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DETERMINATION OF CLASS NUMBERS
OF THE SIMPLEST CUBIC FIELDS

JuNnG Soo Kim

ABSTRACT. Using p-adic class number formula, we derive a congru-
ence relation for class numbers of the simplest cubic fields which can
be considered as a cubic analogue of Ankeny-Artin-Chowla’s theo-
rem. Furthermore, we give an elementary proof for an upper bound
for the class numbers of the simplest cubic fields.

1. The simplest cubic fields

The motivation of this paper is to find a cubic analogue of the Ankeny-
Artin-Chowla Theorem (cf. [1]) for the simplest cubic fields. In this
section, we shall introduce the notion of the simplest cubic fields and
develop basic materials which will be used later. Let m be a nonnega-
tive integer such that m? 4+ 3m + 9 is a prime. Consider the following
polynomial

fX)=X3+mX% - (m+3)X +1,
which is irreducible over Q. Let p be the negative root of f(X). Then

o = 7 ! P and p” =1~ % are the other roots of f(X), therefore
K = Q(p) is a totally real cyclic cubic field. K is called the simplest
cubic field and the arithmetic of these fields were studied in [3], [6]. Note
that
-m-2<p<-m-1<0<p<l<p’ <2

Let p = m? + 3m + 9. Then we can easily check that p = 1 (mod 6). In
[6], Washington showed that the discriminant of K is p? and {~1,p, 0’}
generates the full group of units of K. Since K/Q is a cyclic cubic exten-
sion, its associated character group Y is generated by a cubic character
X, i.e., Y = {1,x,x}. By the Conductor-Discriminant formula(cf. [5]),
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fx = fx = p, so K C Q((p) by Kronecker-Weber Theorem. Here (p
(or simply ) denote a primitive p-th root of unity. Let X denote the
Dirichlet character group associated to Q(¢) and w be a generator of X
satisfying w®1/3 = . Let G = Gal(Q(¢)/Q) and R = Gal(Q(¢)/K). If
we identify G with (Z/pZ)*, then R becomes a subgroup of G consisting
of cubic residues modulo p. Consider the pairing

Gal(Q(€)/Q) x X — C
(Ua "p) - 1/}(0')
It is well known (cf. [5]) that there is a one-to-one correspondence
between subgroups of X and subfields of Q(¢). Under this paring, Y
corresponds to the fixed field of Y1 (= R), i.e., the field generated by

Y rer ¢ Obviously, this field should be K. Therefore we have a corre-
spondence as in the following diagram:

Number field Galois group Dirichlet character group
Q) — 1 e X
K o— R v
S !

So far we have showed that K equals the field generated by > .5 (" from
the above diagram. Now we shall derive this result from computational
point of view. Let S and T'(# R) be cosets of R in (Z/pZ)*. For example,
if we take any & € (Z/pZ)* which is not a cubic residue modulo p, then
we may take § = R and T' = 6°R. Let o, B, ybegivenbya =3 (",
B=34es5¢ 7= ier (" By atheorem of Gauss (cf. [4], pp. 111-120),
3o+ 1, 38+ 1, 3y +1 are the roots of

X3 =3pX +pA,
where A is uniquely determined by the conditions
4p = A2 +27B%, A= 1(mod 3).
On the other hand, 3p +m, 3p’ + m, 3p” + m are the roots of
X3 =3pX — (2m + 3)p.

Note that 4p = (2m + 3)? + 27. From the uniqueness of A, it follows
that
A_{ 2m+3 if m=-1 (mod 3),
Tl -2m+3) if m=1 (mod3).
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This implies that

m—1

min|e, 8,7] — if m=1 (mod 3),
p= m+1
-max[a,ﬂ, 7] - 3

if m=-1 (mod3).

For the computation in the next section, we need to fix a prime in K
which lies over p. Let m = [[.cp(1 — ("), 7' = [],cs(1 — ¢*), and
" = [leer(l - ¢h.

