DOI QR코드

DOI QR Code

A NOTE ON END PROPERTIES OF MARCINKIEWICZ INTEGRAL

  • DING, YONG (Department of Mathematics and Computer Science Nanchang Institute of Aeronautical Technology)
  • Published : 2005.09.01

Abstract

In this note we give the mapping properties of the Marcinkiewicz integral !-to. at some end spaces. More precisely, we first prove that !-to. is a bounded operator from H$^{1,($\mathbb{R) to H$^{1, ($\mathbb{R). As a corollary of the results above, we obtain again the weak type (1,1) boundedness of $\mu$$_{, but the condition assumed on n is weaker than Stein's condition. Finally, we show that !-to. is bounded from BMO($\mathbb{R) to BMO($\mathbb{R). The results in this note are the extensions of the results obtained by Lee and Rim recently.

Keywords

References

  1. A. Benedek, A. Calderon, and R. Panzone, Convolution operators on Banach space valued functions, Proc. Natl. Acad. Sci. USA 48 (1962), 356-365 https://doi.org/10.1073/pnas.48.3.356
  2. L. Colzani, Hardy space on sphere, Ph.D.Thesis, Washington University, St. Louis, Mo, 1982
  3. L. Colzani, M. Taibleson, and G. Weiss, Maximal estimates for cesaro and Riesz means on spheres, Indiana Univ. Math. J. 33 (1984), 873-889 https://doi.org/10.1512/iumj.1984.33.33047
  4. Y. Ding, D. Fan, and Y. Pan, $L^p$-boundedness of Marcinkiewicz integrals with Hardy space function kernel, Acta. Math. Sinica (English series) 16 (2000), 593-600 https://doi.org/10.1007/s101140000015
  5. D. Fan and S. Sato, Weak type (1,1) estimates for Marcinkiewicz integrals with rough kernels, Tohoku Math. J. 53 (2001), 265-284 https://doi.org/10.2748/tmj/1178207481
  6. R. Fefferman and F. Soria, The Weak space $H^1$, Studia Math. 85 (1987), 1-16 https://doi.org/10.4064/sm-85-1-1-16
  7. Y. Han, Some properties of S-function and Marcinkiewicz integrals, Acta Sci. Natur. Univ. Pekinensis 5 (1987), 21-34
  8. J. Lee and K. S. Rim, Estimates of Marcinkiewicz integrals with bounded homo- geneous kernels of degree zero, Integral Equations Operator Theory 48 (2004), 213-223 https://doi.org/10.1007/s00020-001-1193-1
  9. E. Stein, On the function of Littlewood-Paley, Lusin and Marcinkiewicz, Trans. Amer. Math. Soc. 88 (1958), 430-466 https://doi.org/10.2307/1993226
  10. E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970

Cited by

  1. Weighted Estimates for Multilinear Commutators of Marcinkiewicz Integrals with Bounded Kernel vol.66, pp.4, 2014, https://doi.org/10.1007/s11253-014-0957-0
  2. Commutators of Littlewood-Paley operators vol.52, pp.11, 2009, https://doi.org/10.1007/s11425-009-0178-4