(t)∥L2 = ∞, lim
t→t∗

∥u(t)∥Lα+2 = ∞.

Proof of Theorem 3.4. Notice that conservation laws are verified in Σ as s ⩾ 1,
by the same method as in the proof of Lemma 4.6, we get limt→t∗ ∥u(t)∥Lα+2

= ∞, then follows from Sobolev embedding Hs(Rn) ↪→ Lα+2(Rn) in the case
s ⩾ 1 that limt→t∗ ∥u(t)∥Hs = ∞. This proves the first statement of Theorem
3.4.

When T ∗ < π/2ω, in view of Theorem 3.1 that limt→t∗ ∥u(t)∥Ḣs = ∞. If
we consider u(t), t < T ∗ as the initial value, it follows from inequality (4.4)
and fixed point argument that if for some M > 0

C∥u(t)∥Ḣs + C(T − t)δMα+1 ⩽M,

then T < T ∗. Thus, for any M > 0,

C∥u(t)∥Ḣs + C(T ∗ − t)δMα+1 > M.

Choosing for example M = 2C∥u(t)∥Ḣs , we have

(T ∗ − t)δ∥u(t)∥α
Ḣs > C,

which easily implies that

∥u∥Ḣs ⩾ C

(T ∗ − t)1/α−(n−2s)/4
.
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This completes the proof of Theorem 3.4. □
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School of Mathematical Science
Xuzhou Normal University

Xuzhou, 221116, P. R. China
E-mail address: lvzx1@tom.com


