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IDEALS AND QUOTIENTS OF INCLINE ALGEBRAS
SuN SHIN AHN, YOUNG BAE JUN, AND HEE Sik KM

ABSTRACT. In this paper we introduce the notion of quotient in-
cline and obtain the structure of incline algebra. Moreover, we also
introduce the notion of prime and maximal ideal in incline, and
study some relations between them in incline algebra.

0. Introduction

Z. Q. Cao, K. H. Kim, and F. W. Roush [3] introduced the notion
of incline algebras in their book, Incline algebra and applications, and
was studied by some authors [1, 2, 6, 7]. Inclines are a generalization of
both Boolean and fuzzy algebras, and a special type of a semiring, and
they give a way to combine algebras with ordered structures to express
the degree of intensity of binary relations.

An incline is a structure which has an associative, commutative ad-
dition, and a distributive multiplication such that x+z =z, z+zy = =
for all z,y. It has both a semiring structure and a poset structure.
Inclines can also be used to represent automa and other mathematical
systems, in optimization theory, to study inequalities for nonnegative
matrices of polynomials. The present authors [4] considered the fuzzifi-
cation of subinclines (ideals) in inclines, and also stated the product and
projections of fuzzy subinclines (ideals). They discussed fuzzy relations,
fuzzy characteristic subinclines (ideals) and fuzzy k-ideals. In this paper
we introduce the notion of quotient incline and obtain the structure of
incline algebras. Moreover, we also introduce the notion of prime and
maximal ideals in an incline, and study some relations between them in
incline algebras.
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1. Preliminaries

DEFINITION 1.1 ([3]). An incline (algebra) is a set K with two binary
operations denoted by “+ 7 and “*” satisfying the following axioms:
for all z,y,2z € K,

i) z+y=y+z,

(i) z+ (y+2)=(z+y)+z
(iil) % (y*2) = (z*y) * 2,
(iv) zx(y+2) = (vxy) + (z*2),
(v) (y+2)*xz=(y*z)+ (z*2),
(vi) z4+z ==,

(vii) z + (z*y) = =,

(viii) y+ (z*xy) = v.

Furthermore, an incline algebra X is said to be commutative if xxy = y*x
for all z,y € K.

For convenience, we pronounce “+” (resp. “¥”) as addition (resp.
multiplication). Every distributive lattice is an incline. An incline is a
distributive lattice (as a semiring) if and only f z xz =z for all z € K
([3, Proposition (1.1.1)]). Notethat x <y <= z+y=yforallz,y € K.
A subincline of an incline K is a non-empty subset M of K which is
closed under addition and multiplication. A subincline M is said to be
an ideal of an incline K if x € M and y < x then y € M. An element
0 in an incline algebra K is a zero element if t +0 = x = 0 + z and
zx0 =0z =0, for any z € K. By a homomorphism of inclines we
shall mean a mapping f from an incline K into an incline £ such that

flz+y) = f(x)+ fy) and f(z*y) = f(z) * f(y) for all z,y € K.

2. Quotient inclines

In this section, we discuss the quotient incline and investigate their
properties.

The present authors [4] introduced the notion of the k-ideal, i.e., a
subincline I of an incline K is said to be k-idealif x +y € I, y € I, then
x € I. We show this notion is another equivalent definition of the ideal
of an incline,

ProrosIiTiION 2.1. Let I be a subincline of an incline K. Then I is
an ideal of K if and only if I is a k-ideal of K.
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PrOOF. Let I be an ideal of K, and let z € K and y, z € I such that
z+y==z2 Sincer+z=z, x+z=z+(r+y) =z +y =2 and hence
z < z. Hence x € I, i.e., I is a k-ideal of K. Conversely, assume that
y€ K and z € I with y < x. Then y+ x = z. Since I is a k-ideal of K,
y € I, proving that I is an ideal of K. |

Suppose that I is an ideal of an incline KC with zero element 0. For
any z,y € K, we define a relation ~ on K by z ~ y if and only if there
exist 1y,i2 € I such that 4+ i3 = y + i3. Now we prove that ~ is an
equivalence relation on K. Since £ +0 = z for any z € I, 0 < z. Since
I is an ideal, we obtain 0 € I. Since x +0 = z + 0, £ ~ x for any
z € K. This means that ~ is reflexive. By definition of the relation, ~
is symmetric.

If x ~ y and y ~ z, then there are ,49,73, and 44 € I such that
z+i, =y+izand y+iz =2z+1i4. Hence (z+41)+iz3 = (y+iz)+iz =
y+ (ia +1i3) = y+(i3+z’2) = (y+i3)+ix = (Z+i4)+i2 and so
x+ (i1 +13) = 2+ (i4 +142). Thus  ~ 2. This shows that ~ is transitive.
Therefore ~ is an equivalence relation on K.

