• 제목/요약/키워드: zero divisor

검색결과 63건 처리시간 0.027초

A GENERALIZED IDEAL BASED-ZERO DIVISOR GRAPHS OF NEAR-RINGS

  • Dheena, Patchirajulu;Elavarasan, Balasubramanian
    • 대한수학회논문집
    • /
    • 제24권2호
    • /
    • pp.161-169
    • /
    • 2009
  • In this paper, we introduce the generalized ideal-based zero-divisor graph structure of near-ring N, denoted by $\widehat{{\Gamma}_I(N)}$. It is shown that if I is a completely reflexive ideal of N, then every two vertices in $\widehat{{\Gamma}_I(N)}$ are connected by a path of length at most 3, and if $\widehat{{\Gamma}_I(N)}$ contains a cycle, then the core K of $\widehat{{\Gamma}_I(N)}$ is a union of triangles and rectangles. We have shown that if $\widehat{{\Gamma}_I(N)}$ is a bipartite graph for a completely semiprime ideal I of N, then N has two prime ideals whose intersection is I.

AN IDEAL - BASED ZERO-DIVISOR GRAPH OF POSETS

  • Elavarasan, Balasubramanian;Porselvi, Kasi
    • 대한수학회논문집
    • /
    • 제28권1호
    • /
    • pp.79-85
    • /
    • 2013
  • The structure of a poset P with smallest element 0 is looked at from two view points. Firstly, with respect to the Zariski topology, it is shown that Spec(P), the set of all prime semi-ideals of P, is a compact space and Max(P), the set of all maximal semi-ideals of P, is a compact $T_1$ subspace. Various other topological properties are derived. Secondly, we study the semi-ideal-based zero-divisor graph structure of poset P, denoted by $G_I$ (P), and characterize its diameter.

An Alternative Perspective of Near-rings of Polynomials and Power series

  • Shokuhifar, Fatemeh;Hashemi, Ebrahim;Alhevaz, Abdollah
    • Kyungpook Mathematical Journal
    • /
    • 제62권3호
    • /
    • pp.437-453
    • /
    • 2022
  • Unlike for polynomial rings, the notion of multiplication for the near-ring of polynomials is the substitution operation. This leads to somewhat surprising results. Let S be an abelian left near-ring with identity. The relation ~ on S defined by letting a ~ b if and only if annS(a) = annS(b), is an equivalence relation. The compressed zero-divisor graph 𝚪E(S) of S is the undirected graph whose vertices are the equivalence classes induced by ~ on S other than [0]S and [1]S, in which two distinct vertices [a]S and [b]S are adjacent if and only if ab = 0 or ba = 0. In this paper, we are interested in studying the compressed zero-divisor graphs of the zero-symmetric near-ring of polynomials R0[x] and the near-ring of the power series R0[[x]] over a commutative ring R. Also, we give a complete characterization of the diameter of these two graphs. It is natural to try to find the relationship between diam(𝚪E(R0[x])) and diam(𝚪E(R0[[x]])). As a corollary, it is shown that for a reduced ring R, diam(𝚪E(R)) ≤ diam(𝚪E(R0[x])) ≤ diam(𝚪E(R0[[x]])).

THE ANNIHILATING-IDEAL GRAPH OF A RING

  • ALINIAEIFARD, FARID;BEHBOODI, MAHMOOD;LI, YUANLIN
    • 대한수학회지
    • /
    • 제52권6호
    • /
    • pp.1323-1336
    • /
    • 2015
  • Let S be a semigroup with 0 and R be a ring with 1. We extend the definition of the zero-divisor graphs of commutative semigroups to not necessarily commutative semigroups. We define an annihilating-ideal graph of a ring as a special type of zero-divisor graph of a semigroup. We introduce two ways to define the zero-divisor graphs of semigroups. The first definition gives a directed graph ${\Gamma}$(S), and the other definition yields an undirected graph ${\overline{\Gamma}}$(S). It is shown that ${\Gamma}$(S) is not necessarily connected, but ${\overline{\Gamma}}$(S) is always connected and diam$({\overline{\Gamma}}(S)){\leq}3$. For a ring R define a directed graph ${\mathbb{APOG}}(R)$ to be equal to ${\Gamma}({\mathbb{IPO}}(R))$, where ${\mathbb{IPO}}(R)$ is a semigroup consisting of all products of two one-sided ideals of R, and define an undirected graph ${\overline{\mathbb{APOG}}}(R)$ to be equal to ${\overline{\Gamma}}({\mathbb{IPO}}(R))$. We show that R is an Artinian (resp., Noetherian) ring if and only if ${\mathbb{APOG}}(R)$ has DCC (resp., ACC) on some special subset of its vertices. Also, it is shown that ${\overline{\mathbb{APOG}}}(R)$ is a complete graph if and only if either $(D(R))^2=0,R$ is a direct product of two division rings, or R is a local ring with maximal ideal m such that ${\mathbb{IPO}}(R)=\{0,m,m^2,R\}$. Finally, we investigate the diameter and the girth of square matrix rings over commutative rings $M_{n{\times}n}(R)$ where $n{\geq} 2$.

