GEOMETRY OF FIELD EQUATIONS ON MEX_n

Kı-Jo Yoo

ABSTRACT. An n-dimensional ME-manifold MEX_n is a generalized Riemannian manifold connected by the ME-connection which is both Einstein and of the form (2.13). The purpose of this paper is to study the properties of the ME-curvature tensors, the contracted ME-curvature tensors and the field equations in MEX_n .

1. Introduction

In Appendix II to his last book "The meaning of relativity", Einstein [3] proposed a new unified field theory that would include both gravitation and electromagnetism. Although the intent of this theory is physical, its exposition is mainly geometrical. Characterizing Einstein's unified field theory as a set of geometrical postulates for the space-time X_4 , Hlavatý [4] gave the mathematical foundation for the first time. Since then the geometrical consequences of these postulates have been developed very far by a number of Mathematicians and physicists; among them Hlavatý's contributions are the most distinguished. Wrede [7] studies the Principles A and B of this theory on an n-dimensional generalized Riemannian manifold X_n . Recently, Yoo [9] introduced the concepts of n-dimensional ME-manifold, denoted by MEX_n , connected to X_n an ME-connection of the form (2.13), which is similar to Yano [8] and Imai's [5] semi-symmetric metric connection.

The purpose of the present paper is to study the properties of the ME-curvature tensors, the contracted ME-curvature tensors, and the field equations in the ME-manifold MEX_n .

Received December 13, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 53C07, 53C25, 83C05.

Key words and phrases: ME-connection, ME-manifold, ME-curvature tensor, contracted ME-curvature tensor, field equation.

2. Preliminaries

This section is a brief collection of definitions, notations, and basic results which are needed in the present paper. The detailed proofs are given in Hlavatý [4], Mishra [6], and Yoo [9].

Let X_n be a generalized *n*-dimensional Riemannian manifold referred to a real coordinate system x^{ν} , which obeys coordinate transformations $x^{\nu} \longrightarrow \bar{x}^{\nu}$ for which

(2.1)
$$Det\left(\frac{\partial \bar{x}}{\partial x}\right) \neq 0,$$

where, here and in the sequel, Greek indices are used for the holonomics components of tensor in X_n . They take the values $1, 2, \dots, n$ and follow the summation convention.

The manifold X_n is assumed to be connected by a general real connection $\Gamma^{\nu}_{\lambda\mu}$ with the following transformation rule:

$$(2.2) \qquad \qquad \bar{\Gamma}^{\nu}_{\lambda\mu} = \frac{\partial \bar{x}^{\nu}}{\partial x^{\alpha}} \left(\frac{\partial x^{\beta}}{\partial \bar{x}^{\lambda}} \frac{\partial x^{\gamma}}{\partial \bar{x}^{\mu}} \Gamma^{\alpha}_{\beta\gamma} + \frac{\partial^{2} x^{\alpha}}{\partial \bar{x}^{\lambda} \partial \bar{x}^{\mu}} \right).$$

2.1. Einstein's n-dimensional unified field theory

Einstein's n-dimensional unified field theory is based on the following three principles as indicated by Hlavatý [4]:

PRINCIPLE A. The algebraic structure is imposed on X_n by a general real tensor $g_{\lambda\mu}$, which may be split into its symmetric part $h_{\lambda\mu}$ and skew-symmetric part $k_{\lambda\mu}$:

$$(2.3) g_{\lambda\mu} = h_{\lambda\mu} + k_{\lambda\mu},$$

where

(2.4)
$$g = Det(g_{\lambda\mu}) \neq 0, \quad h = Det(h_{\lambda\mu}) \neq 0.$$

Hence we may define a unique tensor $h^{\lambda\nu}$ by

$$(2.5) h_{\lambda\mu}h^{\lambda\nu} = \delta^{\nu}_{\mu}.$$

The tensor $h_{\lambda\mu}$ and $h^{\lambda\nu}$ will serve for raising and/or lowering indices of tensor in X_n in the usual manner.

