# CERTAIN MAXIMAL OPERATOR AND ITS WEAK TYPE $L^1(\mathbb{R}^n)$ -ESTIMATE

## YONG-CHEOL KIM

ABSTRACT. Let  $\{A_t = \exp(M \log t)\}_{t>0}$  be a dilation group where M is a real  $n \times n$  matrix whose eigenvalues has strictly positive real part, and let  $\varrho$  be an  $A_t$ -homogeneous distance function defined on  $\mathbb{R}^n$ . Suppose that  $\mathcal{K}$  is a function defined on  $\mathbb{R}^n$  such that  $|\mathcal{K}(x)| \leq \mathfrak{K} \circ \varrho(x)$  for a decreasing function  $\mathfrak{K}(t)$  on  $\mathbb{R}_+$  satisfying  $\mathfrak{K} \circ \varrho \in L^1(\omega_0)$  where  $\omega_0(x) = |\log|\log \varrho(x)||$ . For  $f \in L^1(\mathbb{R}^n)$ , define  $\mathfrak{M}f(x) = \sup_{t>0} |\mathcal{K}_t * f(x)|$  where  $\mathcal{K}_t(x) = t^{-\nu}\mathcal{K}(A_{1/t} x)$  and  $\nu$  is the trace of M. Then we show that  $\mathfrak{M}$  is a bounded operator of  $L^1(\mathbb{R}^n)$  into  $L^{1,\infty}(\mathbb{R}^n)$ .

#### 1. Introduction

Let M be a real  $n \times n$  matrix whose eigenvalues  $\lambda_i$  satisfy  $\operatorname{Re}(\lambda_i) > 0$ ; set  $\lambda_0 = \min_{1 \leq i \leq n} \operatorname{Re}(\lambda_i)$  and  $\lambda_m = \max_{1 \leq i \leq n} \operatorname{Re}(\lambda_i)$ , and let  $\nu$  be the trace of M. Then the linear transformations  $A_t = \exp(M \log t), t > 0$ , form a dilation group generated by the infinitesimal generator M. We now introduce  $A_t$ -homogeneous distance functions  $\varrho$  defined on  $\mathbb{R}^n$ ; that is,  $\varrho$  is a smooth function on  $\mathbb{R}^n = \mathbb{R}^n \setminus \{0\}$  with strictly positive values satisfying the generalized homogeneity condition  $\varrho(A_t x) = t\varrho(x)$  for all  $x \in \mathbb{R}^n$  and t > 0. Then such  $\varrho$ 's satisfy the generalized triangle inequality, i.e. there is a constant  $\mu \geq 1$  such that

$$\varrho(x+y) \le \mu[\varrho(x) + \varrho(y)]$$

for any  $x, y \in \mathbb{R}^n$ .

Received April 11, 2001.

<sup>2000</sup> Mathematics Subject Classification: 42B10, 42B20, 42B25.

Key words and phrases: maximal operator, weak type  $L^1(\mathbb{R}^n)$ -estimate.

The author was supported in part by Dong-A University Research Grant.

Next we define generalized polar coordinates with respect to the quasi-distance function  $\varrho$ , which are given by the diffeomorphism

$$\mathbb{R}_+ \times \Sigma_{\varrho} \to \mathbb{R}_0^n, \ (\varrho, \xi) \mapsto A_{\varrho} \zeta = x,$$

for  $\varrho > 0$  and  $\zeta \in \Sigma_{\varrho} = \{\zeta \in \mathbb{R}^n | \varrho(\zeta) = 1\}$ . Then the Lebesgue measure dx transforms by way of

(1.1) 
$$dx = \varrho^{\nu-1} \langle M\zeta, n(\zeta) \rangle \, d\varrho \, d\sigma(\zeta)$$

where  $d\sigma$  denotes the surface measure on the unit sphere  $\Sigma_{\varrho}$  and  $n(\zeta)$  is the outer unit normal vector to  $\Sigma_{\varrho}$  at  $\zeta \in \Sigma_{\varrho}$ .

