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ERROR BOUNDS FOR SIMPSON’S
QUADRATURE THROUGH ZERO
MEAN GAUSSIAN WITH COVARIANCE

BumMm IL HonGg*, SUNG HEE CHOI, AND NAHMWOO HAxM**

ABSTRACT. We computed zero mean Gaussian of average error
bounds of Simpson's quadrature with covariances in [2]. In this
paper, we compute zero mean Gaussian of average error bounds
between Simpson’s quadrature and composite Simpson’s quadra-
ture on four consecutive subintervals. The reason why we compute
these on subintervals is because these results enable us to compute
a posteriori error bounds on the whole interval in the later paper.

1. Introduction

Many numerical computations in science and engineering can only
be solved approximately since the available information is partial. For
instance, for problems defined on a space of functions, information about
f is typically provided by a few function values, N(f) = [f(z;), f(z2),

., f(zn)]- Knowing N(f), the solution is approximated by a numerical
method. The error between the true solution and the approximation
depends on a problem setting. In the worst case setting, the error of
a numerical scheme is defined by its worst performance with respect to
the given class of functions. Many results are known in this setting; see
[4] and [6] for hundreds of references. In this paper, we concentrate on
another setting, the average case setting. In this setting, we assume that
the class F' of input functions is equipped with a probability measure.
Then the average case error of an algorithm is defined by its expectation,
rather than by its worst case performance.

Received March 7, 2001.

2000 Mathematics Subject Classification: 65D30, 65G10, 28C20.

Key words and phrases: Simpson’s quadrature, error analysis, Wiener measure.
*This research was supported by the Kyung Hee University Research Fund, 2000.
**This research was supported by the University of Incheon Research Fund, 2001.



c00 B. I. Hong, S. H. Choi, and N. Hahm

It is well known that the average case setting requires the space of
functions to be equipped with a probability measure. The average case
error of an algorithm is defined by its expectation, rather than by its
worst case performance. The average case analysis is important and
significant number of results have already been obtained (see, e.g., [6]
and the references cited therein). In this paper, we choose a proba-
bility measure p, which is a variant of an r-fold Wiener measure w,..
The probability measure w, is a Gaussian measure with zero mean and
correlation function given by

z-t)} (y-t)%
7! 7!

M@ W) = [ 1w = [ ( dt,

where (z —t)7, = [max{0, (z — t)}]". Equivalently, f distributed accord-
ing to w, can be viewed as a Gaussian stochastic process with zero mean
and autocorrelation given above. However, since w, is concentrated on
functions with boundary conditions f(0) = f/(0) = --- = f((0) = 0,
we choose to study a slightly modified measure p, that preserves basic
properties of w,, yet does not require any boundary conditions. More
precisely, we assume that a function f, as a stochastic process, is given
by
f(x) = filz)+ fo(1-2), ze€]0,1],

where f; and f5 are independent and distributed according to w,. Then
the corresponding probability measure u.,. is a zero mean Gaussian with
the correlation function given by

* dt.

M. (@) f) = [ @Ot ooty

0 rl 7!

We study the problem of approximating an integral I(f) = fol flz)dz
for f € F = C"[0,1], assuming that the class of integrands is equipped
with the probability measure p,..

2. Definitions

Assume that we have m subintervals (not necessarily of equal length)
partitioning [0, 1] and choose five equally spaced points from each subin-
tervals. For simplicity of presentation, we let x; and x;, 4 be the left end



Error bounds for Simpson’s quadrature 693
and right end points, and z;+x = z; + kh;, for k =0,... ,4. With this
indexing, we get

K= [ @de wd S.(0) = FHI) +4f @) + @)

while S; is the basic Simpson’s quadrature that uses f(x;), f(xi+2),
and f(x;;4). Let S; be the composite Simpson’s quadrature that uses

(), f(@ig1), f(@ita), f(wiys), and f(ziya), i€,

Sf) = S {flm) + 45 (@ia) + 2 (@ira) + 4 @13) + [ (@isa)}

Let

X(f) = -5l and V() = (5= S0,

3. Error bounds on subintervals

In this section, we compute error bounds of the distributions of X,
Y; and X; — Y; on four consecutive subintervals. We will explore error
bounds on the whole interval in the later paper. Recall that the space
F = C"[0,1] is equipped with the probability measure p, defined in
chapter 2. Since f is a zero-mean Gaussian process, X;’s, ¥;’s and
X, — Y;’s are Gaussian with zero-mean and covariances given in the
following theorems.