PRINCIPLE B. The differential geometric structure is imposed on X_n by the tensor $g_{\lambda\mu}$ by means of the *Einstein's connection* $\Gamma^{\nu}_{\lambda\mu}$ defined by a system of Einstein's equations

(2.6a)
$$\partial_{\omega}g_{\lambda\mu} - \Gamma^{\alpha}_{\lambda\omega}g_{\alpha\mu} - \Gamma^{\alpha}_{\omega\mu}g_{\lambda\alpha} = 0,$$

or equivalently,

$$(2.6b) D_{\omega}g_{\lambda\mu} = 2S_{\omega\mu}{}^{\alpha}g_{\lambda\alpha},$$

where D_{ω} denotes the symbol of the covariant derivative with respect to $\Gamma^{\nu}_{\lambda\mu}$, and

$$(2.7) S_{\omega\mu}{}^{\nu} = \Gamma^{\nu}_{[\omega\mu]} = \frac{1}{2} \left(\Gamma^{\nu}_{\omega\mu} - \Gamma^{\nu}_{\mu\omega} \right)$$

is a torsion tensor of $\Gamma^{\nu}_{\lambda\mu}$.

PRINCIPLE C. In order to obtain $g_{\lambda\mu}$ involved in the solution for $\Gamma^{\nu}_{\lambda\mu}$, certain conditions are imposed, which may be condensed to (2.8)

$$S_{\lambda} = S_{\lambda\alpha}{}^{\alpha} = 0, \quad R_{[\mu\lambda]} = \partial_{[\mu}X_{\lambda]}, \quad R_{(\mu\lambda)} = \frac{1}{2}(R_{\mu\lambda} + R_{\lambda\mu}) = 0,$$

where X_{λ} is an arbitrary vector, S_{λ} is the torsion vector, and

$$(2.9) R_{\omega\mu\lambda}{}^{\nu} = 2\left(\partial_{[\mu}\Gamma^{\nu}_{[\lambda|\omega]} + \Gamma^{\nu}_{\alpha[\mu}\Gamma^{\alpha}_{[\lambda|\omega]}\right), R_{\mu\lambda} = R_{\alpha\mu\lambda}{}^{\alpha},$$

where $R_{\omega\mu\lambda}^{\nu}$ is the curvature tensor and $R_{\mu\lambda}$ is the contracted curvature tensor.

The following quantities will be used in our further considerations:

(2.10a)
$${}^{(0)}k_{\lambda}{}^{\nu} = \delta_{\lambda}^{\nu}, {}^{(p)}k_{\lambda}{}^{\nu} = {}^{(p-1)}k_{\lambda}{}^{\alpha}k_{\alpha}{}^{\nu} \quad (p=1,2,\cdots),$$

(2.10b)
$$^{(p)}X_{\lambda} = ^{(p)}k_{\lambda}{}^{\alpha}X_{\alpha} \quad (p = 0, 1, 2, \cdots),$$

(2.10c)
$$(p)X^{\nu} = (-1)^{p(p)}k_{\alpha}{}^{\nu}X^{\alpha} \quad (p = 0, 1, 2, \cdots),$$

$$(2.10d) X = X_{\alpha} X^{\alpha}.$$

It has been shown Hlavatý [4] that if the equations (2.6) admit a solution $\Gamma^{\nu}_{\lambda\mu}$, it must be of the form

(2.11)
$$\Gamma^{\nu}_{\lambda\mu} = \left\{ \begin{array}{c} \nu \\ \lambda\mu \end{array} \right\} + S_{\lambda\mu}{}^{\nu} + U^{\nu}{}_{\lambda\mu},$$

where

$$(2.12) U^{\nu}{}_{\lambda\mu} = 2h^{\nu\alpha}S_{\alpha(\lambda}{}^{\beta}k_{\mu)\beta}$$

and $\left\{\begin{array}{c} \nu \\ \lambda \mu \end{array}\right\}$ are the Christoffel symbol defined by $h_{\lambda \mu}$.

2.2 *n*-dimensional ME-manifold MEX_n

The Einstein's connection $\Gamma^{\nu}_{\lambda\mu}$ which takes the form

(2.13)
$$\Gamma^{\nu}_{\lambda\mu} = \left\{ \begin{array}{c} \nu \\ \lambda\mu \end{array} \right\} + 2\delta_{\lambda}{}^{\nu}X_{\mu} - 2g_{\lambda\mu}X^{\nu},$$

for a non-null vector X^{ν} , is called an ME-connection and a generalized Riemannian manifold X_n connected by this connection is called an n-dimensional ME manifold, denoted by MEX_n .

