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CONVEX POLYTOPES OF GENERALIZED
DOUBLY STOCHASTIC MATRICES

S00JIN CHO AND YUNSUN NAM

ABSTRACT. Doubly stochastic matrices are n X n nonnegative ma-
trices whose row and column sums are all 1. Convex polytope 2,
of doubly stochastic matrices and more generally A(R, S), so called
transportation polytopes, are important since they form the domains
for the transportation problems. A theorem by Birkhoff classifies
the extremal matrices of {2,, and extremal matrices of transporta-
tion polytopes A(R, S) were all classified combinatorially.

In this article, we consider signed version of 2, and A(R,S),
obtain ‘signed’ Birkhoff theorem ; we define a new class of convex
polytopes |%|(R, S), calculate their dimensions, and classify their
extremal matrices. Moreover, we suggest an algorithm to express a
matrix in |%|(R, S) as a convex combination of extremal matrices.
We also give an example that a polytope of signed matrices is used
as a domain for a decision problem.

In the context of finite reflection(Coxeter) group theory, our
generalization may also be considered as a generalization from type
A, to type B, and D,,.

1. Introduction

For given positive vectors R = (r1,...,7ry) and S = (s1,...,8,) with
2.iTi = 2_; 85, let A(R, S) be the class of all m x n nonnegative matrices
with row sum vector R and column sum vector S. The set A(R,S) is
a convex polytope, which is called a transportation polytope. A matrix
in A(R, S) is called a transportation matriz. Transportation polytopes
have applications in many optimization problems and so have been ex-
tensively studied (see [4, 6, 8, 9]). Specially, their extremal matrices and

Received February 28, 2001. Revised May 4, 2001.

2000 Mathematics Subject Classification: 15A51, 52B05, 05D99.

Key words and phrases: Birkhoff theorem, generalized doubly stochastic matrices,
convex polytope of matrices, reflection groups.

The first author was supported by grant No. 2000-0-102-002-3 from the Basic
Research Program of the Korea Science & Engineering Foundation.



680 Soojin Cho and Yunsun Nam

facets were classified and their 1-skeleton graphs have been considered.
We denote the set of extremal matrices of 2(R, S) by €(R, S). A special
case of the convex polytope (R, S) is the convex set Qy, of n x n doubly
stochastic matrices when R = S = (1,1,...,1). Birkhoff theorem tells
that the set of extremal matrices of {,, is exactly the set of permutation
matrices. A nonnegative n x n matrix whose row and column sums are
all dominated by 1 is called a doubly substochastic matriz. The convex
polytope 2, of doubly substochastic matrices has been considered and
the extremal matrices were classified in [12]. More generally, convex
polytopes A< (R, S) are defined as the set of nonnegative matrices with
row sum vector dominated componentwise by R and column sum vector
by S respectively. The extremal matrices of A< (R, S) were classified in
[3].

Convex polytopes €2, also appear in some different context. A. Barvi-
nok and A. Vershik considered the polytopes of (image matrices of) rep-
resentations of finite groups [5]. S. Onn [13] considered the permutation
polytopes that is the convex polytopes of standard representation of sub-
groups of the symmetric group S,. It is clear that £2,, is the permutation
polytope of standard representation of S,,.

Our natural question was on the ‘signed’ version of Birkhoff theo-
rem. In other words, we wanted to know about the signed permutation
polytope that is the polytope of the standard representation of hyperoc-
tahedral group. Hyperoctahedral groups are reflection groups (Coxeter
groups) of type B, whereas the symmetric groups are of type A, (see
[7]). The group elements of hyperoctahedral group are the signed per-
mutations, hence the order of hyperoctahedral group is n! 2”. Therefore,
we may say that our question was on the Birkhoff Theorem of type B,
(or, of some other type than A,).

In this article, we consider the convex polytope of signed permuta-
tions and its generalization, as {2, is understood as a special case of
2A(R, S) for any positive vectors R, S rather than R =S = (1,1,...,1).
The dimension of those polytopes are calculated and extremal matrices
are determined, whence Birkhoff theorem of type B, is obtained.

