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INTEGRABILITY AS VALUES OF CUSP
FORMS IN IMAGINARY QUADRATIC

DaeYEoOUL Kim AND JA KYuNGg Koo

ABSTRACT. Let h be the complex upper half plane, let h(7) be a
cusp form, and let 7 be an imaginary quadratic in h. If h(r) €
Q (g2(7)™gs(7)") with Q the field of algebraic numbers and m, !
positive integers, then we show that h(r) is integral over the ring
QR(Z) -+ A(ZEE=L)).

0. Introduction

Let 9. be the space of cusp forms with weight k, where & is an even
integer and k > 4. It is well-known that 9% has finite dimension([5]).

Let A(7) denote the modular discriminant on the upper half plane
h and let K be an imaginary quadratic field. In this work we study
integrability as values of cusp forms in imaginary quadratic. The basic
argument in the proof of theorems is the following: For any N > 1, the
modular function A(Nz)/A(z) is, when suitably normalized, integral
over Z[j]([4]). This fact leads to many interesting results in number
theory and geometry. In Section 1, we consider the integrability of A(7)
in imaginary quadratic. In Section 2, we consider the integrability of
f(r) € M in imaginary quadratic, where the coefficients of f(r) are
algebraic numbers.

1. Infinite product formula and algebraic integer

Let b be the complex upper half plane, let A, = Z +7Z (7 € h) be
a lattice, and let p = €™7. The FEisenstein series of weight 2k (for A,
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and k > 1) is the series Gor(A;) = Y wen, w™?¥, and the Weierstrass
w0

p-function (relative to A;) is defined by the series

1 1 1
p(z7A‘r) = ;5'{' Z {_(z—w)2 - F}
WwEA,
w#0

We shall use the notations p(z) instead of p(z; A;), when the lattice A,
has been fixed.

As is customary, by setting

92(7) = g2(A;) = 60G4(A;) and  g3(7) = g3(A;) = 140Ge(A-),

the algebraic relation between p(z) and ©'(z) becomes

©'(2)? = 4p(2)® — g2(1)p(2) — g3(7)

~ 4ot - o(3) (0e) = 0(3) ) (012 - o))

PROPOSITION 1.0. ([4, p.251]) Let p = e™"
T 1
M o (3) —e(5)= L0 -7 0+p )

2
) — __ﬂ.2 HZO=1(1 __p2n)4(1 _ p2n—1)8.

2
2) o (” 1) (
( ) = 167721,1-[;-10:1(1 — pPYA(1 + PR,

@) p <r+1>

In [2] and [3], we derive that

P (9 :"% [Ta-p (H(l +pn R+ 16p [] (1 +p2")8) ,

(1.0)

B o =

n=1 n=1

1
T+1 2 N 2n—1 21718
p( 5 ):—*H 1-p (H 14+p ——32pH 1+p ))

n=1

3
o (%) — _7_?_ H 2n)4 (2 H(l 2n-1)8 — 16p H(l +p2n—1)8) )

n=1
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By above equations of p(3), p(Z3), p(3) and (1.0), we give the
equations of g ('r) and g3(7),

g2(7) = H(l— [H (1+p? 1) —16p [[(1+p™)°

(1.1) n=l
+ 256p* H (1+77)),

n=1

- _Zr7_ﬁ p2n)12(ﬁ 1 4 p2n-1)

— 24p H(]‘ +p2n—1)16(1 +p2n)8
(1.2) "=
_ 384p2 H(l +p2n—1)8(1 +p2n)16
n=1

+ 4096p° ﬁ (1+p)*).
n=1

We consider the formula for modular discriminant A(7) = (2m)!2
n(1)%* = go(7)® —27g3(7)?, where the Dedekind 7-function is given by
the infinite product n(t) = p1= 2,1 —p*).

Let a = (8 Z) with b mod d and |a| the determinant of o, and let

A (a(})) Afar)
¢a(7.) = o 12 Tl — |a 12d-—12 .
RN (5) -C
We begin with an important proposition which tells us when the value
¢a(7) is an algebraic integer.

PROPOSITION 1.1. ([4, p.164]) For any z € K N, the value ¢,(2) is
an algebraic integer, which divide |a|2.

