INJECTIVE COVERS UNDER CHANGE OF RINGS

YEONG MOO SONG AND HAE SIK KIM

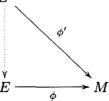
ABSTRACT. In [8], Würful gave a characterization of those rings R which satisfy that for every ring extension $R \subset S$, $Hom_R(S, -)$ preserves injective envelopes. In this note, we consider an analogous problem concerning injective covers.

1. Introduction

Let R be a ring with identity 1 and let every module be unitary. We will use the terminology of Enochs [2].

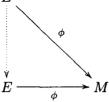
An injective cover of an R-module M is a linear map $\phi: E \to M$ with an injective R-module E such that

(1) for any injective R-module E' and any linear map $\phi': E' \to M$, the diagram E'



can be completed to a commutative diagram.

(2) the diagram E



can only be completed by automorphism of E.

Received June 7, 2000.

2000 Mathematics Subject Classification: 16D50, 16E30.

Key words and phrases: injective cover.

Hence if an injective cover exists, it is unique up to isomorphism. If $\phi: E \to M$ satisfies (1), and perhaps not (2), it is called an *injective* precover. We will sometimes simply say E is an injective cover (or precover).

The existence of an injective cover is not guaranteed for all cases but every R-module has an injective cover if and only if the ring R is Noetherian (see [2, Theorem 2.1]). However, examples of injective covers are hard to come by. The first nontrivial example was constructed by Cheatham, Enochs, and Jenda [1] when $R = \kappa[x_1, x_2, \cdots, x_n], n \geq 2$, where κ is a field. In this case, let $\mathcal{P} = (x_1, x_2, \cdots, x_n), R/\mathcal{P} = \kappa$ (with $x_i \kappa = 0$ for $i = 1, 2, \cdots, n$) and let $E(\kappa)$ denote the injective envelope of κ . Then the natural map $E(\kappa) \to E(\kappa)/\kappa$ is an injective cover. This used Northcott's description [5] of $E(\kappa)$ as the inverse polynomial ring $\kappa[x_1^{-1}, x_2^{-1}, \cdots, x_n^{-1}]$. Another example is when R is an n-dimensional regular local ring with residue field κ . If $n \geq 2$, then again the natural map $E(\kappa) \to E(\kappa)/\kappa$ is an injective cover (see [3, Corollary 4.2]).

LEMMA 1.1. (Wakamatsu, [7]; [9, Lemma 2.1.1]) Let $\phi : E \to M$ be an injective cover of an R-module M. Then $ker\phi$ has the property that $Ext^1_R(\bar{E}, ker\phi) = 0$ for any injective R-module \bar{E} .

DEFINITION 1.2. A special injective precover is defined to be a precover $\phi: E \to M$ such that $ker\phi$ has the property that $Ext_R^1(\bar{E}, ker\phi) = 0$ for any injective R-module \bar{E} .

PROPOSITION 1.3. (Kim, Park, Song [4, Proposition 1.3]) If an R-module M has an injective cover and $\phi: E \to M$ is an injective precover of M, then the followings are equivalent;

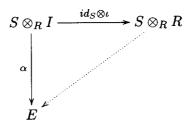
- (a) ϕ is an injective cover of M
- (b) There is no nonzero direct summand of E contained in $ker\phi$
- (c) Any linear map $f: E \to E$ with $\phi \circ f = \phi$ is a surjection.

2. Ring extensions and injective precovers

In [8], Würful gave a characterization of those rings R such that for every ring extension $R \subset S$, $Hom_R(S, -)$ converts injective envelopes of R-modules into injective envelopes of S-modules. In this section, we will consider an analogous problem concerning injective covers.

LEMMA 2.1. Let $f: R \to S$ be a ring homomorphism and S_R flat. If SE is injective, then RE is also injective.

PROOF. Let $g: I \to_R E$ be an R-linear map for an ideal I of R. Define $\alpha: S \otimes_R I \to E$ by $\alpha(s \otimes x) = sg(x)$. Then α is S-linear. Also $0 \to S \otimes_R I \to S \otimes_R R$ is exact since S_R is flat. So the diagram



can be completed to a commutative diagram, where $\iota:I\to R$ is the inclusion map. But the composition map $I\to S\otimes_R I\to E$ with $\beta:I\to S\otimes_R I$ defined by $\beta(a)=1\otimes a$ is equal to the original g. So $R\to S\otimes_R R\to E$ gives an R-linear extension.

REMARK 2.2. Let $f: R \to S$ be a ring homomorphism and let E be an injective R-module. Then for any S-module M, Ext^1_S $(M, Hom_R(S, E)) \cong Ext^1_R$ $(S \otimes M, E) = 0$, and thus $Hom_R(S, E)$ is an injective S-module.

THEOREM 2.3. Let $f: R \to S$ be a ring homomorphism, S_R flat and $\phi: E \to M$ be an injective precover of an R-module M. Then $Hom_R(S, E) \to Hom_R(S, M)$ is a special injective precover.

PROOF. To show that $Hom_R(S, E) \to Hom_R(S, M)$ is an injective precover, it suffices to show that

$$Hom_S(\bar{E}, Hom_R(S, E)) \rightarrow Hom_S(\bar{E}, Hom_R(S, M)) \rightarrow 0$$

is exact for any injective S-module \bar{E} , or equivalently to show that $Hom_R(S \otimes_S \bar{E}, E) \to Hom_R(S \otimes_S \bar{E}, M) \to 0$ is exact. Since $\phi : E \to M$ is an injective precover of M and $S \otimes_S \bar{E} \cong \bar{E}$ is R-injective by Lemma 2.1, therefore $Hom_R(S \otimes_S \bar{E}, E) \to Hom_R(S \otimes_S \bar{E}, M) \to 0$ is exact.