Futhermore we have the following lemma;:

LEMMA 2.2. Ifa~b, thena*xz ~bxx and a+ x ~ b+ x for all
r € K, ie., ~ is a congruence relation on K.

PROOF. Since a ~ b, there exist 41,15 € I such that
(a) a+1i; =b+ia.

Multiplying z on the right side of (a), (a + 1) *z = (b+i2) * z and so
a*xx+iyxx = bxx+ig*xx. By Definition 1.1-(vii), we have 11 +4; %2 = 4y
and so i; xx < i3 € I. Since I is an ideal of X, i; * z € I. Similarly,
is *x € I and hence a xx ~ bxz. Adding x on both side of (a),
(a+i1) +x = (b+1i2) + . This means that (¢ +z) +41 = (b+ ) + ia.
Hence a + = ~ b+ z, completing the proof. 0

We denote by [z]; := {y € K|z ~ y} the equivalence class of z
determined by an ideal I. In fact, if z € I, then z*0 =0and £+ 0 = .
Since 0,z € I, £ + 0 =0+ z, i.e., z ~ 0. Thus € [0];. Conversely, if
z € [0];, then 0 ~ z and so there are i;,i5 € I such that 0+, = z+ 5.
Hence i; = x + ip. Since I is an ideal of K, € I. Therefore [0]; = I.
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Denote by K/I = {{z]1|z € K} the set of all equivalence classes [z];
determined by an ideal I, and we define two operations on K/I by

lalr + [b]r :=[a + b1

and
[a]y * [b]1 := [a = b] .

[190%:)

Since ~ is a congruence relation on K, the operations “+” and “x” are
well-defined. It is easy to show that (K/I,+,x) is an incline (algebra).
Furthermore, if X is a commutative incline, then

[alr % [b]; = [a*b]r = [bxa]; = [b]s *[a]r,

and hence K/I is a commutative incline. Summarizing the above facts
we have:

THEOREM 2.3. Let K be an (commutative) incline with zero element
0 and let I be an ideal of K. Then (K/I;+,%) is also an (commutative)
incline with zero element [0]; = I.

The incline K/I described in Theorem 2.3 is called a (commutative)
factor incline or (commutative) quotient incline of K via an ideal .
There are some close relations of ideals between K and K/I.

THEOREM 2.4. IfI and J are any ideals of K and I C J, then
(a) I is also an ideal of the subincline J,
(b) J/I :={[z];|x € J} is an ideal of the quotient incline K/1I.

PROOF. (a) is immediately follows from the definition of an ideal of
incline.

To show (b), first we have to show that each element of J/I is an
also element of K/I. To avoid the ambiguity, we denote the element
of J/I containing « by [z]]. Let z € J. If y € [z];, then y € X and
y ~ = with respect to I. It follows that there exist i1,i2 € I such that
z+1, =y+i. Since I C J and z € J, we obtain y + iz € J. Since
J is a k-ideal, it follows that y € J. Hence y € [zl{, ie., [z]; C [z]].
Obviously, [z]7 C [z];. This means that each element of J/[ is also an
element of IC/1.

Next we prove that J/I is an ideal of X'/I. Clearly, J/I is a subincline
of K/I. Since I C J, [0}y =1 € J/I.If [b]; € J/I and [a]; < [b]; where
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[a]; € K/I, then [a]; + [b]r = [b]; and hence [a + b]; = [b];. This means
that @ + b ~ b with respect to I, i.e., there exist i1,72 € I such that
a+b+i; = b+io. Since J is an ideal of K, b € J implies that a € J and
hence [a]; € J/I. This means that J/I is an ideal of K/I. It is easy to
show that J/I is an ideal of K /I, and we omit the proof. This completes
the proof. O

THEOREM 2.5. If J* is an ideal of K/I, then
J = U{ [:E][ | [:1:]1 € J*}
is an ideal of K and I C J.

ProoF. Since I = [0]; € J*, [0]; € Jandso I C J. If z < y and
y € J, then [z]; < [y]; € J*. Since J* is an ideal of K, [z]; € J* and
z € J. This shows that J is an ideal of K. U

The set of all ideals on K is denoted by Z(K), and the set of all ideals
containing I on K is denoted by Z(X,I). The mapping f from Z(K,I)
to Z(K/I) is defined by, for any J € I(K,I), f(J) := J/I. It follows
from Theorems 2.4 and 2.5 that f is onto. We claim that f is one to
one. In fact, let A, B € Z(K,I) and A # B. Without loss of generality,
we suppose that there is x € B — A. If f(A) = f(B), then [z]; € f(B)
and [z]; € f(A). Then there exists y € A such that [z]; = [y];,s0z ~ y
with respect to I, i.e., there are i;,i2 € I such that z+i; = y+1i,. Since
i1,y +i2 € A and A is an ideal of K, x € A, which is a contradiction to
z ¢ A. Summarizing the above facts we obtain:

THEOREM 2.6. IfI is an ideal of an incline K with zero element, then
there is a bijection from Z(K,I) to Z(IC/I).

