INTEGRABILITY AS VALUES OF CUSP FORMS IN IMAGINARY QUADRATIC

DAEYEOUL KIM AND JA KYUNG KOO

ABSTRACT. Let \mathfrak{h} be the complex upper half plane, let $h(\tau)$ be a cusp form, and let τ be an imaginary quadratic in \mathfrak{h} . If $h(\tau) \in \Omega$ $(g_2(\tau)^m g_3(\tau)^l)$ with Ω the field of algebraic numbers and m, l positive integers, then we show that $h(\tau)$ is integral over the ring $\mathbb{Q}[h(\frac{\tau}{n}) \cdots h(\frac{\tau+n-1}{n})]$.

0. Introduction

Let \mathfrak{M}_k be the space of cusp forms with weight k, where k is an even integer and $k \geq 4$. It is well-known that \mathfrak{M}_k has finite dimension([5]).

Let $\Delta(\tau)$ denote the modular discriminant on the upper half plane $\mathfrak h$ and let K be an imaginary quadratic field. In this work we study integrability as values of cusp forms in imaginary quadratic. The basic argument in the proof of theorems is the following: For any $N \geq 1$, the modular function $\Delta(Nz)/\Delta(z)$ is, when suitably normalized, integral over $\mathbb{Z}[j]([4])$. This fact leads to many interesting results in number theory and geometry. In Section 1, we consider the integrability of $\Delta(\tau)$ in imaginary quadratic. In Section 2, we consider the integrability of $f(\tau) \in \mathfrak{M}_k$ in imaginary quadratic, where the coefficients of $f(\tau)$ are algebraic numbers.

1. Infinite product formula and algebraic integer

Let \mathfrak{h} be the complex upper half plane, let $\Lambda_{\tau} = \mathbb{Z} + \tau \mathbb{Z}$ ($\tau \in \mathfrak{h}$) be a lattice, and let $p = e^{\pi i \tau}$. The Eisenstein series of weight 2k (for Λ_{τ}

Received October 30, 2000.

²⁰⁰⁰ Mathematics Subject Classification: 11R04, 11F11.

Key words and phrases: algebraic integer, cusp form, Eisenstein series.

This article was supported in part by KOSEF 98-0701-01-01-3.

and k > 1) is the series $G_{2k}(\Lambda_{\tau}) = \sum_{\substack{\omega \in \Lambda_{\tau} \\ \omega \neq 0}} \omega^{-2k}$, and the Weierstrass \wp -function (relative to Λ_{τ}) is defined by the series

$$\wp(z;\Lambda_{ au}) = rac{1}{z^2} + \sum_{\substack{\omega \in \Lambda_{ au} \ \omega
eq 0}} \left\{ rac{1}{(z-\omega)^2} - rac{1}{\omega^2}
ight\}.$$

We shall use the notations $\wp(z)$ instead of $\wp(z; \Lambda_{\tau})$, when the lattice Λ_{τ} has been fixed.

As is customary, by setting

$$g_2(\tau) = g_2(\Lambda_{\tau}) = 60G_4(\Lambda_{\tau})$$
 and $g_3(\tau) = g_3(\Lambda_{\tau}) = 140G_6(\Lambda_{\tau}),$

the algebraic relation between $\wp(z)$ and $\wp'(z)$ becomes

$$(1.0) \qquad \wp'(z)^2 = 4\wp(z)^3 - g_2(\tau)\wp(z) - g_3(\tau)$$

$$= 4\left(\wp(z) - \wp(\frac{1}{2})\right)\left(\wp(z) - \wp(\frac{\tau}{2})\right)\left(\wp(z) - \wp(\frac{\tau+1}{2})\right).$$

Proposition 1.0. ([4, p. 251]) Let $p = e^{\pi i \tau}$.

