Doubly stochastic matrices are n$\times$n nonnegative ma-trices whose row and column sums are all 1. Convex polytope $\Omega$$_{n}$ of doubly stochastic matrices and more generally (R,S), so called transportation polytopes, are important since they form the domains for the transportation problems. A theorem by Birkhoff classifies the extremal matrices of , $\Omega$$_{n}$ and extremal matrices of transporta-tion polytopes (R,S) were all classified combinatorially. In this article, we consider signed version of $\Omega$$_{n}$ and (R.S), obtain signed Birkhoff theorem; we define a new class of convex polytopes (R,S), calculate their dimensions, and classify their extremal matrices, Moreover, we suggest an algorithm to express a matrix in (R,S) as a convex combination of txtremal matrices. We also give an example that a polytope of signed matrices is used as a domain for a decision problem. In this context of finite reflection(Coxeter) group theory, our generalization may also be considered as a generalization from type $A_{*}$ n/ to type B$_{n}$ D$_{n}$. n/.