In our further considerations, we use the word "present condition" to describe the situations that Einstein's connection, given by (2.11), take the form (2.13). It has been also shown Yoo [9] that for a non-null vector X^{ν} , the present condition holds if and only if

(a) the torsion tensor $S_{\lambda\mu}^{\ \nu}$ is given by

$$(2.14) S_{\lambda\mu}{}^{\nu} = 2\delta^{\nu}_{[\lambda}X_{\mu]} - 2k_{\lambda\mu}X^{\nu},$$

(b) the tensor field $g_{\lambda\mu}$ satisfies

(2.15a)
$$\delta^{\nu}_{(\lambda} X_{\mu)} - h_{\lambda \mu} X^{\nu} = k_{(\lambda}{}^{\nu} X_{\mu)} + 2k_{(\lambda}{}^{\nu} k_{\mu)}{}^{\alpha} X_{\alpha},$$

or equivalently

(2.15b)
$$g_{\nu(\lambda} X_{\mu)} + 2k_{\nu(\lambda} k_{\mu)}^{\alpha} X_{\alpha} - h_{\lambda\mu} X_{\nu} = 0.$$

As a direct consequence of (2.12) and (2.14), we have

(2.16)
$$U^{\nu}{}_{\lambda\mu} = 2k_{(\lambda}{}^{\nu}X_{\mu)} + 4k_{(\lambda}{}^{\nu}k_{\nu)}{}^{\alpha}X_{\alpha} = 2\delta^{\nu}_{(\lambda}X_{\mu)} - 2h_{\lambda\mu}X^{\nu}.$$

3. The ME-curvature tensors and the contracted ME-curvature tensors in MEX_n

This section is devoted to the study of the n-dimensional ME-curvature tensor $R_{\omega\mu\lambda}{}^{\nu}$ defined by the ME-connection $\Gamma^{\nu}_{\lambda\mu}$, the first and second contracted ME-curvature tensors defined by (3.9), and some identities involving the tensor $R_{\omega\mu\lambda}{}^{\nu}$ and $R_{\mu\lambda}$.

LEMMA 3.1. The ME-curvature tensor $R_{\omega\mu\lambda}^{\nu}$ in MEX_n defined by the connection (2.11) is given by

$$(3.1) R_{\omega\mu\lambda}{}^{\nu} = H_{\omega\mu\lambda}{}^{\nu} + 2\nabla_{[\mu} \left(S_{|\lambda|\omega]}{}^{\nu} + U^{\nu}{}_{|\lambda|\omega]} \right)$$

$$+ 2\left(S_{\alpha[\mu}{}^{\nu}S_{|\lambda|\omega]}{}^{\alpha} + S_{\alpha[\mu}{}^{\nu}U^{\alpha}{}_{|\lambda|\omega]} \right)$$

$$+ U^{\nu}{}_{\alpha[\mu}S_{|\lambda|\omega]}{}^{\alpha} + U^{\nu}{}_{\alpha[\mu}U^{\alpha}{}_{|\lambda|\omega]} \right),$$

where

(3.2)
$$H_{\omega\mu\lambda}{}^{\nu} = 2\left(\partial_{[\mu}\left\{\begin{matrix} \nu\\ \omega]\lambda \end{matrix}\right\} + \left\{\begin{matrix} \nu\\ \alpha[\mu] \end{matrix}\right\} \left\{\begin{matrix} \alpha\\ \omega]\lambda \end{matrix}\right\}\right)$$

is the curvature tensor defined by $\left\{ \begin{array}{c} \nu \\ \lambda \mu \end{array} \right\}$ and ∇_{ω} is the symbol of the covariant derivative with respect to the Christoffel symbol $\left\{ \begin{array}{c} \nu \\ \lambda \mu \end{array} \right\}$ defined by $h_{\lambda\mu}$.

PROOF. Substituting (2.11) into (2.9), we obtain the relation (3.1) by a straightforward computation.

THEOREM 3.2. The ME-curvature tensor $R_{\omega\mu\lambda}^{\nu}$ in MEX_n may be given by

$$(3.3) R_{\omega\mu\lambda}{}^{\nu} = H_{\omega\mu\lambda}{}^{\nu} + \overset{\circ}{R}_{\omega\mu\lambda}{}^{\nu} + \overset{\dagger}{R}_{\omega\mu\lambda}{}^{\nu},$$

where

(3.4a)
$$\mathring{R}_{\omega\mu\lambda}^{\nu} = 4\delta_{\lambda}^{\nu}\nabla_{[\mu}X_{\omega]} + 4\left(h_{\lambda[\mu}\nabla_{\omega]} + k_{\lambda[\mu}\nabla_{\omega]}\right)X^{\nu} - 4X^{\nu}\nabla_{[\omega}k_{\mu]\lambda},$$

$$(3.4b) \ \ \overset{\dagger}{R}_{\omega\mu\lambda}{}^{\nu} = 8 \left(h_{\lambda[\omega} X_{\mu]} - h_{\lambda[\omega}{}^{(1)} X_{\mu]} + k_{\lambda[\omega} X_{\mu]} - k_{\lambda[\omega}{}^{(1)} X_{\mu]} \right) X^{\nu}.$$

