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GEOMETRY OF FIELD EQUATIONS ON MEX,

Ki-Jo Yoo

ABSTRACT. An n-dimensional M E-manifold MEX,, is a general-
ized Riemannian manifold connected by the M E-connection which
is both Einstein and of the form (2.13). The purpose of this paper
is to study the properties of the M E-curvature tensors, the con-
tracted M E-curvature tensors and the field equations in MEX,,.

1. Introduction

In Appendix II to his last book “The meaning of relativity”, Ein-
stein [3] proposed a new unified field theory that would include both
gravitation and electromagnetism. Although the intent of this theory
is physical, its exposition is mainly geometrical. Characterizing Ein-
stein’s unified field theory as a set of geometrical postulates for the
space-time X4, Hlavaty [4] gave the mathematical foundation for the
first time. Since then the geometrical consequences of these postu-
lates have been developed very far by a number of Mathematicians
and physicists; among them Hlavaty’s contributions are the most distin-
guished. Wrede [7] studies the Principles A and B of this theory on an
n-dimensional generalized Riemannian manifold X,,. Recently, Yoo [9]
introduced the concepts of n-dimensional M E-manifold, denoted by
MEX,, connected to X, an M E-connection of the form (2.13), which
is similar to Yano [8] and Imai’s [5] semi-symmetric metric connection.

The purpose of the present paper is to study the properties of the
M E-curvature tensors, the contracted M E-curvature tensors, and the
field equations in the M E-manifold MEX,,.
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2. Preliminaries

This section is a brief collection of definitions, notations, and basic
results which are needed in the present paper. The detailed proofs are
given in Hlavaty [4], Mishra [6], and Yoo [9)].

Let X,, be a generalized n-dimensional Riemannian manifold referred
to a real coordinate system z¥, which obeys coordinate transformations
z¥ — ¥ for which

(2.1) Det (gf;) £ 0,

where, here and in the sequel, Greek indices are used for the holonomics
components of tensor in X,,. They take the values 1,2,--- ,n and follow
the summation convention. v

The manifold X, is assumed to be connected by a general real con-
nection I'y | with the following transformation rule:
(2.2) -, 0z (6:1:‘3 oY _, &%z > .

M= ge \azr ozn B T paigzn

2.1. Einstein’s n-dimensional unified field theory

Einstein’s n-dimensional unified field theory is based on the following
three principles as indicated by Hlavaty [4]:

PrINCIPLE A. The algebraic structure is imposed on X,, by a general
real tensor g,,, which may be split into its symmetric part hy, and
skew-symmetric part £y,:

(23) 9 = h)\p, + k/\;u
where
(24) g= Det(g)\u) % 0» h = Det(h/\u) ?é 0.

Hence we may define a unique tensor h*” by

(2.5) hauh™ =67
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The tensor hy, and h* will serve for raising and/or lowering indices
of tensor in X,, in the usual manner.

PrINCIPLE B. The differential geometric structure is imposed on X,
by the tensor g, by means of the Einstein's connection I'y , defined by
a system of Einstein’s equations
(263') awg)\u - Fgwgaﬂ - Fgugka = O,
or equivalently,

(26b) Dwg)\p = 2Swuag}.a’

where D, denotes the symbol of the covariant derivative with respect
to Iy, and

(F;u “FLVM)

DO =

(2.7) Suu” =T{,y =

is a torsion tensor of I',.

v

PRINCIPLE C. In order to obtain gy, involved in the solution for I'y ,,
certain conditions are imposed, which may be condensed to
(2.8)

Sy =S =0, R[u/\] = 3[ﬂX,\], R(M/\) = (R”,\ + Ry,) =0,

1
2
where X is an arbitrary vector, S, is the torsion vector, and

(2.9) Ropn” =2 (a[ur‘r,\lw] + Fg[urﬁ\lw}) ! Rux = Bou®,

where R,,,," is the curvature tensor and R, is the contracted curvature
tensor.

The following quantities will be used in our further considerations:

(2.10a) Ok =8, Prky =C"Vg," (p=1,2,---),

(2.10b) P X, =®keX, (p=0,12--),
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(2100) (p)XV = (—l)p(p)kauXa (P= 0’ 1’27"' )7
(2.10d) X = X, X*.

It has been shown Hlavaty [4] that if the equations (2.6) admit a

solution I'§ , it must be of the form

v v v v
(2.11) X, = {Au} + 85" +U%,
where
(2.12) UY xu = 20 Sa(a ks

and { /\V#} are the Christoffel symbol defined by hy,.

2.2 n-dimensional M E-manifold MEX,
The Einstein’s connection I'y , which takes the form

A

for a non-null vector X, is called an M E-connection and a generalized
Riemannian manifold X,, connected by this connection is called an n-
dimensional M E manifold, denoted by MEX,,.