We now introduce the quasi-Banach space  $L^{1,\infty}(\mathbb{R}^n)$ , which is called weak- $L^1$  space, with the norm given by

$$||f||_{L^{1,\infty}} = \sup_{s>0} s|\{x \in \mathbb{R}^n | |f(x)| > s\}| < \infty.$$

That is,  $L^{1,\infty}(\mathbb{R}^n)$  is the space of all measurable functions f defined on  $\mathbb{R}^n$  such that  $||f||_{L^{1,\infty}} < \infty$ . As in [2], we introduce weighted integrable functions with a weight  $\omega(x)$ . We denote by  $L^1(\omega)$  the space of all measurable functions f defined on  $\mathbb{R}^n$  for which

$$\int_{\mathbb{R}^n} |f(x)| \, \omega(x) \, dx < \infty.$$

Let us introduce weighted integrable functions with a weight  $\omega_0(x) = |\log|\log \varrho(x)||$ . Then it is easy to see that the space  $L^1(\omega_0)$  is a proper subspace of  $L^1(\mathbb{R}^n)$ . Our main result is to obtain weak type  $L^1(\mathbb{R}^n)$ -estimate for certain maximal operator to be defined in the following. In what follows, we always suppose that  $\mathcal{K}$  is a function defined on  $\mathbb{R}^n$  such that

$$|\mathcal{K}(x)| \leq \mathfrak{K} \circ \varrho(x)$$

where  $\mathfrak{K}(t)$  is a function defined on  $\mathbb{R}_+$ . For  $f \in L^1(\mathbb{R}^n)$ , we now define

$$\mathfrak{M}f(x) = \sup_{t>0} |\mathcal{K}_t * f(x)|$$

where  $\mathcal{K}_t(x) = t^{-\nu} \mathcal{K}(A_{1/t} x)$  for t > 0.

THEOREM 1.1. If  $\mathfrak{K}(t)$  is decreasing on  $\mathbb{R}_+$  and  $\mathfrak{K} \circ \varrho \in L^1(\omega_0)$  where  $\omega_0(x) = |\log |\log \varrho(x)||$ , then  $\mathfrak{M}$  is a bounded operator of  $L^1(\mathbb{R}^n)$  into  $L^{1,\infty}(\mathbb{R}^n)$ ; that is, there is a constant C = C(n) such that for any  $f \in L^1(\mathbb{R}^n)$ ,

$$|\{x \in \mathbb{R}^n | \mathfrak{M}f(x) > s\}| \le \frac{C}{s} ||f||_{L^1}, \ s > 0.$$

REMARK. (i) It is well-known that the maximal operator associated with isotropic dilation on the kernel with decreasing radial  $L^1(\mathbb{R}^n)$ -majorant is dominated by the classical Hardy-Littlewood maximal operator. However, this no longer works for anisotropic cases.

(ii) The weak type  $L^1(\mathbb{R}^n)$ -estimate for  $\mathfrak{M}$  under the stronger assumption is found in [2]; in fact, they assumed that the kernel has a certain ellipsoidal majorant that is bounded, decreasing, and in the maximal weighted  $L^1$ -space related with a weight  $\omega_{\varepsilon}(x)=(1+\|x\|_Q)^{\varepsilon}, \varepsilon>0$ , where Q is a certain positive definite and real symmetric matrix so that  $\|A_t x\|_Q$  is increasing in t for the norm  $\|\cdot\|_Q$  which is defined by  $\|x\|_Q = \langle Qx, x \rangle^{1/2}$  for  $x \in \mathbb{R}^n$ . If  $1 and the kernel <math>\mathcal{K}$  has a quasiradial majorant which is decreasing and integrable, then it is well-known (see [4]) that the maximal operator  $\mathfrak{M}$  is bounded on  $L^p(\mathbb{R}^n)$ . When p is near below 1, if the kernel  $\mathcal{K}$  has a quasiradial majorant which is bounded, decreasing, and in the maximal weighted  $L^1$ -space, then it is known (see [3]) that the maximal operator  $\mathfrak{M}$  is a bounded operator of certain anisotropic Hardy space  $H^p(\mathbb{R}^n; \varrho)$  into the weak  $L^p$ -space  $L^{p,\infty}(\mathbb{R}^n)$  where  $\varrho$  is an  $A_t$ -homogeneous distance function on  $\mathbb{R}^n$ .

# 2. Weak type $L^1(\mathbb{R}^n)$ -estimate

We first of all introduce a Vitali family [5] and the result of Stein and Weiss [7] on summing up weak type functions.