SQUAREFREE ZERO-DIVISOR GRAPHS OF STANLEY-REISNER RINGS

  • Nikseresht, Ashkan
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1381-1388
    • /
    • 2018
  • Let ${\Delta}$ be a simplicial complex, $I_{\Delta}$ its Stanley-Reisner ideal and $K[{\Delta}]$ its Stanley-Reisner ring over a field K. Assume that ${\Gamma}(R)$ denotes the zero-divisor graph of a commutative ring R. Here, first we present a condition on two reduced Noetherian rings R and R', equivalent to ${\Gamma}(R){\cong}{\Gamma}(R{^{\prime}})$. In particular, we show that ${\Gamma}(K[{\Delta}]){\cong}{\Gamma}(K^{\prime}[{\Delta}^{\prime}])$ if and only if ${\mid}Ass(I_{\Delta}){\mid}={\mid}Ass(I_{{{\Delta}^{\prime}}}){\mid}$ and either ${\mid}K{\mid}$, ${\mid}K^{\prime}{\mid}{\leq}{\aleph}_0$ or ${\mid}K{\mid}={\mid}K^{\prime}{\mid}$. This shows that ${\Gamma}(K[{\Delta}])$ contains little information about $K[{\Delta}]$. Then, we define the squarefree zero-divisor graph of $K[{\Delta}]$, denoted by ${\Gamma}_{sf}(K[{\Delta}])$, and prove that ${\Gamma}_{sf}(K[{\Delta}){\cong}{\Gamma}_{sf}(K[{\Delta}^{\prime}])$ if and only if $K[{\Delta}]{\cong}K[{\Delta}^{\prime}]$. Moreover, we show how to find dim $K[{\Delta}]$ and ${\mid}Ass(K[{\Delta}]){\mid}$ from ${\Gamma}_{sf}(K[{\Delta}])$.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • 대한수학회지
    • /
    • 제51권1호
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

THE ZERO-DIVISOR GRAPH UNDER GROUP ACTIONS IN A NONCOMMUTATIVE RING

  • Han, Jun-Cheol
    • 대한수학회지
    • /
    • 제45권6호
    • /
    • pp.1647-1659
    • /
    • 2008
  • Let R be a ring with identity, X the set of all nonzero, nonunits of R and G the group of all units of R. First, we investigate some connected conditions of the zero-divisor graph $\Gamma(R)$ of a noncommutative ring R as follows: (1) if $\Gamma(R)$ has no sources and no sinks, then $\Gamma(R)$ is connected and diameter of $\Gamma(R)$, denoted by diam($\Gamma(R)$) (resp. girth of $\Gamma(R)$, denoted by g($\Gamma(R)$)) is equal to or less than 3; (2) if X is a union of finite number of orbits under the left (resp. right) regular action on X by G, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3, in addition, if R is local, then there is a vertex of $\Gamma(R)$ which is adjacent to every other vertices in $\Gamma(R)$; (3) if R is unit-regular, then $\Gamma(R)$ is connected and diam($\Gamma(R)$) (resp. g($\Gamma(R)$)) is equal to or less than 3. Next, we investigate the graph automorphisms group of $\Gamma(Mat_2(\mathbb{Z}_p))$ where $Mat_2(\mathbb{Z}_p)$ is the ring of 2 by 2 matrices over the galois field $\mathbb{Z}_p$ (p is any prime).