PROOF. The relation (3.3) may be obtained by substituting (2.14) and (2.16) into (3.1) and making use of (2.3), (2.10), (3.2), (3.4a), and (3.4b) by a long computation.

LEMMA 3.3. The ME-curvature tensor $R_{\omega\mu\lambda}^{\nu}$ in MEX_n satisfies the following identities:

$$(3.5) R_{\omega\mu\lambda}{}^{\nu} = R_{[\omega\mu]\lambda}{}^{\nu},$$

$$(3.6) \qquad \begin{array}{l} R_{[\omega\mu\lambda]}{}^{\nu} = 4 \left(\delta^{\nu}_{\lambda} \nabla_{[\mu} X_{\omega]} - X^{\nu} \nabla_{[\omega} k_{\mu\lambda]} \right) \\ + 4 \left(k_{[\lambda\mu} \nabla_{\omega]} + 2 k_{[\lambda\omega} X_{\mu]} - 2 k_{\lambda\omega}{}^{(1)} X_{\mu]} \right) X^{\nu}. \end{array}$$

PROOF. Equation (3.5) follows immediately from (2.9). The relation (3.6) may be obtained by using (3.3) and (3.4) as in the following way: (3.7)

$$\begin{split} R_{[\omega\mu\lambda]}{}^{\nu} &= H_{[\omega\mu\lambda]}{}^{\nu} + \overset{\circ}{R}_{[\omega\mu\lambda]}{}^{\nu} + \overset{\dagger}{R}_{[\omega\mu\lambda]}{}^{\nu} \\ &= H_{[\omega\mu\lambda]}{}^{\nu} + 4\delta^{\nu}_{[\lambda}\nabla_{\mu}X_{\omega]} \\ &\quad + 4\left(h_{[\lambda\mu}\nabla_{\omega]} + k_{[\lambda\mu}\nabla_{\omega]}\right)X^{\nu} - 4X^{\nu}\nabla_{[\omega}k_{\mu\lambda]} \\ &\quad + 8\left(h_{[\lambda\omega}X_{\mu]} - h_{\lambda[\omega}{}^{(1)}X_{\mu]} + k_{\lambda[\omega}X_{\mu]} - k_{[\lambda\omega}{}^{(1)}X_{\mu]}\right)X^{\nu} \\ &= \text{The right-hand side of (3.6)}. \end{split}$$

LEMMA 3.4. The torsion vector S_{λ} and the vector U_{λ} in MEX_n may be given by

(3.8a)
$$S_{\lambda} = (1 - n)X_{\lambda} - 2^{(1)}X_{\lambda},$$

(3.8b)
$$U_{\lambda} = U_{\lambda\alpha}^{\alpha} = (n-1)X_{\lambda}.$$

PROOF. The relations (3.8) follow from (2.14) and (2.16), putting $\mu = \nu = \alpha$ and making use of (2.10).

The tensors

(3.9)
$$R_{\mu\lambda} = R_{\alpha\mu\lambda}{}^{\alpha}, \quad V_{\omega\mu} = R_{\omega\mu\alpha}{}^{\alpha}$$

are called the first and second contracted ME-curvature tensors of the ME-connection $\Gamma^{\nu}_{\lambda\mu}$, respectively. They also appear as functions of $g_{\lambda\mu}$ and its first two derivatives.