Suppose that  $\{\mathcal{U}_s|s>0\}$  is a family of open subsets of  $\mathbb{R}^n$  whose closure is compact. Then we say that  $\{\mathcal{U}_s|s>0\}$  is a Vitali family with constant A>0, if the followings are satisfied; (i)  $\mathcal{U}_s\subset\mathcal{U}_{s'}$  for  $s\leq s'$  and  $\cap_{s>0}\mathcal{U}_s=\{0\}$ , (ii)  $|\mathcal{U}_s-\mathcal{U}_s|\leq A|\mathcal{U}_s|$  for all s>0, and (iii)  $\lim_{k\to\infty}|\mathcal{U}_{s_k}|=|\mathcal{U}_s|$  when  $\lim_{k\to\infty}s_k=s$ .

LEMMA 2.1. Suppose that  $\{g_j\}$  is a sequence of nonnegative functions on a measure space for which  $\|g_j\|_{L^{1,\infty}} \leq A$  where A > 0 is a

constant. Let  $\{\alpha_j\}$  be a sequence of positive numbers with  $\sum_j \alpha_j = 1$ . Then we have that

$$\Big\| \sum_j \alpha_j \, g_j \Big\|_{L^{1,\infty}} \leq 2A(N+2)$$

where  $N = \sum_{j} \alpha_{j} \log(1/\alpha_{j})$ .

PROOF OF THEOREM 1.1. For  $k \in \mathbb{Z}$ , set  $\mathcal{U}_k = \{y \in \mathbb{R}^n | \varrho(y) \leq 2^k\}$ . Then it follows from simple computation that

$$\begin{split} |\mathcal{K}(x)| &\leq \sum_{k \in \mathbb{Z}} (\mathfrak{K} \circ \varrho(x)) \chi_{\mathcal{U}_{k}}(x) \\ &\leq \sum_{k \in \mathbb{Z}} \mathfrak{K}(2^{k-1}) \chi_{\mathcal{U}_{k}}(x) \\ &= \sum_{k \in \mathbb{Z}} 2^{k\nu} \mathfrak{K}(2^{k-1}) \frac{1}{2^{k\nu}} \chi_{\mathcal{U}_{k}}(x) \\ &\leq C \sum_{k \in \mathbb{Z}} 2^{k\nu} \mathfrak{K}(2^{k-1}) \frac{1}{|\mathcal{U}_{k}|} \chi_{\mathcal{U}_{k}}(x). \end{split}$$

For  $k \in \mathbb{Z}$ , set  $d_k = 2^{k\nu} \mathfrak{K}(2^{k-1})$  and  $d = \sum_{k \in \mathbb{Z}} 2^{k\nu} \mathfrak{K}(2^{k-1}) < \infty$ . If  $c_k = d_k/d$ , then we first show that

(2.2) 
$$\mathcal{J} = \sum_{k \in \mathbb{Z}} c_k [1 + \log^+(1/c_k)] < \infty.$$

Let  $\mathbb{E} = \{k \in \mathbb{Z} \setminus \{0\} | d_k \le 1/k^2\}$ . Since  $t(1 + \log(1/t))$  is increasing on (0,1], we then have that

$$\frac{1}{d} \sum_{k \in \mathbb{Z}} d_k [1 + \log^+ d + \log^+ (1/d_k)]$$

$$\leq \sum_{k \in \mathbb{Z} \setminus \{0\}} \frac{1}{k^2} [1 + \log^+ d + \log(k^2)] < \infty.$$

We observe that the assumption  $\mathfrak{K} \circ \varrho \in L^1(\omega_0)$  is equivalent to the condition

$$\sum_{k\in\mathbb{Z}\backslash\{0\}}\mathfrak{K}(2^k)2^{k\nu}(1+\log|k|)<\infty.$$

Hence this makes it possible to get

$$\frac{1}{d} \sum_{k \notin \mathbb{E}} d_k (1 + \log^+ d + \log^+ (1/d_k))$$

$$\leq \sum_{k \in \mathbb{Z} \setminus \{0\}} d_k (1 + \log^+ d + \log(k^2)) < \infty.$$

Thus we obtain that  $\mathcal{J} < \infty$ .