Next we need to show that $Hom_R(S, Ker\phi)$ has the property that for any injective S-module E', $Ext^1_S(E', Hom_R(S, Ker\phi)) = 0$.

Since
$$Ker(Hom_R(S, E) \to Hom_R(S, M)) \cong Hom_R(S, Ker\phi),$$

$$Ext^1_S(E', Hom_R(S, Ker\phi)) \cong Ext^1_R(S \otimes_S E', Ker\phi)$$

$$\cong Ext^1_R(E', Ker\phi) = 0.$$

COROLLARY 2.4. With the above situations, the followings are equivalent;

- (1) $\psi: Hom_R(S, E) \to Hom_R(S, M)$ is an injective cover
- (2) (a) $\phi: E \to M$ is an injective precover
 - (b) $Hom_R(S, Ker\phi)$ has no nonzero injective submodules in $Hom_R(S, E)$
- (3) ψ is an injective precover and $Hom_R(S, Ker\phi)$ has no nonzero injective submodules in $Hom_R(S, E)$.

EXAMPLE 2.5. Let S = R[x]. Given an injective cover $\phi : E \to M$, $Hom_R(R[x], E) \to Hom_R(R[x], M)$ is a special injective precover since R[x] is a flat R-module. Note that $Hom_R(R[x], E) \cong E[[x^{-1}]]$ and $Hom_R(R[x], M) \cong M[[x^{-1}]]$. Since $\phi : E \to M$ is an injective cover, $K = Ker\phi$ has no nonzero injective submodules. So $E[[x^{-1}]] \to M[[x^{-1}]]$ is an injective cover if $K[[x^{-1}]]$ has no nonzero injective submodule as R[x]-module. But any injective R[x]-module is injective as an R-module. So $E[[x^{-1}]] \to M[[x^{-1}]]$ is an injective cover if $K[[x^{-1}]] \cong K \times K \times K \times \cdots$ has no nonzero injective submodule as an R-module.

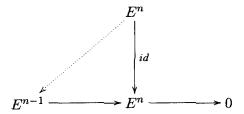
PROPOSITION 2.6. Let R be a semi-local ring and $\phi: E \to M$ an injective cover. Then

- (1) $Ext_R^n(\bar{E}, Ker\phi) = 0$ for all n > 1 and injective \bar{E} .
- (2) $Ext_R^n(\bar{E}, E) \cong Ext_R^n(\bar{E}, M)$ for all injective \bar{E} and $n \ge 1$.

PROOF. (1) For any injective R-module \bar{E} , let $0 \to K \to F \to \bar{E} \to 0$ be an exact sequence with F free. Since $Ext^n_R(F,Ker\phi)=0$ for all $n\geq 1$, $Ext^n_R(K,Ker\phi)\cong Ext^{n+1}_R(\bar{E},Ker\phi)$ for all $n\geq 1$. And since K is injective, $Ext^1_R(K,Ker\phi)=0$. So $Ext^2_R(\bar{E},Ker\phi)=0$. Proceeding in this manner, $Ext^n_R(\bar{E},Ker\phi)=0$ for all $n\geq 1$.

(2) It follows from $Hom_R(\bar{E}, E) \to Hom_R(\bar{E}, M) \to 0$ is exact for all injective \bar{E} and $Ext_R^n(\bar{E}, Ker\phi) = 0$ for all $n \ge 1$.

REMARK 2.7. Suppose that for any module M over a ring R, $Ext^1_R(E,M)=0$ for all injective R-module E implies that $Ext^i_R(E,M)=0$ for all injective R-module E and $i\geq 1$. If $inj.dim_R \ M=n<\infty$, then n=0, i.e. M is injective. For if $0\to M\to E^0\to E^1\to\cdots\to E^n\to 0$ is an injective resolution of M with $n\geq 1$, then $Ext^n_R(E^n,M)=0$. This means



can be completed to a commutative diagram. But then $E^{n-1} \cong E \oplus E^n$ for some injective E and we have an injective resolution $0 \to M \to E^0 \to \cdots \to E^{n-2} \to E \to 0$ of M of length n-1. If $n-1 \geq 1$, then we can repeat the procedure.

ACKNOWLEDGEMENT. The authors would like to express their utmost gratitude to Professor Edgar E. Enochs for his valuable comments and suggestions.

References

- [1] T. Cheatham, E. Enochs, and O. Jenda, The structure of injective covers of special modules, Israel J. Math. 63 (1988), 237-242.
- [2] E. Enochs, Injective and flat covers, envelopes and resolvents, Israel J. Math. 39 (1981), 189-209.
- [3] O. Jenda, The dual of the grade of a module, Arch. Math. 51 (1988), 297-308.
- [4] H. Kim, Y. S. Park, and Y. M. Song, S-torsion free covers of modules, to appear in Comm. Algebra.
- [5] D. Northcott, Injective envelopes and inverse polynomials, J. London Math. Soc. 68 (1974), 290-296.
- [6] J. Rotman, An introduction to Homological Algebra, Academic Press, 1979.
- [7] T. Wakamatsu, Stable equivalence of self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), 298-325.
- [8] T. Würful, Ring extensions and essential monomorphisms, Proc. Amer. Math. Soc. 69 (1978), 1-7.
- [9] J. Xu, Flat covers of modules, Lecture Notes in Math. 1634, Springer-Verlag, 1996.

Yeong Moo Song
Department of Mathematics Education
Sunchon National University
Sunchon 540-742, Korea
E-mail: ymsong@sunchon.ac.kr

Hae Sik Kim
Department of Mathematics
Kyungpook National University
Taegu 702-701, Korea
E-mail: hkim@dreamwiz.com