(1)
$$\wp\left(\frac{\tau}{2}\right) - \wp\left(\frac{1}{2}\right) = -\pi^2 \prod_{n=1}^{\infty} (1 - p^{2n})^4 (1 + p^{2n-1})^8.$$

(2)
$$\wp\left(\frac{\tau+1}{2}\right) - \wp\left(\frac{1}{2}\right) = -\pi^2 \prod_{n=1}^{\infty} (1-p^{2n})^4 (1-p^{2n-1})^8.$$

(3)
$$\wp\left(\frac{\tau+1}{2}\right) - \wp\left(\frac{\tau}{2}\right) = 16\pi^2 p \prod_{n=1}^{\infty} (1-p^{2n})^4 (1+p^{2n})^8.$$

In [2] and [3], we derive that

$$\begin{split} \wp\left(\frac{\tau}{2}\right) &= -\frac{\pi^2}{3} \prod_{n=1}^{\infty} (1-p^{2n})^4 \left(\prod_{n=1}^{\infty} (1+p^{2n-1})^8 + 16p \prod_{n=1}^{\infty} (1+p^{2n})^8\right), \\ \wp\left(\frac{\tau+1}{2}\right) &= -\frac{\pi^2}{3} \prod_{n=1}^{\infty} (1-p^{2n})^4 \left(\prod_{n=1}^{\infty} (1+p^{2n-1})^8 - 32p \prod_{n=1}^{\infty} (1+p^{2n})^8\right), \\ \wp\left(\frac{1}{2}\right) &= \frac{\pi^2}{3} \prod_{n=1}^{\infty} (1-p^{2n})^4 \left(2 \prod_{n=1}^{\infty} (1+p^{2n-1})^8 - 16p \prod_{n=1}^{\infty} (1+p^{2n-1})^8\right). \end{split}$$

By above equations of $\wp(\frac{\tau}{2})$, $\wp(\frac{\tau+1}{2})$, $\wp(\frac{1}{2})$ and (1.0), we give the equations of $g_2(\tau)$ and $g_3(\tau)$,

$$(1.1) \quad g_2(\tau) = \frac{4\pi^4}{3} \prod_{n=1}^{\infty} (1 - p^{2n})^8 \left[\prod_{n=1}^{\infty} (1 + p^{2n-1})^{16} - 16p \prod_{n=1}^{\infty} (1 + p^n)^8 + 256p^2 \prod_{n=1}^{\infty} (1 + p^{2n})^{16} \right],$$

$$g_3(\tau) = \frac{8\pi^6}{27} \prod_{n=1}^{\infty} (1 - p^{2n})^{12} \Big(\prod_{n=1}^{\infty} (1 + p^{2n-1})^{24}$$

$$-24p \prod_{n=1}^{\infty} (1 + p^{2n-1})^{16} (1 + p^{2n})^8$$

$$-384p^2 \prod_{n=1}^{\infty} (1 + p^{2n-1})^8 (1 + p^{2n})^{16}$$

$$+4096p^3 \prod_{n=1}^{\infty} (1 + p^{2n})^{24} \Big).$$

We consider the formula for modular discriminant $\Delta(\tau)=(2\pi)^{12}$ $\eta(\tau)^{24}=g_2(\tau)^3-27g_3(\tau)^2$, where the Dedekind η -function is given by the infinite product $\eta(\tau)=p^{\frac{1}{12}}\prod_{n=1}^{\infty}(1-p^{2n})$.

Let $\alpha = \begin{pmatrix} a & b \\ 0 & d \end{pmatrix}$ with $b \mod d$ and $|\alpha|$ the determinant of α , and let

$$\phi_{\alpha}(\tau) := |\alpha|^{12} \frac{\Delta\left(\alpha\binom{\tau}{1}\right)}{\Delta\left(\binom{\tau}{1}\right)} = |\alpha|^{12} d^{-12} \frac{\Delta(\alpha\tau)}{\Delta(\tau)}.$$

We begin with an important proposition which tells us when the value $\phi_{\alpha}(\tau)$ is an algebraic integer.

PROPOSITION 1.1. ([4, p. 164]) For any $z \in K \cap \mathfrak{h}$, the value $\phi_{\alpha}(z)$ is an algebraic integer, which divide $|\alpha|^{12}$.