In the following section, we summarize known results on convex poly-
topes A(R, S) and A<(R,S). In Section 3, we investigate the convex
polytope |2|(R, S), which is the polytope generated by those signed per-
mutation matrices. We calculate the dimension and obtain the Birkhoff
theorem of type B,. In Section 4, we consider two polytopes generated
by subsets of whole set of signed permutation matrices. One of them
forms a domain for a decision problem and the other is a subpolytope
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of Q,, generated by the signed permutations with even number of sign
changes, which is a polytope of standard representation of reflection
group of type D,. Because of the Birkhoff theorem of type B, we can
immediately know the extremal matrices of these polytopes.

For a finite set of vectors S in R, Conv(S) is defined as the set of
all convex combinations of elements in S;

k

Conv(S) = {amn A1+ -+ aiAg | Ay,..., Ak € S,Zai =1,0<q; <1}.
i=1

In this case, we say that the convex polytope is generated by S. The

reader may refer to [14] for the basic definitions and theorems about
convex polytopes.

2. Preliminaries

In this section, we give formal definitions of A(R,S) and A< (R, S)
with known results on those polytopes.

For given positive vectors R = (r1,...,Tm) and S = (s1,...,8,) with
YT = >_; 85, A(R, S) is the set of mxn nonnegative matrices A = (ai;)
satisfying

Zaij =r; foralli,
J

Zaij =s; forallyj.
i
A< (R, S) is the set of m x n nonnegative matrices A = (a;;) satisfying

Z ag; S T for all 4 y
J

Ea«ij <s; forallyj.

Then it is easy to check that A(R, S) and A<(R, S) are convex poly-
topes in R™. We denote the set of extremal matrices of A(R,S) and
A< (R, S) by (R, S), €<(R,S), respectively.

Given an m x n matrix A = (a;;), let B(A) denote the weighted bipar-
tite graph with vertex set {Ry, Ra,...,Rn} U {C1,C2,...,Cp}, where
there is an edge with weight a;; between R; and Cj if and only if a;; # 0.
We also let P(A) be the (0, 1)-matrix with 1’s in the positions occupied
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by the non-zero entries of A and 0’s elsewhere. A line of a matrix des-
ignates either a row or a column of the matrix.

In [4, 8, 9], the extremal matrices of A(R,S), i.e. the elements of
&(R, S), were characterized.

ProposITION 1. When A is a nonnegative m x n matrix in A(R, S),
the following conditions are equivalent:
(i) A€ &(R,S).
(ii) Every submatrix of A contains a line with at most one positive
entry.
(iii) Every submatrix A’ of A of size m' x n/ has at most m’ + n’ — 1
positive entries.
(iv) There is no matrix B in A(R, S) such that B # A and P(B) =
P(A).
(v) B(A) is a forest with no isolated vertex.

Birkhoff theorem that the extremal matrices of €, are the permu-
tation matrices is a consequence of the Proposition 1 since the forest
corresponding to an extremal matrix can only have single edges.

We say that a line sum of a matrix A € A<(R, S) is unattained if the
sum of the entries of the given line is strictly less than given r;(or s;).

The following characterizations of elements of €<(R,.S) are given in

3]-

PROPOSITION 2. Let A be a matrix in A<(R,S). Then A is in
€<(R,S) if and only if the connected components of B(A) are trees
where at most one node of each tree corresponds to a line of A whose
sum is unattained.

PROPOSITION 3. The elements of €<(R,S) are precisely those ma-
trices obtained as follows: Take A € A(R,S) and in each of the trees
of B(A) which are connected components, delete a set (possibly empty )
of edges of a subtree. Replace by zero the positive entries of A which
correspond to the edges of B(A) that were deleted.

COROLLARY 4. If a matrix A = (a;;) is in €<(R, S), then there exists
a matrix B = (b;;) in €(R, S) such that a;; is either b;; or 0.



Convex polytopes 683
3. Convex polytope |A|(R, S)

We define QF to be the convex polytope

Conv({A| A is an n X n signed permutation matrix }) C R™.

In this section, we try to answer the questions that ask ‘if signed per-
mutations are extremal matrices of 22 °, and ‘how the matrices in the
convex polytope Q are characterized’.

We define a class of convex polytopes which contains Q2 as a special
case; for given positive vectors R = (r1,...,ry,) and S = (s1,...,8p)
with >, m = 3 .8, let |A|(R,S) be the set of matrices A = (ay;)
satisfying

Z laij| <r; foralle,
J

Zlaijl <s; forallj.