Next we show that if we let  $\mathcal{U}_t^k = \{y \in \mathbb{R}^n | \varrho(A_{1/t} y) \leq 2^k\}$  for  $k \in \mathbb{Z}$  and t > 0, then for each  $k \in \mathbb{Z}$ ,  $\{\mathcal{U}_t^k | t > 0\}$  is a Vitali family with constant  $(2\mu)^{\nu}$ . It is clear to show that given  $k \in \mathbb{Z}$ ,  $\mathcal{U}_t^k \subset \mathcal{U}_{t'}^k$  for  $t \leq t'$  and  $\cap_{t>0}\mathcal{U}_t^k = \{0\}$ . By the generalized triangle inequality, we have that  $\mathcal{U}_t^k - \mathcal{U}_t^k \subset \mathcal{U}_{2\mu t}^k$ , and so

$$\begin{split} |\mathcal{U}^k_t - \mathcal{U}^k_t| &\leq |\mathcal{U}^k_{2\mu t}| = \int_{\varrho(y) \leq 2\mu t 2^k} dy \\ &= \int_{\Sigma_\varrho} \langle M\zeta, n(\zeta) \rangle \int_0^{2\mu t 2^k} \varrho^{\nu - 1} d\varrho \, d\sigma(\zeta) \\ &= (2\mu)^\nu |\mathcal{U}^k_t|. \end{split}$$

Since  $|\mathcal{U}_t^k| = |\mathcal{B}(0;1)| 2^{\nu} t^{\nu}$ , we finally get that  $\lim_{k\to\infty} |\mathcal{U}_{t_k}| = |\mathcal{U}_t|$  when  $\lim_{k\to\infty} t_k = t$ . This implies that  $\{\mathcal{U}_t^k|t>0\}$  is a Vitali family with constant  $(2\mu)^{\nu}$ . It easily follows from (2.1) that

$$|\mathcal{K}_t * f(x)| \le C \sum_{k \in \mathbb{Z}} 2^{k\nu} \mathfrak{K}(2^{k-1}) \frac{1}{2^{k\nu} t^{\nu}} \chi_{\mathcal{U}_t^k} * |f|(x)$$
  
  $\le C \sum_{k \in \mathbb{Z}} 2^{k\nu} \mathfrak{K}(2^{k-1}) \mathcal{M}_k f(x),$ 

where

$$\mathcal{M}_k f(x) = \sup_{t>0} \frac{1}{2^{k\nu} t^{\nu}} \chi_{\mathcal{U}_t^k} * |f|(x).$$

Then by the maximal theorem [5] on a Vitali family, we have that for each  $k \in \mathbb{Z}$ ,

$$|\{x \in \mathbb{R}^n | \mathcal{M}_k f(x) > s\}| \le \frac{(2\mu)^{\nu}}{s} \|f\|_{L^1}, \ s > 0.$$

Thus by Lemma 2.1 and (2.2) we have that

$$|\{x \in \mathbb{R}^n | \mathfrak{M}f(x) > s\}| \le \frac{2C(2\mu)^{\nu} (\mathcal{J} + 2)}{s} ||f||_{L^1}, \ s > 0.$$

Therefore, we complete the proof.

### References

- [1] R. Fefferman, A theory of entropy in Fourier analysis, Adv. Math. 30 (1978), 171-201.
- [2] Y.-C. Kim, Weak type  $L^1(\mathbb{R}^n)$ -estimate for certain maximal operators, J. Korean Math. Soc. **34** (1997), no. 4, 1029–1036.
- [3] \_\_\_\_\_, Weak type estimates for maximal operators on certain anisotropic Hardy space, Proc. of Real Analysis Symp. in Japan (Sendai) (1997), 35–38.
- [4] W. Madych, On Littlewood-Paley functions, Studia Math. 50 (1974), 43-63.
- [5] N. M. Riviére, Singular integrals and multiplier operators, Ark. Mat. 9 (1971), 243–278.
- [6] E. M. Stein and S. Wainger, Problems in harmonic analysis related to curvature, Bull. Amer. Math. Soc. 84 (1978), 1239-1295.
- [7] E. M. Stein and N. J. Weiss, On the convergence of Poisson integrals, Trans. Amer. Math. Soc. 140 (1969), 34-54.

Department of Mathematics Dong-A University Pusan 604-714, Korea E-mail: yckim@daunet.donga.ac.kr

CURRENT ADDRESS:
Department of Mathematics Education
Korea University
Seoul 136-701, Korea
E-mail: ychkim@korea.ac.kr