Let n be any positive integer, and let $\alpha_j = \begin{pmatrix} 1 & j \\ 0 & n \end{pmatrix}$ with $j = 0, 1, \dots, n-1$. Then,

(1.3)
$$\phi_{\alpha_j}(\tau) = \frac{1}{n^{12}} n^{12} \frac{\Delta(\frac{\tau+j}{n})}{\Delta(\tau)} = \frac{\eta(\frac{\tau+j}{n})^{24}}{\eta(\tau)^{24}}$$

is an algebraic integer for all j, which divides n^{12} . Thus,

$$\phi_{\alpha_0}(\tau)\cdots\phi_{\alpha_{n-1}}(\tau) = \frac{\Delta(\frac{\tau}{n})\Delta(\frac{\tau+1}{n})\cdots\Delta(\frac{\tau+n-1}{n})}{\Delta(\tau)^n}$$

is an algebraic integer dividing n^{12n} . So, there exists

$$F(x) = x^m + a_{m-1}x^{m-1} + \dots + a_0 \in \mathbb{Z}[x]$$

satisfying

$$F\left(\frac{\Delta(\frac{\tau}{n})\Delta(\frac{\tau+1}{n})\cdots\Delta(\frac{\tau+n-1}{n})}{\Delta(\tau)^n}\right)=0.$$

Thus $a_0 \Delta(\tau)^{mn} + \cdots + \Delta(\frac{\tau}{n})^m \Delta(\frac{\tau+1}{n})^m \cdots \Delta(\frac{\tau+n-1}{n})^m = 0$. From this, we have the following:

THEOREM 1.2. Let n be any positive integer, and let $\tau \in \mathfrak{h} \cap K$. Then $\Delta(\tau)$ is integral over $\mathbb{Q}\left[\Delta(\frac{\tau}{n}), \Delta(\frac{\tau+1}{n}), \cdots, \Delta(\frac{\tau+n-1}{n})\right]$.

First, we consider

$$\frac{\Delta(2\tau)}{\Delta(\tau)} = \frac{(2\pi)^{12}p^4 \prod_{n=1}^{\infty} (1-p^{4n})^{24}}{(2\pi)^{12}p^2 \prod_{n=1}^{\infty} (1-p^{2n})^{24}} = p^2 \prod_{n=1}^{\infty} (1+p^{2n})^{24}$$

and

$$\frac{\Delta(\tau)}{\Delta(2\tau)} = \frac{(2\pi)^{12}p^2\prod_{n=1}^{\infty}(1-p^{2n})^{24}}{(2\pi)^{12}p^4\prod_{n=1}^{\infty}(1-p^{4n})^{24}} = p^{-2}\frac{1}{\prod_{n=1}^{\infty}(1+p^{2n})^{24}}.$$

Let
$$\beta_1 = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$
 and $\beta_2 = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

By (1.3), we derive that

$$\phi_{\beta_1}(\tau) = 2^{12} \frac{\Delta(2\tau)}{\Delta(\tau)} = 2^{12} \frac{\eta(2\tau)^{24}}{\eta(\tau)^{24}},$$

$$\phi_{\beta_2}(2\tau) = 2^{12} \frac{1}{2^{12}} \frac{\Delta(\tau)}{\Delta(2\tau)} = \frac{\eta(\tau)^{24}}{\eta(2\tau)^{24}},$$

and thus

(1.4)
$$\sqrt{2}p^{\frac{1}{24}}\prod_{n=1}^{\infty}(1+p^n) \text{ and } p^{-\frac{1}{24}}\frac{1}{\prod_{n=1}^{\infty}(1+p^n)}$$

are algebraic integers. By (1.1), (1.2), (1.3), and (1.4), we get the following:

Proposition 1.3. ([2]) Let $\tau \in K \cap \mathfrak{h}$. Then,

$$\begin{array}{ll} \text{(a)} \ \sqrt{2}p^{\frac{1}{24}}\prod_{n=1}^{\infty}(1+p^n), & p^{-\frac{1}{24}}\prod_{n=1}^{\infty}(1+p^{2n-1}), & \sqrt{2}\prod_{n=1}^{\infty}(1+p^n), \\ p^n)(1+p^{2n-1}), & \text{and } p^{-\frac{1}{24}}\prod_{n=1}^{\infty}(1-p^{2n-1}) \text{ are algebraic integers.} \\ \text{(b)} \ \frac{3}{\pi^2}\frac{\wp(\frac{\tau}{2})}{\eta(\tau)^4}, & \frac{3}{4\pi^4}\frac{g_2(\tau)}{\eta(\tau)^8}, & \text{and } \frac{27}{\pi^6}\frac{g_3(\tau)}{\eta(\tau)^{12}} \text{ are algebraic integers.} \end{array}$$

(b)
$$\frac{3}{\pi^2} \frac{\wp(\frac{\tau}{2})}{\eta(\tau)^4}$$
, $\frac{3}{4\pi^4} \frac{g_2(\tau)}{\eta(\tau)^8}$, and $\frac{27}{\pi^6} \frac{g_3(\tau)}{\eta(\tau)^{12}}$ are algebraic integers.