Note that |2|(R, S) does not consist of only nonnegative matrices. We
also can observe that the defining inequalities of |A|(R, S) are obtained
from those of A< (R, S) by substituting |a;;| for each a;;. Hence |A|(R, S)
is the union of 2™" copies of A< (R, S), and in this sense it is not clear
that |2|(R, S) is convex. However, it is easy to check that |%|(R,S) is a
convex polytope in R™" by direct calculation.

We let [€[(R, S) be the set of extremal matrices of [%|(R,S). Given
a matrix A = (a;;), |A| denotes the matrix (]a;;|), called the absolute
matriz of A.

REMARK 1.
1. A(R,S) CU<(R,S) C |A(R,S).
2. When A is an m x n real matrix,

A€ |A|(R,S) if and only if |A| € A<(R, S).

A set of vectors {vy,...,vg} in R" is affinely independent if the equa-
tion Ajvy + -+ + Agvi = 0,A; + .-+ + Ax = 0 has only trivial solution
A1 =+ = A = 0. The dimension of a convex polytope P is defined as

the number one less than the maximum number of affinely independent
vectors in P.

When R is an m-dimensional vector and S is an n-dimensional vector,
it is well known that the dimension of A(R,S) is (m — 1)(n — 1). The
following proposition gives the dimensions of A< (R, S) and |%|(R, S).
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PROPOSITION 5. The dimension of the polytope A<(R,S) is mn.
Hence the dimension of |2|(R, S) is also mn.

Proof. Since A<(R,S) and |A|(R, S) are in R™", the dimensions of
A<(R,S) and |A|(R,S) are at most mn. For each 1 < ¢ < m and
1 <j<mn,let A(4,j) = (an) be the matrix defined by a;; = min(ry, s;)
and ag; = 0 for (k,l) # (i,7). Then the zero matrix and A(7,5), 1 <i <
m,1 < j < n, form a set of affinely independent matrices in A<(R, S)
and in |A|(R, S) also.

O

We classify the extremal matrices of ||(R, S) (elements of |€|(R, S))
in the following theorem. Since |2|(R, S) is a union of copies of A< (R, S),
we may expect that the extremal matrices of |2|(R, S) are obtained by
changing signs of some entries of matrices in €<(R,S). However, it is
not so clear which subset of the set of those sign changed matrices in
€<(R, S) will form the extremal matrices of |2|(R, S).

THEOREM 6. A matrix A is in |€|(R, S) if and only if |A| is in €(R, S).

Proof. Suppose that A is in [€|(R, S). Then |A| € A<(R, S), and so
|A] can be written as a convex combination of some matrices A, Ao,

, Ag in €<(R,S). That is, |A| = Y, apAr with 3", 0r = 1 and
ap > 0. Fork =1,...,¢ let Ay = (afj) Since Ay € €<(R,S), by
Corollary 4, there exists a matrix By = (bfj) in (R, S) such that afj is
either bk or 0 for all (¢,7). Define matrices Cy = (cf]) and Dy = (dfj)
as follows c = df = sign(aij)bfj if a;; # 0, and cfj = bfj and dfj =
_bfg otherw1se Then |Ckx| = |Dg| = B and so |Ckl,|Di| € €(R,S).
Moreover, A = 3 ax(3C) + 1Di). Since A is an extremal matrix of
|2|(R,S) and Ck, Dy € |U|(R,S), Aisone of Cy, ..., Cq, D1, ..., Dy
This completes the proof of necessity.

Suppose that |A| is in €(R,S). Assume that A = aA’ + (1 — a)A”
with 0 < a < 1and A" = (a};), A" = (af;) € [A|(R, S). Then |A'|,|A"| €
A< (R, S) and |A| < a|A|+(1—-a)|A”|. We can claim that [A] = a|A'|+
(1 — )|A”|. For otherwise, there exists (k, l) such that lakll < alay| +
(1 - a)lafy|- Then 3=; Jak;| < @ 3; lag;| + (1 — @) 32 |ay;| < rk, which
contradlcts the fact that |A| € Ql(R S). By a s1m11ar argument we can
obtain that _ |aj;| = 3, |aj;| = r; for all i and so |4],|4"| € A(R, S).
We can conclude that |A| = a|4’|+ (1 — «)|A”] and |A'|, |A"| € A(R, S).
Since |A| is in QE(R S), |A| = |A'| = |A"|. Thus a;; = aj; or —aj; for all i

ij
and j. If a;; = —aj; # 0 for some (i, j), then (1+a)a;; = (1—a)aj; since
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A =0aA +(1-a)A”. However |A| = [A"], and so a;; cannot be —a;;.
Thus A = A’, and consequently A = A”. This completes the proof. [

The following is an immediate corollary of Theorem 6 and Birkhoff
theorem, which gives the answer to the questions given at the beginning
of this section.