- -
3m m

Then p = nn'n” = m°—— and —, — are units in K. Thus p is
T w

T
totally ramified in K/Q and 7 is a prime of K above p. As a conclusion of
this section, we summarize our computation in the following proposition.

PROPOSITION 1.1. Let m (> 0) be an integer such that p = m? +
3m + 9 is a prime. Let K be the simplest cubic field defined by the
irreducible polynomial

fX) =X3+mX? - (m+3)X +1,

i.e., K = Q(p) where p is the negative root of f(X). Let {(= {,) be a
primitive p-th root of unity and R be the subgroup of (Z/pZ)* consisting
of cubic residues modulo p. We denote S,T (# R) the cosets of R in
(Z/pZ)* and put

a=) ¢, B=Y ¢ v=Y.¢,
TER s€S teT
and
= H(l—(r), 7T’=H(1—<s), 7T”=H(1-—Ct).
reR s€s teT

Then we have

(1) K =Q(a) =Q(8) = Q7).

minfe, 8,7] — m-1 if m=1 (mod 3);
2) p= m3+ 1
-max|a, 3,7] — —5 if m=-1 (mod 3).

(3) = is a prime element of K above p.
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2. Congruence for class numbers of the simplest cubic fields

In this section, we shall prove the following congruence relation for
the class numbers of the simplest cubic fields.

THEOREM 2.1. Let K, m, and p be as in Proposition 1 and h be the
class number of K. Then

27
= ——4—325_132{%12 (mod p),
3

where B,, denotes the n-th Bernoulli number.

PRrROOF. By p-adic class number formula, we have

4hR,(K B
(1) —LR-;(—). = LP(LX)LP(LX).
From basic congruence relation for p-adic L-function (cf. [5]), we obtain
v -1 2(p—1) _
Lp(L,x)Lp(1,x) = Lp(1-— B‘:‘,;‘_»X)Lp(l - (p3 )aX)
9
(2) = §BL§1Bzgp3—1) (mod p).

By definition of p-adic regulator, we can write
(3) Ry(K) = log3(p) — log,(p) log,(p — 1) + logj(p — 1).

Since 3p +m, 3p' +m, 3p" + m are roots of X = 3pX — (2m + 3)p, we
have

(4) (3p +m)(3p" + m)(3p" + m) = —(2m + 3)p.

Note that (2m + 3,p) = 1. Now let R, be the ring of m-adic integral
elements of K. Then we have

(3p+m)(3p" +m)(3p" +m) = (p) = (v)° in Ry

Since 3p' +m,3p" + m are conjugates of 3p + m, by the uniqueness of
prime factorization of ideals, we conclude that

Bp+m) = ().
Hence we can write
(5) 3p+m =é,
for some & € R;.. Since Qp(p)/Qp is totally ramified at p, it follows that
(6) Zy|p)/7Zyp[p) = Z/PZ.
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Hence we can write
(7 §=a+br+cn? (modn?),

where a,b,c € Z and pra.
From (5), it follows that

m €
(8) lng(p) = Ing('—‘B—) + logp(l - ;{)»
and by combining (7) and (8), we obtain
am b a?
9) log,(p) = - (-T—n— + W)ﬂ2 (mod 73).

In verification of (9), we have used the following fact: if ¢ € Q, then
log,, ¢ = 0 (mod p), so log, ¢ =0 (mod =3).

Similarly, we get

_ am b a? 2 3
(10)  logy(p—1) = ~—2 - {m+3 + 2(m+3)2}7r (mod 7).
From (3), (9), and(10), it follows that
_ (2m + 3)an? 4
Now let p = n3¢, e € R%. From(6), we can find ¢ € Z such that
(12) e=t (mod m).
By (1), (2), and (11), it follows that
3
(13) _w = 36317_;_132(;;—1) (mod ).
3

Since every term on both sides of (13) is rational, we may replace = by
p, and therefore, we get
4(2m + 3)a3h
t