(2.13) Iy, = { ¢ } + 200" X, — 295, X",

In our further considerations, we use the word “present condition” to
describe the situations that Einstein’s connection, given by (2.11), take
the form (2.13). It has been also shown Yoo [9] that for a non-null vector
XV, the present condition holds if and only if

(a) the torsion tensor Sy,” is given by

(2.14) San” =260, X, — 2k, XY,
(b) the tensor field g, satisfies
(2.15a) 5(V)\X“) — h)\“XV = kt()\UX“) + Qk(Auk“)aXa,
or equivalently
(2.15b) g,,(,\Xu) + 2ky()\k#)aXa - h,\,uXU = 0.

As a direct consequence of (2.12) and (2.14), we have
UV)‘M = 2k()\VXM) + 4k()‘uk',,)aXa

(2.16) ) .
=204, X, — 2hy, X"



Geometry of field equations on MEX,, 641

3. The M E-curvature tensors and the contracted M E-curvature
tensors in MFEX,

This section is devoted to the study of the n~dimensional M E-curvature
tensor R,,,»" defined by the M E-connection I'{ " the first and second
contracted M E-curvature tensors defined by (3.9), and some identities
involving the tensor R, ;" and R.

LEMMA 3.1. The M E-curvature tensor R,,," in MEX, defined
by the connection (2.11) is given by

Ropn” = Hopa” + 2V (Siajw)” + U Ajwr)
(3.1) +2 (Sa[u”Slela + Safu"U e
U oSl + U¥auU% ),

where

I TAREATEN)

d } and V , is the symbol of the co-

is the curvature tensor defined by { A

14

A } defined

variant derivative with respect to the Christoffel symbol {
by hyx,.

PROOF. Substituting (2.11) into (2.9), we obtain the relation (3.1)
by a straightforward computation. 0

THEOREM 3.2. The M E-curvature tensor R,,,\" in MEX, may be
given by
° t
(33) Rwu)‘u = wu,\u + Ru)u)\u + Rwu)\us

where

o]

(3.4a) Rwﬂ)\u = 45KV[ﬂXw] +4 (h)\[uvw] + kA[#Vw]) XY —4va[wk“])\,

:
(3:4b) Rupn” = 8 (hapXu) — hago ¥ X + b X — X ) X,
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PROOF. The relation (3.3) may be obtained by substituting (2.14)
and (2.16) into (3.1) and making use of (2.3), (2.10), (3.2), (3.4a), and
(3.4b) by a long computation. d

LEMMA 3.3. The M E-curvature tensor R,,,»" in MEX,, satisfies the
following identities:

(35) Rwu)\u = R[wp],\u,

Riwpr)” = 4 (5KV[MX“’] - Xuv[wkw\])

3.6
(36) +4 (k[Auvw] + 2kpo Xy — 2’%(1)’(“1) X"

ProOOF. Equation (3.5) follows immediately from (2.9). The relation
(3.6) may be obtained by using (3.3) and (3.4) as in the following way:
(3.7)

Rion)” = Hiwu)” + Rious)” + Riuyar)”
= Hioun®” + 403V, X,
+4 (hpa Vi) + Epu Vi) X2 — 4XV Vi k)
+8 (A Xy = hap® Xy + krjo X = kD X,y ) XV
= The right-hand side of (3.6). g

LEMMA 3.4. The torsion vector Sy and the vector Uy in MEX, may
be given by

(3.8a) Sy=(1-n)Xy-20X,,
(38b) U,\-——Uf\“a:(n——l)X)\.

ProOoOF. The relations (3.8) follow from (2.14) and (2.16), putting
u = v = o and making use of (2.10). a

The tensors
(3'9) Ru)\ = Rauz\a, un = Rwuaa

are called the first and second contracted M E-curvature tensors of the
M E-connection I'j , respectively. They also appear as functions of gxu
and its first two derivatives.
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THEOREM 3.5. In MEX,,, the following relations hold:
(3.10&) S)‘”QXQ = -—2]{3)\#){,

(3.10b) Sau*Sa = 4X[/\(1)XM] +2(n — Dk, X + 4k,\#Xa(1)Xa,
(3.10c) SxuUs = 2(1 — n)kr, X.

ProOF. The relations (3.10) follow from (2.14) and making use of
(2.10) and (3.8). O

THEOREM 3.6. In MEX,,, the following relations hold:

(3.11&) (;#Xa = 2X)‘Xu - 2h,\yX,
(3.11b) SuSa = 21 = W)X X, — 4Xn VX,

' +2(n — 1Ay, X + 4hy, XD X,
(3.11¢) ‘;uUa =2(n—1) (XAXM —_ h)WX) .

PRrROOF. In virtue of (2.10), (2.16), and (3.8) we have the relations
(3.11). a

THEOREM 3.7. The contracted M E-curvature tensor V,,, in MEX,
may be given by

(3.12) Vau = 4V (X - VX))

PROOF. Putting A = v = a in (3.3), we have

o i
(313) un = wu,aa + Rwuaa + Rupaa-

In virtue of (2.10) and (3.2) we obtain

o

+
Hpo® = Ropa®™ =0,  Ruua® =4V, (XM] - (1)Xﬂ ) )

Hence we have the relation (3.12). O
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THEOREM 3.8. Under the present condition the contracted ME-
curvature tensor R,,» may be given by

Ry = Hyy+4 (KM — kX +2X, D Xy + gA“Xa<1>Xa)

(3.14)
+4 (R Va X + VialkiamX*))
where
(315&) Hp}\ = Hap)a,
(3.15b) Ky, = X0 X, — BXx, WX, — hy, X.