It is well-known that the natural logarithm $\log \beta$ is transcendental for any algebraic $\beta \neq 0, 1$ ([1]). Thus by Proposition 1.3(a), we get the following:

COROLLARY 1.4. Let
$$\tau \in K \cap \mathfrak{h}$$
. Then, $\frac{1}{24}\pi i\tau + \sum_{n=1}^{\infty} \log(1 + e^{n\pi i\tau})$, $-\frac{1}{24}\pi i\tau + \sum_{n=1}^{\infty} \log(1 + e^{(2n-1)\pi i\tau})$ and $-\frac{1}{24}\pi i\tau + \sum_{n=1}^{\infty} \log(1 - e^{(2n-1)\pi i\tau})$ are transcendental numbers.

The Weber functions are defined by

$$egin{aligned} h_1(z) &= -rac{2^7 3^5 g_2(au) g_3(au)}{\Delta(au)} \wp(z), \ h_2(z) &= rac{2^8 3^4 g_2^2(au)}{\Delta(au)} \wp(z)^2, \ h_3(z) &= -rac{2^9 3^6 g_3(au)}{\Delta(au)} \wp(z)^3. \end{aligned}$$

Taking $z = \frac{\tau}{2}$, we obtain that

$$\begin{split} h_1(\frac{\tau}{2}) &= -\frac{1}{8} \cdot \frac{3}{4\pi^4} \frac{g_2(\tau)}{\eta(\tau)^8} \cdot \frac{3^3 g_3(\tau)}{\pi^6 \eta(\tau)^{12}} \cdot \frac{3\wp(\frac{\tau}{2})}{\pi^2 \eta(\tau)^4}, \\ h_2(\frac{\tau}{2}) &= \frac{3^2}{2^4 \pi^8} \frac{g_2^2(\tau)}{\eta(\tau)^{16}} \cdot \frac{3^2 \wp(\frac{\tau}{2})^2}{\pi^4 \eta(\tau)^8}, \\ h_3(\frac{\tau}{2}) &= -\frac{1}{8} \cdot \frac{3^3}{\pi^6} \frac{g_3(\tau)}{\eta(\tau)^{12}} \cdot \frac{3^3 \wp(\frac{\tau}{2})^3}{\pi^6 \eta(\tau)^{12}}. \end{split}$$

Then by what we have got just above and Proposition 1.3, we get the following:

COROLLARY 1.5. $8h_1(\frac{\tau}{2}), h_2(\frac{\tau}{2})$ and $8h_3(\frac{\tau}{2})$ are algebraic integers.

2. $g_2(\tau)$ and $g_3(\tau)$

Let n be any positive integer. By Proposition 1.3, we come up with

$$\frac{g_2(\frac{\tau}{n})}{\pi^4 \eta(\frac{\tau}{n})^8}$$
 and $\frac{\pi^4 \eta(\tau)^8}{g_2(\tau)}$

are algebraic numbers.

Thus we get $\frac{g_2(\frac{\tau}{n})}{g_2(\tau)} \cdot \frac{\eta(\tau)^8}{\eta(\frac{\tau}{n})^8}$ is an algebraic number. Also, $\frac{g_2(\frac{\tau}{n})}{g_2(\tau)}$ is an algebraic number, since $\frac{\eta(\tau)}{\eta(\frac{\tau}{n})}$ is an algebraic number.

Similarly, we get

$$\frac{g_2(\frac{\tau+j}{n})}{g_2(\tau)}$$

is an algebraic number with $j = 1, \dots, n-1$.

Thus, we deduce from (2.1) that

$$\frac{g_2(\frac{\tau}{n})g_2(\frac{\tau+1}{n})\cdots g_2(\frac{\tau+n-1}{n})}{g_2(\tau)^n}$$

is an algebraic number.