Now choose § in (Z/pZ)* such that S = SR and T=6?R. From the
choice of 7 (cf. Proposition 1), we can write

' 1 — r6 1 82
(15) H ( Cl _(Cr)zc )

(14) = 36311_;132(,;—1) (mod p).
3
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(1-¢")

Note that m = i;(l) ¢k = Ei;})l = 0 (mod ), where p =
(1 —¢). Hence

(1-¢7) _ e
16 —2 2 =§3 d p).
(16) =& (mod )
Similarly, we have

—_ ré? 2(p—1
(17) I (1——§-T—) = 5% (mod p).

wp (1=¢7)

From (12), (15), (16), and (17), it follows that
e=t=6P"1=1 (mod p).

Since t € Z, we have

(18) t=1 (mod p).
By (5) and (7), we can write
(19) (3o +m)(3p' + m)(3p” +m) = wr'n"a® (mod 7).

Therefore, by (4) and (19), it follows that —(2m+3)p = pa® (mod 7*),
so that —(2m + 3) = a® (mod 7). Consequently, we obtain

(20) —(2m +3) = a? (mod p).
From (14), (18), and (20), we get the desired congruence relation as in
the Theorem 2.1. O

3. Upper bound for class number

In this section, we shall obtain the following upper bound for class
numbers of the simplest cubic fields.

THEOREM 3.1. Let h be the class number of K as in Theorem 2.1.
Then,
h < p.

-1
PROOF. Let L = pT By the class number formula, we get

4Rh=L

(21) (L)L, %) = L1, 0P,
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where R = log?(1 — p) — log(1 — p)log(—p) + log®(—p) is the regulator
of K. Since p < —m — 1, we obtain

(22) B> Jlog’(~p) 2 S log?(m +1).
From (21) and (22), it follows that

3hlog?(m + 1)

(23) < |L(L, %)%

Now we shall find an upper bound for |L(1, x){?. Note that

(24) ZX ZX + Z X(n)

n=L+1
Since 2 "4y x(k) = Lk_, {x(k) + x(p — B)} = £52) x(k) =0,
L p—1
(25) x(k) =Y x(k) =0.
k=1 L+1
From (25), it follows that
j
(26) | > x(BI< L
k=L+1
for all 7 with j > L + 1. Notice that
oo
x(n) 1
Y X - @+ = -
il ™ {L+1 L+2
1 1
1 L -
HX(L A1) +x( +2)}{L+2 L+3}
1
L+1 L+2)+x(L
LA D +x(E+2) +XE+ D o - g )

(This is not a rearrangement')

(27) - w1
SLZ M
From (26) and (27), it follows that
x(n) 1 L
8 | Z s Z L(j j+1>SL+1<1’

k=L+1 j=L+1
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By (24) and (28), we conclude that

= x(n)
(29) L0l < [ X+ 1
n=1

Now let S, = {z € Z| 1 < z < L} and decompose S, into U, V, W, where

U={z eS| x(z) =1},

V={z e S| x(z) =w},

W = {z € S| x(z) =u?}.
We remark that |U| = |[V| = [W| = (p —1)/6 € Z*, since p =
1 (mod 6). Recall that Y denotes the character group of the simplest
cubic field K, and consider the following term

L
(30) g::Z‘Z@Z.
We notice that
= p(n)
Gy |PEZ

where j* is uniquely determined in S, by the condition that jj*

+1 (mod p). (For ¢ = x,X, ¥(j) = ¥(s*) if and only if 9(j5*) = 1.)
From (30) and (31), it follows that

L1E 1l -
(32) §=2_52.5 2 9Uh).
j=1

Note that

0 otherwise.

oy 3 if x(5%k) = 1,
Y(5 k) = {

Therefore we obtain
(33) ¢ =3(F?+G*+ H?),

1 1 1
where F = ZnGU E’ G = ZneV E, and H = Z'nGW E

On the other hand, we have

(34) €= (i%%ﬂi@f=(F+G+H)2+2'i$’2.
n n=1 n=1

el
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From (33) and (34), it follows that
L
@) |- L oer - mreE-FR).
n=1

Now we shall estimate |F — G|, |G — H|, |H — F|. To do this, we need a
lemma, which was originally due to Jacobi (cf. {2], pp. 80-81).