Let n be any positive integer, and let a; = ((1) 7]1 ) with j =
0,1,--- ,mn — 1. Then,

1 AR p(EE)H
(1.3) ¢a,(T) = Tm" Ry = oy



588 Daeyeoul Kim and Ja Kyung Koo

is an algebraic integer for all j, which divides n'2. Thus,

T TH1y .. A(Ztn=1
d)ao (T) T ¢an—1 (T) = A(n)A( nAzT)nA( " )

is an algebraic integer dividing n!?". So, there exists
F(z) =z 4 ap_12™ '+ + ag € Z[z]
satisfying

F(A( 2)A (izT);A(LtZ—_—l)) _o.

Thus agA(T)™ + -+ + A(Z)mA(ZE)™ ... A(TE2=1)m = 0. From
this, we have the following:

THEOREM 1.2. Let n be any positive integer, and let T € h N K.
Then A(r) is integral over Q [A(Z), A(ZH), .-+, A(TH2=1),

First, we consider

A(27) _ 12 4HZ° 1 )24 _ 2 - n\24
A = (s T s =7 s
and
A(T) 27I' 12 2Hn 1 )24 _ 1
A(27’) - 7)12pd H 1_ 4n)24 =p HZO=1(1 + p2n)24

2 0 10
Letﬁl—(o 1) andﬁz—(o 2>.
By (1.3), we derive that

_ ol2 A(27) _ 77(27)24
$p, (1) =2 A—(T)_ =2'2 n(r)24"

and thus
ad . 1
1.4 \/§p2_14 (1+p") and p 28 =pg———
(14 o+ YD

are algebraic integers. By (1.1), (1.2), (1.3), and (1.4), we get the fol-
lowing:
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ProposITION 1.3. ([2]) Let T € KN§h. Then,

(2) V2p2 [, (L+p"), p B [0, +p7Y), VZI[Z,(+
p")(1+p* 1), and p~7 [[°,(1—p?*~1) are algebraic integers.
3 p(3) 3 ga(n) 27 gs(7)

(b) — W’ ywr W’ o W are algebraic integers.

It is well-known that the natural logarithm log (3 is transcendental
for any algebraic 8 # 0,1 ([1]). Thus by Proposition 1.3(a), we get the
following:

COROLLARY 1.4. Let T € KNh. Then, &wit+ 3 .- log(1+em™7),

_2L47ri7-+2;‘1°=1 log(1+e(2n—1)1rir) and _2_147”;7'+ZZO:1 log(l__e@n—l)m'-r)
are transcendental numbers.

The Weber functions are defined by

7 T T
ha(z) = _2_?&7_2_((%9_3_(_)@(2),
2°3%g3 ()
ha(z) = —A#P(z)z,
996 T
ha(z) = —3—2{%@@)3.

Taking z = 7, we obtain that

hi(Z) = 13 gafr) 3gs(r)  3p(3)
D207 TR () aSn(r)E win(r)?
T 32 g2(r) 3%p(%)?
h2(§) = 94,8 ,7g(2T()1)6 ' 7T487O72i))8 )
o1 B og(r) Bp(5)
ha(3)=—3- Fi(i()l)z ' 7‘-6:(7.2))12'

Then by what we have got just above and Proposition 1.3, we get the
following:

COROLLARY 1.5. 8h1(3), h2(%) and 8h3(%) are algebraic integers.
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2. g2(7) and g3(7)

Let n be any positive integer. By Proposition 1.3, we come up with
92(%)
min(L)8
are algebraic numbers.
T 8 T
Thus we get 92(z) . 77(’:) 5 is an algebraic number. Also, 92!
g2(7) (%)

—="-isan
g2(T)
algebraic number, since n(7) is an algebraic number.

()
92(7)

(%)
Similarly, we get

T+j
(2.1) g2(5)
92(7)
is an algebraic number with j =1,--- ;n—1.

Thus, we deduce from (2.1) that

92(%)92(%1) o ga( T

=)
ga ()™

is an algebraic number.

This implies that there exists F(z) = 2™ + bp—12™ 1 + .-+ + by in
Q|z] satisfying

92(Z)ga(THL) - - - go (A1)
F( 2 2 92(T)n 2 )
92(Z)ga(TEL) - - go(TER=L)\m
= ( g2(7)" )+t

= 0.

Therefore, we get an equation

T T+1 T+n-—1
b092(7')m" + - +g2(5)m92( n )m " '92(—“;1—)771 = 0.