THEOREM 3.5. In MEX_n , the following relations hold:

$$(3.10a) S_{\lambda\mu}{}^{\alpha}X_{\alpha} = -2k_{\lambda\mu}X,$$

(3.10b)
$$S_{\lambda\mu}{}^{\alpha}S_{\alpha} = 4X_{[\lambda}{}^{(1)}X_{\mu]} + 2(n-1)k_{\lambda\mu}X + 4k_{\lambda\mu}X^{\alpha(1)}X_{\alpha},$$

$$(3.10c) S_{\lambda\mu}{}^{\alpha}U_{\alpha} = 2(1-n)k_{\lambda\mu}X.$$

PROOF. The relations (3.10) follow from (2.14) and making use of (2.10) and (3.8). \Box

THEOREM 3.6. In MEX_n , the following relations hold:

$$(3.11a) U_{\lambda\mu}^{\alpha} X_{\alpha} = 2X_{\lambda} X_{\mu} - 2h_{\lambda\mu} X,$$

(3.11b)
$$U^{\alpha}_{\lambda\mu}S_{\alpha} = 2(1-n)X_{\lambda}X_{\mu} - 4X_{(\lambda}^{(1)}X_{\mu)} + 2(n-1)h_{\lambda\mu}X + 4h_{\lambda\mu}X^{\alpha(1)}X_{\alpha},$$

$$(3.11c) U_{\lambda\mu}^{\alpha}U_{\alpha} = 2(n-1)\left(X_{\lambda}X_{\mu} - h_{\lambda\mu}X\right).$$

PROOF. In virtue of (2.10), (2.16), and (3.8) we have the relations (3.11).

THEOREM 3.7. The contracted ME-curvature tensor $V_{\omega\mu}$ in MEX_n may be given by

(3.12)
$$V_{\omega\mu} = 4\nabla_{[\omega} \left(X_{\mu]} - {}^{(1)}X_{\mu]} \right)$$

PROOF. Putting $\lambda = \nu = \alpha$ in (3.3), we have

$$V_{\omega\mu} = H_{\omega\mu\alpha}{}^{\alpha} + \overset{\circ}{R}_{\omega\mu\alpha}{}^{\alpha} + \overset{\dagger}{R}_{\omega\mu\alpha}{}^{\alpha}.$$

In virtue of (2.10) and (3.2) we obtain

$$H_{\omega\mu\alpha}{}^{\alpha} = \overset{\dagger}{R}_{\omega\mu\alpha}{}^{\alpha} = 0, \hspace{0.5cm} \overset{\circ}{R}_{\omega\mu\alpha}{}^{\alpha} = 4\nabla_{[\omega}\left(X_{\mu]} - {}^{(1)}X_{\mu]}\right).$$

Hence we have the relation (3.12).

THEOREM 3.8. Under the present condition the contracted ME-curvature tensor $R_{\mu\lambda}$ may be given by

(3.14)
$$R_{\mu\lambda} = H_{\mu\lambda} + 4\left(K_{\lambda\mu} - k_{\lambda\mu}X + 2X_{[\mu}{}^{(1)}X_{\lambda]} + g_{\lambda\mu}X^{\alpha(1)}X_{\alpha}\right) + 4\left(h_{\mu[\lambda}\nabla_{\alpha]}X^{\alpha} + \nabla_{[\alpha}(k_{|\lambda|\mu]}X^{\alpha})\right),$$

where

$$(3.15a) H_{\mu\lambda} = H_{\alpha\mu\lambda}{}^{\alpha},$$

(3.15b)
$$K_{\lambda\mu} = X_{\lambda} X_{\mu} - {}^{(1)} X_{\lambda} {}^{(1)} X_{\mu} - h_{\lambda\mu} X.$$

PROOF. Putting $\omega = \nu = \alpha$ in (3.3) and making use of (2.3), (2.10), (3.15a), and the fact $\nabla_{\omega} h_{\lambda\mu} = 0$, we have

(3.16)
$$R_{\mu\lambda} = H_{\mu\lambda} + \stackrel{\circ}{R}_{\alpha\mu\lambda}{}^{\alpha} + \stackrel{\dagger}{R}_{\alpha\mu\lambda}{}^{\alpha}.$$

The relation (3.4a) gives

(3.17a)
$$\overset{\circ}{R}_{\alpha\mu\lambda}{}^{\alpha} = 4 \left(h_{\lambda[\mu} \nabla_{\alpha]} + k_{\lambda[\mu} \nabla_{\alpha]} - \nabla_{[\alpha} k_{\mu]\lambda} \right) X^{\alpha} \\
= 4 h_{\lambda[\mu} \nabla_{\alpha]} + 4 \nabla_{[\alpha} \left(k_{|\lambda|\mu} X^{\alpha} \right).$$

On the other hand, the relation (3.4b) gives in virtue of (3.15b)