LEMMA 3.2. Ifp is a prime of the form m?+3m+9, then 2 is a cubic
non-residue modulo p.

PROOF. Note that p = (m—3w)(m —3w) in Z|w] where w = (3. Since
3 +m, m — 3w and m — 3w are not associated in Z[w|. Hence p splits
completely in Z[w| and therefore both m — 3w, m — 3@ are primes in
Z[w]. Suppose that 2 is a cubic residue mod p. Then 2 is a cubic residue
mod 7, where 1 = m — 3w. Note that both 2 and 7 are primary. By

the cubic reciprocity, (%)3 = ('g)g = 1, so by definition 7 = (g);; =1

(mod 2). Hence m = 1+ 2(s+tw) for some s,t € Z. Then —3 = 2t. This
contradiction completes the proof of lemma. O

Now we return to the proof of the theorem and we may consider only
m 2> 7. (For the case of m < 7, the theorem is trivially true.) We will
treat only the case that F' = maz[F,G, H] and 2 € V. (The arguments
of remaining cases are similar to this case.) There are two cases to
consider. First, we consider the case that G > H. In this case, we must

have that F > G > H.Since2€V, G> 3 o % = —I;—, and hence we
obtain
F
(36) F-G<3.
. F
Sinced e W, H>3 e and hence we have
F
(37) F-H< 37.
1 G
Furthermore, H > 3 .\ m=3 and hence we have
G F
38 G-H< — < —.
(38) -2 72
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. L 1 [
Since >, _, — F+G+H> ZF’ it follows that

@ H(5)2F

On the other hand,

L
1
(40) > = <1+logL.
n=1
From (39) and (40), we get
4
(41) F< ,—{(1 +log L).
By (35), (36), (37), (38), and (41), it follows that
(42) |ZX(n l 1-+-logL)2 (§)2(1+logL)2.
7
By combining (29) and (42), we obtain
3 10
(43) (1,201 < 3 (log L+ 3).
From (23) and (43), we deduce that
3hlog?(m+1)2  /3\2 102
(44) 5 < (?) (1ogL+ ~3—) .
Note that
2
(45) Lz(m——i—gin——_'_—s)g(m+1)2 for all m > 2.
If m > 7, then
2
Elogz(m +1)2 > (H) log?(m +1)?
(46) 4 14
> (3) {log(m+ 1)% + 10}
7 3

By comparison of (44), (45), and (46), we finally have
h < p.
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1 F
Next, we consider the case that H > G. Since G > > o = g e

2
have

H>G2§mﬂF~H<§.

F
Note that F — G < g and H-G<F-G< 3 Therefore we get

1

(47) —=F+G+ H > 2F.

i~
3

By combining (40) and (47), it follows that
1
(48) F < 5(1 +log L).

We plug (48) in (35) and obtain

L ( 3.2
(49) izxnn I 1+logL) (7) (1+ log L)
=1

By the same argument as in the first case (compare (42) and (49)), we
conclude that h < p. This completes the proof of the theorem. O

REMARK 3.1. By Staudt-Clausen theorem (cf. [5]),
Bp-1 By € Zp.
.

Hence the congruence in Theorem 2.1 is always solvable. Furthermore,
by Theorem 3.1, the unique positive integer less than p which satisfies the
congruence in Theorem 2.1, is actually the class number of the simplest
cubic field.

As an illustration of our result, we consider the simplest cubic field
with m = 11. In this case, p = m? + 3m + 9 = 163. By Theorem 2.1,

-27 —27 69 x 58 _
h=—Bubis =15 =

By Theorem 3.1, h < 163, and therefore we conclude that h = 4.

4 (mod 163).
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