In a similar way, we are working with the matrices <(1) 7 > 0<ji<
n — 1), we derive that

(2.2) gs(m)

i1

g3(7)
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are algebraic numbers with j =1,--- ,n — 1; hence
g3(%)- - ga(T2=l)
ga(T)™

is an algebraic number.
Thus, we get the following:

THEOREM 2.1. Let n be any positive integer, let T € K NY. Then
92(T) (respectively, gs(7)) is integral over Q[ g2(5) g2(TE+) - -+ go (FH5=1))]
(respectively, Q [g3 (Z) --- g3 (ZE2=1)]).

We shall generalize Theorem 2.1. Let

finite
fir) =) eiga(r)*gs(m) A7)
where all e; are algebraic numbers, 4a; + 6b; + 12¢; = k for all 4. In fact,
since A(T) = go(7)% ~27g3(7)?, we shall take f(7) € Q[g2(7), g3(7)] with
Q2 the field of algebraic numbers.
Then we get

FE) _ T eiga(5)™ s(5) A"
f0) LM eiga(r)oga(r)b Ar)e

finite 6192( )iga( L )b A( )i
Z k(L )" (%)k
finite elgg(T)algs(T)b i A(7T)% n(T)k
wkn(r)*

>
E finite , g2(Z)™ g3(&)%% A(Z)
2

R I L A CIR G
ﬁnlte . gQ(T)ai . ga(T)Gbi . A(T)L’L n(T)k :
€ 7\'4“1'7)(7')4“1' W“in(T)Gbi 7‘-1217](7—)121

Since
. 92 g9a(L)" A(R)e and T3
L 71-4017’(%)4(11 ’ 71'6b"7'](7’)6bi 4 lecin(%)l2ci ’ 77(7.)
. & . . T G
are algebraic numbers, is an algebraic number. Similarly,
' f(r) f(7)
is an algebraic number for i =1,--- ,n — 1. Thus

n—

(=)
1 7@y

o
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is an algebraic number.
And let

finite

ZthQ )% g3 ()% A (1),

where h; are all algebraic numbers, 4a’; + 60} + 12¢; = k' for all j.

9(7) , ;_
Similarly, ( T ) is an algebraic number, for all j = 0,1,--- ,n — 1.
And let A(7) = g(—lg By the same method as above, we get
ME) _ X eiga(B) g (2)HA(Z)"
h(T) Ejﬁmte h] 2(%)ajg3(%)b;A(%)cj

In other words, we get

. i A b, ’
3 g2 (Z) i ga( 2)A(Z) M higa(m) M gs(r) T A(T)

() . () n(r)F n(5)F
S hga(2) T as (2)TA(E)T i eiga(n)ias(NPAM® p(Z)Kp(r)k
: n(Z)* n(r)*
(%) h(ZH)
Since each term is an algebraic number, so is —2-. Similarly, n
h(r) h()

is also an algebraic number with j any integer.

Therefore,
T (FE) /10
11 (9(7“) Q(T)>

i=0

is an algebraic number. Consequently, there exists F(z) = 2%+ --4¢4 €

T4 T
Qle] satisfying F (Hgol (ﬁ((ii / %> ) )

So,
() (4

Thus we get the following;:

d
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THEOREM 2.2. Let n be any positive integer, let T € K NY, and let
f(r), g(r) € Q(g2(7), 93(7)) with homogeneous degree k and k', where

Q is the field of algebraic numbers. Then h(r) = L& (( ; is integral over Q
[A(Z) --- h(TE2=1)]. Also h(T) is integral over Q [h(TER LY ... p(Thin))
with i1,--- , 1, integers.

If dim®t, = 1 and f(7) € My, then f(7) = rga(7)%g3(7)PA(7)¢ with
4a+6b+12¢ =k and r € C. And we get

) 7’!]2(%)"93(%)%(%)C
T)  rga(r)egs(T)PA(T)°

-(58) (58 (58)

T4

By (1.3), (2.1) and (2.2), we get T;‘_)—— is an algebraic number with
i € Z. Thus, there exists F(x) = aoz™ + -+ + a;n € Q[z] such that

f

n—1 f(lii) _ 3 .
F 1L Fon )= 0. Thus we have the following:

COROLLARY 2.3. Let n be any positive integer, let T € KN, and let
f(1) € C(go(7), g3(7)) be a polynomial with homogeneous degree in 9y,
and dim9, = 1. Then f(r) is integral over Q [f(Z) --- f(T2=1)]. Also

f(7) is integral over Q [f(TE%) ... f(Ta)] with iy, - i, integers.
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