(3.17b)
$$\dot{R}_{\alpha\mu\lambda}^{\alpha} = 8 \left(h_{\lambda[\alpha} X_{\mu]} - k_{\lambda[\alpha}^{(1)} X_{\mu]} \right) X^{\alpha} \\
= 4K_{\lambda\mu} + 4k_{\lambda\mu} X^{\alpha(1)} X_{\alpha}.$$

Our assertion follows immediately from (3.16), (3.17a), and (3.17b). \square

THEOREM 3.9. In MEX_n , the contracted ME-curvature tensors are related by (3.18)

$$\begin{split} 2R_{[\mu\lambda]} + V_{\mu\lambda} &= 12 \left(4X_{[\mu}{}^{(1)}X_{\lambda]} + (2-n)\nabla_{[\mu}X_{\lambda]} + 2\nabla_{[\lambda}{}^{(1)}X_{\mu]} \right) \\ &+ 12 \left(\nabla_{\alpha}(k_{\lambda\mu}X^{\alpha}) + 2k_{\lambda\mu}X + 2k_{\lambda\mu}X^{\alpha(1)}X^{\alpha} \right). \end{split}$$

PROOF. Summing for $\omega = \nu$ in (3.6) and making use of (3.9) we obtain the left-hand side of (3.18) as in the following way:

$$\begin{split} 3R_{[\omega\mu\lambda]}{}^{\omega} &= R_{[\omega\mu]\lambda}{}^{\omega} + R_{[\mu\lambda]\omega}{}^{\omega} + R_{[\lambda\omega]\mu}{}^{\omega} \\ &= R_{\omega\mu\lambda}{}^{\omega} + R_{\mu\lambda\omega}{}^{\omega} + R_{\lambda\omega\mu}{}^{\omega} \\ &= R_{\mu\lambda} + V_{\mu\lambda} - R_{\lambda\mu} \\ &= 2R_{[\mu\lambda]} + V_{\mu\lambda}. \end{split}$$

Similarly, we obtain the right-hand side of (3.18).

4. Field equations in ME-manifold MEX_n

In this section we mean a set of partial differential equations for $g_{\lambda\mu}$ by field equations. In what follows, we are concerned with the geometry of field equations in MEX_n and not with their physical applications.

The following theorem is given in Hlavatý [4].

THEOREM 4.1. Put

$$(4.1a) \quad P_{\lambda\mu} = \partial_{\alpha}\Gamma^{\alpha}_{\lambda\mu} - \Gamma^{\alpha}_{\lambda\beta}\Gamma^{\beta}_{\alpha\mu} + \Gamma^{\alpha}_{\lambda\mu}\Gamma^{\beta}_{(\alpha\beta)} - \frac{1}{2} \left(\partial_{\mu}\Gamma^{\alpha}_{(\lambda\alpha)} + \partial_{\lambda}\Gamma^{\alpha}_{(\mu\alpha)} \right).$$

Then

(4.1b)
$$R_{\mu\lambda} + P_{\lambda\mu} = D_{\mu}S_{\lambda}.$$

Einstein first proposed the following set of twenty field equations [4].

$$(4.2a) S_{\lambda} = 0,$$

$$(4.2b) P_{\lambda\mu} = 0$$

for sixteen unknown $g_{\lambda\mu}$. From Theorem (4.1) we see that the second set reduces by virtue of the first set to

$$(4.2c) R_{\lambda\mu} = 0.$$

Later, Einstein proposed a weaker set consisting of eighteen field equation (4.2a) and

$$(4.3a) R_{(\mu\lambda)} = 0,$$

(4.3b)
$$\partial_{[\omega} R_{\mu\lambda]} = 0.$$

The set (4.3b) is obviously equivalent to

$$(4.3c) R_{[\mu\lambda]} = \partial_{[\mu} X_{\lambda]},$$

where X_{λ} is an arbitrary vector. The set consisting of (4.3a) and (4.3c) also includes (4.2c). One obtains by choosing a gradient for S_{λ} .

Remark 4.2. Einstein proposed several different sets of field equations in his four-dimensional unified field theory. His final suggestion consisting of three sets of tensorial differential equations:

$$(4.4a) S_{\lambda} = 0,$$

(4.4b)
$$R_{[\mu\lambda]} = \partial_{[\mu} X_{\lambda]},$$

$$(4.4c) R_{(\mu\lambda)} = 0.$$

Hlavatý formulated Einstein's idea mathematically by giving sixty-four equations (2.6) determining the connection $\Gamma^{\nu}_{\lambda\mu}$ and twenty field equations (4.4) for twenty unknown $g_{\lambda\mu}$ and X_{λ} . Therefore, it would seem natural to follow the analogy of Einstein's field equations (2.8) in MEX_n , too.