Suppose I is an ideal of K. The mapping v from K to /I which is
defined by v(z) = [z]; for z € K satisfies v(z + y) = v(z) + v(y) and
v(z *y) = v(z) *» v(y). This means that v is a homomorphism, called
the natural homomorphism. By means of this terminology, Theorem 2.6
can be reformed as follows:

THEOREM 2.7. Let I be an ideal of an incline K. If A is an ideal of
a quotient incline K/I, then v—*(A) is an ideal of K containing I.
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3. Prime and maximal ideals in inclines

In this section, we define prime and maximal ideals in incline algebras
and investigate their properties.

DEFINITION 3.1. Let K be an incline. A proper ideal P of K is said
to be prime if for all a,b € K,a b € P implies either a € Por b € P.
An ideal M in K is called a mazimal ideal of K if M # K and for every
ideal N with M C N C K, either N=M or N =K.

THEOREM 3.2 ([5]). All two-sided ideals of a ring (or semigroup)
form an incline under lattice sum and product.
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EXAMPLE 3.3. The ring (Zg, +, -) has 4 ideals as follows:

We define sum “ +” and product “*” on Z := {I;|i = 1,2,3,4} as

I =<0>, L=<1>, I3=<2>, [41=<3>.

follows:
+ L | Lo I3 | 14
L\ L | LIz
L|L|L| LI
Ii ||| I I
LI ||| 1L
Table 1

Then (Z,+,*) is an incline algebra by Theorem 3.2 and I, is the zero
element of Z. If we define the sets

x | Iy | I | I3 | It

L|L|L|L|6L

Li|L | L ||

Li\L | I3 I3 | ;

L | Iy I Iy
Table 2

Ly:={LeI|l; <L}={h},

Ly :={I; € I|I; < L} = {11, I, I5, 11},

Ly:={; € I|I; < Is} = {I1, I},
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and
Ly:={L e I|I; < I} = {1, I},

then all L; are ideals of 7 and especially L3, L, are both prime ideals
and maximal ideals of Z.

DEFINITION 3.4. An element 1x (# zero element) in an incline al-
gebra K is called a mutiplicative identity if for any * € K, z x lx =
le xx = .

EXAMPLE 3.5. Let K; := ([0, 1]; max, min), Ky := ([0,1];+, *) where
z +y := min{z,y} and z * y := min{z + y,1} and K3 := ([0,1];+, %)
where z + y := max{z,y} and z x y := zy (ordinary multiplication).
Then K; (: = 1,2,3) are incline algebras. In K3, 1 is a (multiplicative)
identity and 0 is a zero element.

DEFINITION 3.6. A non-zero element a in an incline algebra K with
zero element is said to be a left (resp. right) zero divisor if there exists a
non-zero b € K such that a b = 0 (resp. bxa =0). A zero divisor is an
element of C which is both a left zero divisor and a right zero divisor.

EXAMPLE 3.7. In Example 3.3, the ideals I3, 4 are zero divisors of
I,since Isx Iy = Iy« I3 = 1.

LEMMA 3.8. If an incline algebra K with zero element satisfies the
cancellation laws, i.e., for all a,b,c € K witha # 0, axb = a *xc or
b*a = c*a implies b = c, then it has no zero divisor.

Proor. Let K be an incline in which the cancellation laws hold, and
suppose a * b = 0 for some a,b € K. We must show that either a or b is
0. If a # 0, then a x b = 0 = a x 0 implies that b = 0, by cancellation
laws. Similarly, b # 0 implies that a = 0. a
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DEFINITION 3.9. An incline K with multiplicative identity 1x # 0
and zero element 0 is called an integral incline if it has no zero divisors.
An incline X with multiplicative identity lx # 0 and zero element 0
is called a pre-integral incline if it has both right and left cancellation
laws in . An element u € K is called a wunit if it has a multiplicative
invertible element. An incline with 1x # 0 and zero element in which
every non-zero element is a unit is called a field incline.

THEOREM 3.10. A pre-integral incline is an integral incline.

ProorF. It follows from Lemma 3.8. O

THEOREM 3.11. In an incline K with identity 1x and zero element 0,
an ideal P is prime if and only if the quotient incline K/P is an integral
incline.