PROOF. Putting w = v = « in (3.3) and making use of (2.3), (2.10),
(3.15a), and the fact V,h,, = 0, we have
0 §
(3.16) R,y = Hyn + Royn™ + Ropn™.

The relation (3.4a) gives

o

Roun® =4 (M Ve + kauVa) — Viekyn) X©

(3.17a)
= 4w V) + 4V(a (kxu X ) -

On the other hand, the relation (3.4b) gives in virtue of (3.15b)

.
Roun® =8 (h,\[aX“] - k,\[a(l)X“]) X
= 4K, + 4k, XMV X,,.

(3.17b)
Our assertion follows immediately from (3.16), (3.17a), and (3.17b). O

THEOREM 3.9. In MEX,, the contracted M E-curvature tensors are
related by
(3.18)

2Rpua + Via = 12 (4X{”(1)X)‘] +(2-n)V Xy + ZV[,\(I)X#])
+12 (Valkan X) + 20, X + 23, X2 X))
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PROOF. Summing for w = v in (3.6) and making use of (3.9) we
obtain the left-hand side of (3.18) as in the following way:

3Ruux” = Rpwppn® + Rpunw” + Bpw)u”
= Rupn” + Ruyw® + Rawp”
= R#,\ + V,,)‘ - R)\lt
= 2Rjux + Vir-

Similarly, we obtain the right-hand side of (3.18). d0

4. Field equations in M E-manifold MEX,,
In this section we mean a set of partial differential equations for gy,
by field equations. In what follows, we are concerned with the geometry

of field equations in M EX,, and not with their physical applications.

The following theorem is given in Hlavaty [4].

THEOREM 4.1. Put

41a) Py, =98,I'¢ af Lrerh L5 o o, I
(‘a) Ap = Val gy 7 128 au+ Au (aﬂ)_E(H(Aa)+/\(pa))‘
Then

(4.1b) Rux + Py, = DS

Einstein first proposed the following set of twenty field equations [4].

(4.2&) Sy = 0,

(4.2b) Py, =0

for sixteen unknown g,,. From Theorem (4.1) we see that the second
set reduces by virtue of the first set to

(4.2c) Ry, =0.
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Later, Einstein proposed a weaker set consisting of eighteen field equa-
tion (4.2a) and

(4.3a) Ry =0,

(4.3b) OwRun = 0.
The set (4.3b) is obviously equivalent to
(4.3c) Ry = 0, X)),

where X, is an arbitrary vector. The set consisting of (4.3a) and (4.3c)
also includes (4.2¢). One obtains by choosing a gradient for S,.

REMARK 4.2. Einstein proposed several different sets of field equa-
tions in his four-dimensional unified field theory. His final suggestion
consisting of three sets of tensorial differential equations:

(4.4&) S)\ = 0,
(4.4b) Ry = 9 Xy,
(4.4C) R(Ih\) =0.

Hlavaty formulated Einstein’s idea mathematically by giving sixty-four
equations (2.6) determining the connection I'} , and twenty field equa-
tions (4.4) for twenty unknown g, and X). Therefore, it would seem
natural to follow the analogy of Einstein’s field equations (2.8) in MEX,,,
too.

THEOREM 4.3. Under the present condition the following relations
hold:
Ry = 2 (3[qu\1 - V.V Xy = Valkn X “))

(4.5)
+ 4k (X - X*Wx,) 48X, M Xy,

. Ryuny = Hux +2 (G(MX,\) ~ VDX + h,,,\VaX"‘)
4.6
+4 (K + b XWX, ).
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PRrOOF. The relations (4.5) and (4.6) follow from (3.14) and making
use of (2.3) and (2.10). O

THEOREM 4.4. The field equation (4.4b) in MEX,, is equivalent to

— 0, Xy + 2V, VX + 2V (kua X®)

4.7) .
= 4 (K (X = XM X,) +2X, 0 X))

PROOF. The relation (4.7) follows from (4.5) in virtue of (4.4b). O

THEOREM 4.5. In MEX,,, the field equation (4.4c) is equivalent to

s) Hyn +2 (8, X0 = VWX + hurVaX®)
' +4 (Ko + haX20X,) =0,

PROOF. Qur assertion (4.8) is an immediate consequence of (4.4c)
and (4.6). O

REMARK 4.6. The condition (4.4a) implies X, = 0 and hence I'} , =
/\';L in virtue of (2.13) and (3.7). Hence R,» = H, ). Therefore in our
further considerations we restrict ourselves to the conditions X # 0.

REMARK 4.7. The relation (4.4a) is too strong in the field theory in
MEX,, so we shall not adopt (4.4a) as a starting point and impose the
field equations as given in (4.7) and (4.8) in MEX,,.
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