COROLLARY 7. The set of signed permutation matrices forms the
set of extremal matrices of QF, and QF is |A|(R,S) with R = S =
(1,1,...,1).

4. Convex combination

The proof of Theorem 6 uses a result on the extremal matrices of
A<(R,S), hence it does not show us how we can write a matrix in
|A[(R, S) as a convex combination of extremal matrices. In this section,
we give a partial algorithm to write a matrix in |2|(R, S) as a convex
combination of its extremal matrices. We can have a complete algorithm
if we know a way to write a matrix in (R, S) as a convex combination
of its extremal matrices. We first prove two lemmas.

LEMMA 8. Let R = (r1,...,7m) and S = (s1,...,8,) be positive vec-
tors and ¢ be a positive number. Let R’ = (r1,...,7i—1,7i—C, Tit1s--+>Tm)
and S' = (s1,...,8j-1,5j — €, Sj41, ..., Sn). If A= (ay;) Is a matrix such

that |A| € A(R',S’), then A can be written as
A=aoA +(1-a)4”, 0<a<1
with |A'|,|4”| € A(R, S).

Proof. We define A’ = (a},) and A” = (a};) as follows:
o[ o i (k1) # (i)
K ai; + sign(ai;) ¢ if (k1) = (3,5)
and
a! = Akl if (k,1) # (4,5)
kl —Qi; — Sign(aij)c if (k’l) = (23.7)
Then [A|,|A"| € A(R, S). Now compare the (i, ) entry of 4 and aA’ +
(1 — a)A”, then we have

a;; = afa;; + sign(a;;) ¢) — (1 — a)(ay; + sign(ai;) ).



686 Soojin Cho and Yunsun Nam

This means that if we define
i+ (aij + sign(aij) c)
"~ 2(ay; + sign(ay;) )
then A = oA’ + (1 — a)A”. Moreover, it is easy to check that 0 < a <
1. O

bl

LEMMA 9. Let A = (a;;) be a matrix with |A] € A(R, S). Then A is a
convex combination of matrices whose absolute matrices are in €(R, S).

Proof. Since |A| € (R, S), |A| = 3, ax A where o > 0,3, ap = 1
and Ag € €(R, S). For each k, let A, = (afj) and let By, = (bfj) be the
matrix defined by

b}-c- - —afj if a;; < 0
Y afj otherwise .
Then A = Zk ai By and |Bk' = A € @(R, S). O

THEOREM 10. Every matrix A in |A|(R, S) is a convex combination
of matrices Ay, where |Ag| € €(R, S).

Proof. We use induction on the number of lines of the absolute matrix
of a given matrix, which do not have full sum. If every line of |A]
has full sum, then |A| € A(R,S) so Lemma 9 finishes the proof. We
assume that there is at least one line of |A|, which do not have full
sum. Let ¢ (respectively, j) be the least integer such that > laij| <7
(respectively, 3, |ai;j| < s;). Let rl = >jlaijl, 8% = 37 lai;| and ¢ =

min(r; — rj,8; — s}). Then use Lemma 8 to write A as a convex sum

of A’, A” where |A’|,|]A”| have the i** row sum and the j** column sum
increased by c from those of A. It is clear that the number of lines of
|A’| and |A"| which do not have full sum is strictly less than that of |A].
Hence by the induction hypothesis, we can write A’ and A” as convex
combinations of matrices whose absolute matrices are in €(R, S). Thus
A is a convex combination of matrices whose absolute matrices are in
¢(R,S). O

REMARK 2. Lemma 8, Lemma 9 and the proof of Theorem 10 give a
way to write a matrix in |2|(R, S) as a convex combination of matrices
in |€|(R,S). Note that the proof of Theorem 10 is done inductively
and the proof of Lemma 8 gives an explicit way to write a matrix as
a convex combination of other matrices. For the proof of Lemma 9,
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however, we need to borrow a way to write a matrix in A(R,S) as a
convex combination of matrices in €(R,S). As we know, for the case
R =S5 =(1,1,...,1) there are a few ways to write a matrix in A(R, S) as
a convex combination of matrices in (R, S) (see [11]). But for general R
and S, there is no algorithm known. But at least for the case R =5 =
(1,1,...,1), Lemmas 8-9 and Theorem 10 give an algorithm to write
a matrix in |A|(R,S) as a convex combination of signed permutation
matrices.