This implies that there exists $F(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_0$ in $\mathbb{Q}[x]$ satisfying

$$F\left(\frac{g_2(\frac{\tau}{n})g_2(\frac{\tau+1}{n})\cdots g_2(\frac{\tau+n-1}{n})}{g_2(\tau)^n}\right)$$

$$=\left(\frac{g_2(\frac{\tau}{n})g_2(\frac{\tau+1}{n})\cdots g_2(\frac{\tau+n-1}{n})}{g_2(\tau)^n}\right)^m+\cdots+b_0$$

$$=0.$$

Therefore, we get an equation

$$b_0g_2(\tau)^{mn} + \dots + g_2(\frac{\tau}{n})^mg_2(\frac{\tau+1}{n})^m \dots g_2(\frac{\tau+n-1}{n})^m = 0.$$

In a similar way, we are working with the matrices $\begin{pmatrix} 1 & j \\ 0 & n \end{pmatrix}$ $(0 \le j \le n-1)$, we derive that

$$\frac{g_3(\frac{\tau+j}{n})}{g_3(\tau)}$$

are algebraic numbers with $j = 1, \dots, n-1$; hence

$$\frac{g_3(\frac{\tau}{n})\cdots g_3(\frac{\tau+n-1}{n})}{g_3(\tau)^n}$$

is an algebraic number.

Thus, we get the following:

THEOREM 2.1. Let n be any positive integer, let $\tau \in K \cap \mathfrak{h}$. Then $g_2(\tau)$ (respectively, $g_3(\tau)$) is integral over $\mathbb{Q}[g_2(\frac{\tau}{n}) g_2(\frac{\tau+1}{n}) \cdots g_2(\frac{\tau+n-1}{n})]$ (respectively, $\mathbb{Q}[g_3(\frac{\tau}{n}) \cdots g_3(\frac{\tau+n-1}{n})]$).

We shall generalize Theorem 2.1. Let

$$f(au) := \sum_i^{ ext{finite}} e_i g_2(au)^{a_i} g_3(au)^{b_i} \Delta(au)^{c_i}$$

where all e_i are algebraic numbers, $4a_i + 6b_i + 12c_i = k$ for all i. In fact, since $\Delta(\tau) = g_2(\tau)^3 - 27g_3(\tau)^2$, we shall take $f(\tau) \in \Omega[g_2(\tau), g_3(\tau)]$ with Ω the field of algebraic numbers.

Then we get

$$\begin{split} \frac{f(\frac{\tau}{n})}{f(\tau)} &= \frac{\sum_{i}^{\text{finite}} e_{i} g_{2}(\frac{\tau}{n})^{a_{i}} g_{3}(\frac{\tau}{n})^{b_{i}} \Delta(\frac{\tau}{n})^{c_{i}}}{\sum_{i}^{\text{finite}} e_{i} g_{2}(\tau)^{a_{i}} g_{3}(\tau)^{b_{i}} \Delta(\tau)^{c_{i}}} \\ &= \frac{\sum_{i}^{\text{finite}} \frac{e_{i} g_{2}(\frac{\tau}{n})^{a_{i}} g_{3}(\frac{\tau}{n})^{b_{i}} \Delta(\frac{\tau}{n})^{c_{i}}}{\pi^{k} \eta(\frac{\tau}{n})^{k}} \frac{\eta(\frac{\tau}{n})^{k}}{\eta(\tau)^{k}} \\ &= \frac{\sum_{i}^{\text{finite}} \frac{e_{i} g_{2}(\tau)^{a_{i}} g_{3}(\tau)^{b_{i}} \Delta(\tau)^{c_{i}}}{\pi^{k} \eta(\tau)^{k}} \cdot \frac{g_{3}(\frac{\tau}{n})^{6b_{i}}}{\eta(\tau)^{6b_{i}}} \cdot \frac{\Delta(\frac{\tau}{n})^{c_{i}}}{\pi^{12i} \eta(\frac{\tau}{n})^{12i}}} \cdot \frac{\eta(\frac{\tau}{n})^{k}}{\eta(\tau)^{k}} \\ &= \frac{\sum_{i}^{\text{finite}} e_{i} \cdot \frac{g_{2}(\frac{\tau}{n})^{a_{i}}}{\pi^{4a_{i}} \eta(\tau)^{4a_{i}}} \cdot \frac{g_{3}(\tau)^{6b_{i}}}{\pi^{6b_{i}} \eta(\tau)^{6b_{i}}} \cdot \frac{\Delta(\tau)^{c_{i}}}{\pi^{12i} \eta(\tau)^{12i}}} \cdot \frac{\eta(\frac{\tau}{n})^{k}}{\eta(\tau)^{k}} \end{split}$$