THEOREM 4.3. Under the present condition the following relations hold:

(4.5)
$$R_{[\mu\lambda]} = 2\left(\partial_{[\mu}X_{\lambda]} - \nabla_{[\mu}{}^{(1)}X_{\lambda]} - \nabla_{\alpha}(k_{\mu\lambda}X^{\alpha})\right) + 4k_{\mu\lambda}(X - X^{\alpha(1)}X_{\alpha}) + 8X_{[\mu}{}^{(1)}X_{\lambda]},$$

(4.6)
$$R_{(\mu\lambda)} = H_{\mu\lambda} + 2\left(\partial_{(\mu}X_{\lambda)} - \nabla_{(\mu}{}^{(1)}X_{\lambda)} + h_{\mu\lambda}\nabla_{\alpha}X^{\alpha}\right) + 4\left(K_{\mu\lambda} + h_{\mu\lambda}X^{\alpha(1)}X_{\alpha}\right).$$

PROOF. The relations (4.5) and (4.6) follow from (3.14) and making use of (2.3) and (2.10).

THEOREM 4.4. The field equation (4.4b) in MEX_n is equivalent to

(4.7)
$$-\partial_{[\mu}X_{\lambda]} + 2\nabla_{[\mu}{}^{(1)}X_{\lambda]} + 2\nabla_{\alpha}(k_{\mu\lambda}X^{\alpha})$$

$$= 4\left(k_{\mu\lambda}(X - X^{\alpha(1)}X_{\alpha}) + 2X_{[\mu}{}^{(1)}X_{\lambda]}\right).$$

PROOF. The relation (4.7) follows from (4.5) in virtue of (4.4b).

THEOREM 4.5. In MEX_n , the field equation (4.4c) is equivalent to

(4.8)
$$H_{\mu\lambda} + 2\left(\partial_{[\mu}X_{\lambda)} - \nabla_{(\mu}{}^{(1)}X_{\lambda)} + h_{\mu\lambda}\nabla_{\alpha}X^{\alpha}\right) + 4\left(K_{\mu\lambda} + h_{\mu\lambda}X^{\alpha(1)}X_{\alpha}\right) = 0.$$

PROOF. Our assertion (4.8) is an immediate consequence of (4.4c) and (4.6).

REMARK 4.6. The condition (4.4a) implies $X_{\lambda} = 0$ and hence $\Gamma^{\nu}_{\lambda\mu} = \begin{cases} \nu \\ \lambda\mu \end{cases}$ in virtue of (2.13) and (3.7). Hence $R_{\mu\lambda} = H_{\mu\lambda}$. Therefore in our further considerations we restrict ourselves to the conditions $X_{\lambda} \neq 0$.

REMARK 4.7. The relation (4.4a) is too strong in the field theory in MEX_n , so we shall not adopt (4.4a) as a starting point and impose the field equations as given in (4.7) and (4.8) in MEX_n .

References

- K. T. Chung and D. H. Cheoi, A study on the relations two n-dimensional unified field theories, Acta Math. 45 (1985), 141-149.
- [2] K. T. Chung and C. H. Cho, On the n-dimensional SE-connection and its conformal change, Nuovo Cimento Soc. 100B (1987), no. 4, 537-550.
- [3] A. Einstein, The meaning of relativity, Princeton Univ. Press, 1950.

- [4] V. Hlavatý, Geometry of Einstein's unified field theory, Noordhoop Ltd., 1957.
- [5] T. Imai, Notes on semi-symmetric metric connections, Tensor 24 (1972), 256– 264.
- [6] R. S. Mishra, Recurrence relations in Einstein's unified field theory, Tensor 12 (1962), 90.
- [7] R. C. Wrede, n-dimensional considerations of the basic principles A and B of the unified theory of relativity, Tensor 8 (1958), 95-122.
- [8] K. Yano and T. Imai, On semi-symmetric metric F-connection, Tensor 29 (1975), 134-138.
- [9] K. J. Yoo, On the ME-connection in MEX_n, Bull. Korean Math. Soc. 31 (1994), no. 2, 253-267.

Department of Mathematics Mokpo National University Muan 534-729, Korea E-mail: kjyoo@chungkye.mokpo.ac.kr