5. Examples

The following two examples deal with subpolytopes of QFf. Even
though the polytopes considered in this section are not exactly |2|(R, S)
that we considered in this article, they are subpolytopes of ||(R,S)
generated by some subsets of |€|(R, S). We, therefore, can immediately
know the set of extremal matrices of those polytopes because of Corol-
lary 7. The generating signed permutation matrices form the set of
extremal matrices of given polytopes. Example 5 deals with a polytope
generated by a subgroup of a hyperoctahedral group and it serves as a
domain for a decision problem of isomorphism of two directed graphs. In
Example 5, we consider the polytope of reflection group of another type
D,. Note that for a given optimization problem, (knowing) the set of
extremal points of the base polytope of the problem plays an important
role.

EXAMPLE 1. Any directed graph g on n vertices, labeled as [n] =
{1,...,n}, can be written as a {0, +1}-valued vector v = (vy,... ,U(n))
2

in R(3) in the following way;

1. Give a linear order to the set of 2-subsets of vertices.
2. If the k** 2-subset {3, J}, ¢ < j, of the vertices is

(a) not an edge of g, then v = 0,

(b) a directed edge of g from 7 to j, then vy = 1,

(c) a directed edge of g from j to i, then vy, = —1.

We let G be the set of directed graphs on n vertices. The group of
permutations on n letters, Sy, acts on G by permuting the vertices. The
Sp-action on G can be realized as the following matrix representation.

We fix a basis of R(3) as the set of 2-subsets of {1,2,...,n} and then,

define a map p from S, to the group of (3) x (%) nonsingular matrices
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as follows: For o € Sy, and the k%" 2-subset {3, j}, i < j, of [n],
p(0)({i,7}) = (—1)™@ 6D [5(3), 0(5)}, where

DGR E R

Then it is easy to check that p is a group homomorphism (actually it
is a faithful representation of S,), and the image of p is a subgroup
of hyperoctahedral group. Hence, if we let P be the convex polytope
generated by {p(c)|o € S, }, in R(Z)X(g), then P is a subpolytope of the
polytope Q(in) Now, by Theorem 6 or Corollary 7, the set of extremal

2
matrices of P is exactly the set of images of p.
The following argument shows how P can be used in a decision prob-
lem:
Let g,h € R() be two directed graphs in G, having q edges. Letting
¢ = h ® g, the decision problem

max{(c,z) : z € P} > ¢

on P, where {c,z) is the usual inner product in the Euclidean space, is
exactly the decision problem whether g and h are isomorphic as directed
graphs.

EXAMPLE 2. A reflection group of type D,, consisting of signed
permutations with even number of sign changes, forms a subgroup of
index 2 of a group of signed permutations(reflection group of type By).
We investigate the convex polytope generated by those type D,, signed
permutations, which will form a subpolytope of Q. This polytope may
be thought in the context of [5]. One might expect |A|(R,S) of type
D,, for general R and S. It, however, is not so clear what should be a
definition of |2|(R, S) of type D, for general R, S, and we only consider
the case R =5 =(1,1,...,1).

The polytope we consider is defined as follows ;

P, = Conv({A| A is an n X n signed permutation matrix

with even number of sign changes}) C R™.

By Corollary 7, we know that the set of extremal matrices of P, is
exactly the generating set(set of signed permutations with even number
of sign changes). Hence we have Birkhoff theorem of type D,, that the
set of signed permutation matrices with even number of sign changes
forms the set of extremal matrices of P,,.
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It is not so difficult to show that n? many standard basis matrices(the
ones only one 1 and 0 elsewhere) and the zero matrix are all contained

in P,
n>2

6.

1.

1]
(2]

(3]

4]
(5]

[6]
(7]
(8]
9

[10]

(11]
(12}
(18]

when n > 2, hence to show that the dimension of P, is n? when
. The dimension of P is 2.

Remarks

V. Klee and C. Witzgall [9] characterized and counted the facets as
well as vertices of (R, S). We think that it might be an interesting
problem to characterize the facets of |%|(R, S).

. On the polytope considered in Example 5, we do not have an

answer to the question on the characterization of P, that explains
what kind of matrices are in P,.
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