The general references for this paper are [1, 3, 4, 5, 6].

THEOREM 1. For i < j,

8ij-cr RIS if r <3,

ur (XiX;) { cijr - B3RS if >4,
where c, is independent of h; and equals respectively;

8 _4 2 1
AT135 ?T wp

1 931 1
Ciiqa = 152 (1 — @fh) and ¢4 = 4—52-(:171 +1—xzj4+2h + 2hj).
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For r > 5, ¢;jr = ¢;jr(hs, h;) is bounded from below by

arfzl 3 (z; — )" + :cf"‘ga:;”‘l +h 3z — zipa)
+ (1= zj4a) "2 (@jaa — Tira) T H (- 2jpa) (L - i)™
+ R (g~ i)
and from above by
ap[z]dxy vy +h (@ — 2)
+(1=z) 31— ) T+ R (e — ) Y,

where a, and a!. are positive constants depend on r, but not on h;’s.
T ’

PROOF. See Choi and Hong [2]. O

The following is the main theorem of this paper.

THEOREM 2. Fori < j,

(1) M (YY)_{‘Sz’j'C’r'h?'*:’ if <3,
R O (C Y 515 if r> 4,

where

c'-i c’—i c’—i and ¢, = 302

07 405" 17 6075 2 6075’ 37 637875
For r = 4,

1 1487 1

For r > 5, c};, = cj;.(hi,h;) is bounded in the same way as ¢y, In
Theorem 1.

Sij ¢RI i r <5

M i g X—Y = Y T ¢ =7
(2) Hr ([X Y][ J ]]) { c;‘ljr . h?h? lf r Z 6’
where

, 416 , 256 , 941 , 6443

=305 T 0750 2T 2126250 T 1134000



Error bounds for Simpson’s quadrature 695

cj =7.5805 x 1072, and cf = 8.4999 x 1073

v
For r > 6, ci;,. = ¢} (

hi, h;) is bounded from below by

b [z 5 (z; — )"0 + 2] a7
+h] 7@ = @ia) 70+ (L= 2540) O (@a — Tiga)C
+ (1= 7j4a)" (1 — iga) "+ h§—5(a:j — Ti14)" "]
and from above by
blziis x3+4 + R (@j4a — 2i)" O
+ (=) 01— 2:) 8+ AP (s — 23) O
where b, and b!. are positive constants that depend on r, but not on h;’s.

PROOF. We first prove (1). Since f; and f are independent,
MMT(Y';Y]) = er(Ybl},Jl) + MwT(Yi2Y}'2).

It is easy to verify that Y;(f) = —%V;‘f = —%V?fl - %V‘}fg, where
h; = (z;44 — x;)/4 and V1f is the backward difference of degree 4 of f

at T;yq, i€, V?f = f(l"i) - 4f(33z'+1) + 6f(33¢+2) - 4f($i+3) + f(Zita)-
Now, if L;; is the first term and L;; is the second in the next integral,

M v = [ oot (S5 [Figws (572
-/ La(®) L(dt = I T La®) L@,

since L;1(t) = 0 for t € [z;44,1]. Similarly,

Mo (Ya¥a) / [_ g ((t Aﬂr)] [ b g ((t —T!.)iﬂ »

-/ 1 Lio(t) - Lia(t)dt

Consider first » < 3. Since V# applied to polynomials of degree < 3
is zero, Lj;(t) = 0 for t < z;44 and Li(t) = O for t > z;. Thus,
M, (Y.Y;) =0 wheni < j. Fori=j,

it h 4 (_t):— 2 o p2r+3
—-—V ———r—‘—— dt = crlhz’ s

2y

T4
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where , )
42r+3 (__u)r
/o 4 +
= T ) [Vl( rl )] a
and
S(Cmwn _0-wl 4G -wi 6 -w)
Vi ] - | - ] + |
3) r! 7 r! T
4G -y, 0-wy
- ] 1
r r!
Similarly,

Tita h (t _)’I‘ 2
2y _ i () _ 2r+3,
o) = [ [ ()] e = et

42r+3 1 (U _ ')r 2
A 4 + i
Cra = g /0 [Vl( = )] du = ¢q-

Thus, ¢, = c.; + ¢, = 2¢/;. Since it is straightforward to get the
corresponding values of ¢/, we omit this part. This completes the proof
of (1) for r < 3.