Since

$$e_i, \ \frac{g_2(\frac{\tau}{n})^{a_i}}{\pi^{4a_i}\eta(\frac{\tau}{n})^{4a_i}}, \ \frac{g_3(\frac{\tau}{n})^{b_i}}{\pi^{6b_i}\eta(\tau)^{6b_i}}, \ \frac{\Delta(\frac{\tau}{n})^{c_i}}{\pi^{12c_i}\eta(\frac{\tau}{n})^{12c_i}}, \ \ \text{and} \ \ \frac{\eta(\frac{\tau}{n})}{\eta(\tau)}$$

are algebraic numbers, $\frac{f(\frac{\tau}{n})}{f(\tau)}$ is an algebraic number. Similarly, $\frac{f(\frac{\tau+i}{n})}{f(\tau)}$ is an algebraic number for $i=1,\cdots,n-1$. Thus

$$\prod_{i=0}^{n-1} \frac{f(\frac{\tau+i}{n})}{f(\tau)^n}$$

is an algebraic number.

And let

$$g(au) = \sum_j^{ ext{finite}} h_j g_2(au)^{a_j'} g_3(au)^{b_j'} \Delta(au)^{c_j'},$$

where h_j are all algebraic numbers, $4a'_j + 6b'_j + 12c'_j = k'$ for all j. Similarly, $\frac{g(\tau)}{g(\frac{\tau+j}{n})}$ is an algebraic number, for all $j = 0, 1, \dots, n-1$. And let $h(\tau) = \frac{f(\tau)}{g(\tau)}$. By the same method as above, we get

$$rac{h(rac{ au}{n})}{h(au)} = rac{\sum_i^{ ext{finite}} e_i g_2(rac{ au}{n})^{a_i} g_3(rac{ au}{n})^{b_i} \Delta(rac{ au}{n})^{c_i}}{\sum_j^{ ext{finite}} h_j g_2(rac{ au}{n})^{a_j'} g_3(rac{ au}{n})^{b_j'} \Delta(rac{ au}{n})^{c_j'}} \cdot rac{\sum_j^{ ext{finite}} h_j g_2(au)^{a_j'} g_3(au)^{b_j'} \Delta(au)^{c_j'}}{\sum_i^{ ext{finite}} e_i g_2(au)^{a_i} g_3(au)^{b_i} \Delta(au)^{c_j}}.$$

In other words, we get

$$\frac{\sum_{i}^{\text{finite}} e_i g_2(\frac{\tau}{n})^{a_i} g_3(\frac{\tau}{n})^{b_i} \Delta(\frac{\tau}{n})^{c_i}}{\eta(\frac{\tau}{n})^k} \cdot \frac{\sum_{j}^{\text{finite}} h_j g_2(\tau)^{a'_j} g_3(\tau)^{b'_j} \Delta(\tau)^{c'_j}}{\eta(\tau)^{k'}} \cdot \frac{\sum_{j}^{\text{finite}} h_j g_2(\tau)^{a'_j} g_3(\tau)^{b'_j} \Delta(\tau)^{c'_j}}{\eta(\tau)^k} \cdot \frac{\sum_{j}^{\text{finite}} e_i g_2(\tau)^{a_i} g_3(\tau)^{b_j} \Delta(\tau)^{c'_j}}{\eta(\tau)^k} \cdot \frac{\eta(\tau)^{k'} \eta(\frac{\tau}{n})^k}{\eta(\frac{\tau}{n})^{k'} \eta(\tau)^k}.$$

Since each term is an algebraic number, so is $\frac{h(\frac{\tau}{n})}{h(\tau)}$. Similarly, $\frac{h(\frac{\tau+j}{n})}{h(\tau)}$ is also an algebraic number with j any integer.

