Abstract
Let M be a complete spacelike hypersurface in the (n + 1)-dimensional Minkowski space ${\mathbb{L}}^{n+1}$. Suppose that every unit speed curve X(s) on M satisfies ${\langle}X^{\prime\prime}(s),X^{\prime\prime}s){\rangle}{\geq}-1/r^2$ and there exists a point $p{\in}M$ such that for every unit speed geodesic X(s) of M through the point p, ${\langle}X^{\prime\prime}(s),X^{\prime\prime}s){\rangle}=-1/r^2$ holds. Then, we show that up to isometries of ${\mathbb{L}}^{n+1}$, M is the hyperbolic space $H^n(r)$.