Next consider r > 4. Let

Ti+4a
M, (YY) / Li1(t) - Lj(t)dt
0

(/ + EM) Li1(t) - Lj (t) dt.

0
Then
/ " Lat) L@ dt = T / B ek
, U st 452 |/, (r —4)ir —4)!
= Aijr - hORE,

Tit4 Fits h t— T
/. Lia(t) - L (t)dt = / La(t) [-R%} &

= Bijr(h;) - h3h3

AR Rl
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where & € (zi,Zita), Nt € (Tj,2;+4). Here A;j, is bounded from below
by
2r—7—p

(z; — )Pz
>
A’”—‘“Z @r—7-p) r—4-p)

> as [a:: oy —z) "+ 2l 3w; 1,

and from above by
r—3 r—4—p

xz+4 r— Tita
Aijr < a =P Z ( >($3+4 Tita)? @r—7-p)

3,.r 4
<a4xz+4xj+4

Obviously, B;;,(h;) is bounded by
ash?3(z; — 2i44)"™* < Bijr(hi) < ash!™3(zj4pa —z;)" "

and ay, as, as, a4, and as are positive constants that depend only on r.
Similarly,

M, (YaYjs) = Aj .- hIhS + Bi;(h;) - IR

iir
Therefore, for r > 4,
Mﬂr(}/lYJ) = {Aiﬁ' + A:]T + B’U"(h ) + Bz]r } h’Shs = zg'r h5h5

It is straightforward to get the bounds on ¢,
completes the proof of (1).

To show (2),

so we skip this part. This

1]’!"

Tit4
M, ([Xa —Ya]lXj - Yu)) = / Li(t) - Lj(t) dt,
0
where

i [ (5 i (5

and

L = [y s, (L) A (2R,

; rl 45 !
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Similarly,

1
Mo, (X = Yl Xp2 = Yia) = [ La(®)- Lia(®)at.
z;
Consider r < 3. Since L;i(t) = 0 for t < ;14 and L;3(¢t) = 0 for
t > x;, M, ((X; -Y][X; —Y;]) = 0 when i < j. For i = j, by the
change of variables, z = (¢ — z;)/4h;, u = (t — z;)/4h;, we have
(4)

M., (X = Yal?) = | ([ s, ((;Qi)

7! r!

hi 4 ( 't):» 2
+ 2V (———r! } dt

+ _.1...v4 <(_7.—U):L> ]2du,

i

180 ! !

where S denotes composite Simpson’s quadrature on [0, 1] based on the
points 0, 1/4, 1/2, 3/4, and 1, and V1 is from (3) M., ([Xi2 — Y;2]?) can
be found in a similar way. Since it is straightforward to get the values
of ¢!/, we omit this part. This completes the proof for r < 3.

Secondly, consider r = 4. Then L;;(t) = 0 for t < ;.4, since X;; =
~h3/45 and Y;; = —h%/45. Similarly, L;>(t) = 0 for ¢ > z;. Hence, for
i < j, M, ([X;=Yi][X;-Y;]) = 0. For i = j, by (4), M,, ([X; - Yi]*) =
cf - hlt.

4 i
Thirdly, let » = 5. By the Binomial theorem, we have
-8 _ zr: (z; —t)"~* (y — z,)*
7! (r—2)! o

=0
Then, for ¢ € [0, z;],
Tita (y — ¢)T — (=1 h; (=t
le(t)=/_ ( T!)dy—S’j(( r!))+évﬁ< r!

TJ (IBJ' _ t)r-e
(r—2)!