PROOF. We can easily see that /P is an incline with identity [1x]p
and zero element [0]p = P. If P is prime, then [1x]p # P since P # K.
Futhermore, K/P has no zero divisors, since

[alp x[blp =P = [axblp =P = axbeP
=a€Porbe P=[a]lp=Porlblp=P

Therefore, /P is an integral incline.

Conversely, if /P is an integral incline, then [1x]p # [0]p, 1x ¢ P
and so P # K. Since K/P is an integral incline, /P has no zero
divisors. Suppose a xb € P. Then [a *bjp = P and so [a]p * [b]p = P.
Hence either [a]p = P or [b]p = P, ie,a € Porbe P. Thus P is
prime. O

Every incline K with zero element has two ideals, the improper ideal
K and the trivial ideal {0}. For these ideals, the factor inclines are /K,
which has only one element, and K/{0}, which is isomorphic to K. A
proper non-trivial ideal of an incline K is an ideal N of K such that

N # K and N # {0}.

THEOREM 3.12. Any commutative finite pre-integral incline K is a
field incline.
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ProoF. For a fixed non-zero element a and a1, -- ,a, in K, we con-
sider the n products

AG*01, A*XA9, -+, G* Ay

These products are all distinct, since if a * a; = a * a;, by cancellation
laws we obtain a; = a;. It follows that each element of K must be of the
form a * a; for some choice of 7. In particular, there exists some a such
that a * a; = 1x. From the commutativity of multiplication, we claim

that

a”! =a

P9

whence every non-zero element of K possesses a multiplicative inverse.[d

COROLLARY 3.13. Any commutative finite integral incline is a field
incline.

THEOREM 3.14. Every field incline K is an integral incline.

PROOF. Since every field incline is a commutative incline with iden-
tity 1x and zero element, we need only to prove that X contains no zero
divisors. Assume that a,b € K with axb = 0. If a # 0, then it must
possess a multiplicative inverse a=! € K. Thus a * b = 0 yields

0O=a'+0=a"1%(axb)=(at*a)xb=1c*xb=b.

This proves the theorem. 0

THEOREM 3.15. Every field incline K is a pre-integral incline.

Proor. It is sufficient to show that K satisfies cancellation laws.
Suppose that a *b = a * ¢ and a # 0. Then

alx(axb)=a"tx(axc),
(@ txa)xb=(a"!xa)*c,
lyc*bzl;c*c.

Hence b = ¢. This completes the proof. 0
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DEFINITION 3.16. A proper ideal I of an incline X is said to be
irreducible if I = AN B implies I = A or I = B for any ideals A, B of
K.

ExAMPLE 3.17. In Example 3.3, the ideal L3 is irreducible, since
L3 = L3 n Lz.

THEOREM 3.18. In an incline K, the following are equivalent:
(a) I is an irreducible ideal,
(b) I is a prime ideal,
(c) the ideal I satisfies that, for any elements A, B in the set of all
idealson KX, AC I or B C I whenever ANB C I.

PROOF. (a)= (b). Assume that I is not prime. Then zxy € I
for some z,y € K — I. It is easy to show that I C [; := [ U {z} and
I c I:=IU{y}and I = NIy, 1i.e., I isnot irreducible, a contradiction.

(b)=> (c¢). If (c) does not hold, then for some A, B in the set of
all ideals on K, ANB C I, A¢Z I and B € I. Then there exist a,b
such that a € A— T and b € B — I. 1t follows from a *b < a and
axb<bthataxbe Aand axb€ B, since A, B are ideals of K. Hence
axbe AN B C I, which contradicts to that [ is prime. Therefore (c)
holds.

(¢) = (a). Suppose that there exist ideals A, B of K such that
I = AN B. By assumption either AC T or B C I, i.e., either ] = A or
I = B. Thus I is irreducible. This completes the proof. [

DEFINITION 3.19. An incline K is said to be simple if it has no proper
non-zero ideals.

THEOREM 3.20. In an incline K with identity 1x # 0 and zero ele-
ment 0, an ideal M is maximal if and only if the quotient incline K/M
is simple.

PROOF. Let v be the natural homomorphism from K to K/M. Let
M be a maximal ideal of K. Suppose that there exists a proper ideal B
of K/M. Then, by Theorem 2.7, v~1(B) is a proper ideal of K properly
containing M. This contradicts to the maximality of M.
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Conversely, suppose that /M is simple. If M is not maximal, then

there is a proper ideal A of K properly containing M. Hence A/M is a
proper non-zero ideal of /M by Theorem 2.4. This contradicts to the

simplicity of /M. The proof is complete. O
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