Therefore,

$$\prod_{i=0}^{n-1} \left(\frac{f(\frac{\tau+i}{n})}{g(\frac{\tau+i}{n})} \middle/ \frac{f(\tau)}{g(\tau)} \right)$$

is an algebraic number. Consequently, there exists $F(x) = x^d + \dots + c_d \in \mathbb{Q}[x]$ satisfying $F\left(\prod_{i=0}^{n-1} \left(\frac{f(\frac{\tau+i}{n})}{g(\frac{\tau+i}{n})} \middle/ \frac{f(\tau)}{g(\tau)}\right)\right) = 0.$ So,

$$c_d \left(\frac{f(\tau)}{g(\tau)} \right)^{nd} + \dots + \left(\frac{f(\frac{\tau}{n})}{g(\frac{\tau}{n})} \right)^d \dots \left(\frac{f(\frac{\tau+n-1}{n})}{g(\frac{\tau+n-1}{n})} \right)^d = 0.$$

Thus we get the following:

THEOREM 2.2. Let n be any positive integer, let $\tau \in K \cap \mathfrak{h}$, and let $f(\tau), g(\tau) \in \Omega(g_2(\tau), g_3(\tau))$ with homogeneous degree k and k', where Ω is the field of algebraic numbers. Then $h(\tau) = \frac{f(\tau)}{g(\tau)}$ is integral over \mathbb{Q} $[h(\frac{\tau}{n}) \cdots h(\frac{\tau+n-1}{n})]$. Also $h(\tau)$ is integral over \mathbb{Q} $[h(\frac{\tau+i_1}{n}) \cdots h(\frac{\tau+i_n}{n})]$ with i_1, \dots, i_n integers.

If dim $\mathfrak{M}_k = 1$ and $f(\tau) \in \mathfrak{M}_k$, then $f(\tau) = rg_2(\tau)^a g_3(\tau)^b \Delta(\tau)^c$ with 4a + 6b + 12c = k and $r \in \mathbb{C}$. And we get

$$\begin{split} \frac{f(\frac{\tau}{n})}{f(\tau)} &= \frac{rg_2(\frac{\tau}{n})^a g_3(\frac{\tau}{n})^b \Delta(\frac{\tau}{n})^c}{rg_2(\tau)^a g_3(\tau)^b \Delta(\tau)^c} \\ &= \left(\frac{g_2(\frac{\tau}{n})}{g_2(\tau)}\right)^a \left(\frac{g_3(\frac{\tau}{n})}{g_3(\tau)}\right)^b \left(\frac{\Delta(\frac{\tau}{n})}{\Delta(\tau)}\right)^c. \end{split}$$

By (1.3), (2.1) and (2.2), we get $\frac{f(\frac{\tau+i}{n})}{f(\tau)}$ is an algebraic number with $i \in \mathbb{Z}$. Thus, there exists $F(x) = a_0 x^m + \cdots + a_m \in \mathbb{Q}[x]$ such that $F\left(\prod_{i=0}^{n-1} \frac{f(\frac{\tau+i}{n})}{f(\tau)^n}\right) = 0$. Thus we have the following:

COROLLARY 2.3. Let n be any positive integer, let $\tau \in K \cap \mathfrak{h}$, and let $f(\tau) \in \mathbb{C}(g_2(\tau), g_3(\tau))$ be a polynomial with homogeneous degree in \mathfrak{M}_k , and $\dim \mathfrak{M}_k = 1$. Then $f(\tau)$ is integral over $\mathbb{Q}\left[f(\frac{\tau}{n})\cdots f(\frac{\tau+n-1}{n})\right]$. Also $f(\tau)$ is integral over $\mathbb{Q}\left[f(\frac{\tau+i_1}{n})\cdots f(\frac{\tau+i_n}{n})\right]$ with i_1, \dots, i_n integers.

References

- N. I. Fel'dman and Yu. Nesterenko, Number Theory IV, Transcendental Numbers, Springer-Verlag, 1997.
- [2] D. Kim and J. K. Koo, Algebraic integer as values of elliptic functions, Acta Arith. 100 (2001), 105-116.
- [3] _____, As values of transcendental and algebraic numbers of infinite products in imaginary quadratic, Submitted.
- [4] S. Lang, Elliptic Functions, Addison-Wesley, 1973.
- [5] J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1994.

Daeyeoul Kim
Department of Mathematics
Chonbuk National University
Chonju 561-756, Korea
E-mail: dykim@math.chonbuk.ac.kr

Ja Kyung Koo Korea Advanced Institute of Science and Technology Department of Mathematics Taejon 305-701, Korea