Wl,
£=0
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where

W — /:H Q%X dy-3, (%?JX) + Ev‘; ((- —e-’!ﬂj)l) :

Note that W, =0 for £ = 0,1,2,3,4. For £ = 5,
_ [y —w)® (=2)%) , higa (= 2))°
Ws —/z, s WS () Y T

3

_(n)° by (4h5+2<2hj> 4(3m;)° | (4 J)5>

~

.
3y

hy [ 4h%  6(2h;)°  4(3hy)° | (4h,)°\
ZS( R - R -

Therefore, L;;(t) = 0 for t < ;44 and similarly L;s(t) = 0 for t > z;,
and hence, for i < j, My, ([X; — Yi][X; — Y¥;]) = 0. For i = j, by (4),
M, ([Xi —Yi]?) = c{h}3.

Finally, consider r > 6. Then, for £ = 6, we have

i

7
~ 945 h

and for £ > 7, we can find that W, = e(hf“). Thus, for ¢ € [0, z;],
M, ([Xi1 — Ya][Xj1 — Yil)

_ z; r ( —t)T £ r (a:j——t)r_k
_/O [ZWM [Z—(F—"E)T‘W’“] dt

£=0 k=0

_(8Y Ty )"0 (= )" C
= (@E) hzh;‘/o =6 (=6 =

+ (higher order terms)
= Aijp - hTR]

1777

where A;;, is independent of h;, bounded from below by

(lf —x;
Aijr > i = %)
J —‘”Z (2r — 11 — )(r—6—p)!

>a2[ r— 5( j _:L_i)r 6+£L‘;—5$§_6],

m?'r—ll——-p
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and bounded from above by

o= S 6 Zr or

Ayjr < az—2 ( )(w a4 — Tiga)P
—6)! J t —11 —

(r —6)! s\ P (2r — 11 —p)

r—5,.1r—6
S Q4T 4 T4 45

and a3, aq, az, and a4 are positive constants that depend only on r. For
te [:E'ia wi+4]7

Mo, (o =Yl X = Vi) = [ La@Zn(od

T4

Titdq r z; — ¢ r—¢
_ /,,.  Laf) LX:(:) ((—_—%!—We} dt

Titd
- .E)_Z_ghz / L (t)dt +  (higher order terms)

= gt [ [ [ B 5 (Lo 0E)

1 s —u)}
+1_80V1( r! ]du

+ (higher order terms)
Bijr(hi) - hTR]

[ B

where B;;,(h;) is bounded by
ash{~°(zj = 2i14)""° < Bijr(hs) < ashi™®(zja — )" ",
and ag is a positive constant that depends only on r. Similarly,
Mo, ((Xi2 = Yol(Xj2 = Yi2l) = Al - hh] + Bl (hy) - hlR].

ijr i

Therefore, for r > 6, M, ([X; — Yi|[X; — Y;]) = ¢/ .hlh7, where c;, =

¥ L B 3T
Aijr+ Alj. + Bijr(hi) + Bj;,.(hj). It is straightforward to get the bounds
on c};,.. This completes the proof. O



(1
2]
(3]
(4]
(5]

[6]

Error bounds for Simpson’s quadrature 701

References

N. S. Bakhvalov, An Introduction to Multivariate Statistical Analysis, John Wi-
ley & Sons Inc., New York, 1958.

S. H. Choi and B. 1. Hong, An Error of Simson’s Quadrature in the Average
Case Setting, J. of Korean Math. Soc. 33 (1996), 235-247.

H. H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Mathematics
463, Springer-Verlag, Berlin, 1975.

E. Novak, Deterministic and Stochastic Error bound in Numerical Analysis,
Lecture Notes in Mathematics 1349, Springer-Verlag, Berlin, 1988.

K. Ritter, G. W. Wasilkowski, and H. WozZniakowski, On Multivariate Integration
for Stochastic Processes, International Series of Numerical Marthematics 112
(1993), 331-347.

J. F. Traub, G. W. Wasilkowski, and H. WozZniakowski, Information-Based Com-
plezity, Academic Press, New York, 1988.

Bum 11 Hong

Dept. of Math. and Institute of Natural Sciences
Kyung Hee University

Yongin 449-701, Korea

E-mail: bihong@khu.ac.kr

Sung Hee Choi

Division of Information and Computer Science
Sun Moon University

Asan 336-840, Korea

E-mail: shchoi@omega.sunmoon.ac.kr

Nahmwoo Hahm

Department of Mathematics
University of Incheon

Incheon 402-749, Korea
E-mail: nhahm®@incheon.ac.kr



