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UNIT-DUO RINGS AND RELATED GRAPHS

OF ZERO DIVISORS

Juncheol Han, Yang Lee, and Sangwon Park

Abstract. Let R be a ring with identity, X be the set of all nonzero,
nonunits of R and G be the group of all units of R. A ring R is called
unit-duo ring if [x]ℓ = [x]r for all x ∈ X where [x]ℓ = {ux | u ∈ G} (resp.
[x]r = {xu |u ∈ G}) which are equivalence classes on X. It is shown
that for a semisimple unit-duo ring R (for example, a strongly regular
ring), there exist a finite number of equivalence classes on X if and only

if R is artinian. By considering the zero divisor graph (denoted Γ̃(R))
determined by equivalence classes of zero divisors of a unit-duo ring R, it

is shown that for a unit-duo ring R such that Γ̃(R) is a finite graph, R is

local if and only if diam(Γ̃(R)) = 2.

1. Introduction and basic definitions

Throughout this paper all rings are associative with identity unless otherwise
stated. Let R be a ring. X(R) (or simply, X) denotes the set of all nonzero
nonunits in R, and G(R) (or simply, G) denotes the group of all units in R.
Let J(R) (or simply, J) denote the Jacobson radical of R. |S | denotes the
cardinality of any set S. GF (pn) denotes the Galois field of order pn.

Denote the n by n full (resp., upper triangular) matrix ring over R by
Matn(R) (resp., Un(R)) and use eij for the matrix with (i, j)-entry 1 and
elsewhere 0. Following the literature, we write Dn(R) = {(aij) ∈ Un(R) | all
diagonal entries are equal} and Vn(R) = {(aij) ∈ Dn(R) | a1k = a2(k+1) =

· · · = ahn for h = 1, 2, . . . , n − 1 and k = 2, . . . , n}. Note Vn(R) ∼=
R[x]

xnR[x] , so

Vn(R) is commutative if so is R.
For x, y ∈ R, we say that x ∼ℓ y (resp. x ∼r y) if and only if y = ux (resp.

y = xu) for some unit u ∈ R. Then both ∼ℓ (resp. ∼r) is an equivalence
relation on R. Let [x]ℓ (resp. [x]r) be the equivalence class containing x ∈ R
under ∼ℓ (resp. ∼r). A ring R is called unit-duo if [x]ℓ = [x]r for all x ∈ R
(refer [8]). Any commutative ring and a finite direct product of division rings
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are unit-duo rings. Note that a ring R in which X is not an empty set is a
unit-duo ring if and only if [x]ℓ = [x]r for all x ∈ X . Indeed, [u]ℓ = [u]r = G
for all units u ∈ R, and [0]ℓ = [0]r = {0}. For a unit-duo ring R, we denote
[x]ℓ = [x]r by [x] for each x ∈ R and denote ∼ℓ (=∼r) by ∼.

In Section 2, we will show that (i) if R is a right (resp. left) unit-duo ring
such that X(R) is a finite union of equivalence classes under ∼ℓ (resp. ∼r),
then every x ∈ X(R) is a two-sided zero divisor; (ii) for a field F , there are just
only two types of unit-duo subrings of Matn(F ) (n ≥ 2) up to isomorphism,
say, the ring of all diagonal matrices in Matn(R) and Vn(F ); (iii) for a strong
regular ring R (which is unit-duo), the followings are equivalent:

(1) There exist a finite number of idempotents of R;
(2) There exist a finite number of equivalence classes under relation ∼;
(3) R is artinian;
(4) R ≃ D1 ×D2 × · · · ×Dt for some positive integer t.

On the other hand, the zero divisor graph of a commutative ring has been
studied extensively by Akbari, Mohammadian [1], Anderson, Livingston [2]
since its concept had been introduced by Beck in [3]. The zero-divisor graph of
a noncommutative ring (resp. a semigroup) has studied by Redmond and Wu
(resp., F. DeMeyer and L. Demeyer) in [12, 13, 15] (resp., [5]). Zero divisor
graph is very useful to find the algebraic structures and properties of rings.
Recently, the graph of equivalence classes of zero divisors of a commutative
Noetherian ring was studied by Spiroff and Wickham in [14]. Note that if R is
a unit-duo ring, then for all x, y ∈ R, [xy] = [x][y], i.e., multiplication is well
defined on {[x] |x ∈ R}. For a ring R, let Z(R) be the set of all left or right
zero divisors of R and Z(R)∗ = Z(R) \ {0}. In this article, loops (i.e., edges
from some vertex to itself) can be considered edges in a zero-divisor graph
and we study the graph of equivalence classes of zero-divisor of a unit-duo by
considering the following definition:

Definition 1.1. Let R be a unit-duo ring. The graph of equivalence classes of

elements in Z(R)∗, denoted Γ̃(R), is the graph associated to R whose vertices
are the classes of elements in Z(R)∗, and edges [x] −→ [y], which means that
[x][y] = [0] for each pair of vertices [x], [y] (not necessarily distinct).

Example 1.2. Let D be a noncommutative division ring, and consider a ring

R =








a b c
0 a b
0 0 a


 | a, b, c ∈ D



 .

Let eij denote the matrix in the R with 1 in the (i, j)-position and 0 elsewhere.
Then R is a noncommutative local ring with J2 6= 0 = J3 and there exist
two equivalence classes [x]ℓ = [x]r = [x], [y]ℓ = [y]r = [y] in X such that

X = [x]∪ [y] where x = e13, y = e12 + e23. Thus R is a unit-duo ring and Γ̃(R)
is a graph with two vertices in which there is just one loop.
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Also note that even though Γ(R) is infinite graph (a graph with infinite set

of vertices), Γ̃(R) is a finite graph with two vertices.

Example 1.3. Let D be a noncommutative division ring, and consider a ring

R =








a b c
0 a 0
0 0 a


 | a, b, c ∈ D



 .

Then R is a noncommutative local ring with J 6= 0 = J2 and there exists the
only one equivalence class [e12+ e13]ℓ = [e12+ e13]r = X . Thus R is a unit-duo

ring and Γ̃(R) is a graph with just one vertex and one edge which is a loop.

Example 1.4. Let R = D1 ⊕ D2 be a direct product of two division rings
D1 and D2. Then there exist two equivalences [(1, 0)]ℓ = [(1, 0)]r = [(1, 0)],
[(0, 1)]ℓ = [(0, 1)]r = [(0, 1)] in X such that X = [(1, 0)] ∪ [(0, 1)], and so R is a

unit-duo ring and Γ̃(R) is a graph with two vertices in which there is no loop.

The indegree of a vertex v in a graph, denoted indegree(v), is the number
of edges arriving at v. Similarly, the outdegree of v, denoted outdegree(v), is
the number of edges leaving at v. That is, indegree(v) = |annℓ(v) \ {0}| and
outdegree(v) = |annr(v) \ {0}| where annℓ(v) (resp. annr(v)) is a left (resp.
right) annihilator of v. Of course, for a commutative ring case, indegree(v) =
outdegree(v) for any vertex of v in a graph, which is called the degree of v,
denoted degree(v). A vertex of indegree 0 (resp. outdegree 0) is called a source

(resp. sink). A path of length n from a vertex u to a vertex w is a sequence
of distinct vertices vi of the form u = v0 −→ v1 −→ · · · vn = w such that
vi −→ vi+1 is an edge for each i = 0, . . . , n− 1. The distance from a vertex u
to a vertex w, denoted d(u,w), is the length of the shortest path from u to w.
When there is no path from a vertex u to a vertex w, we let d(u,w) = ∞.

Recall that a graph Γ(R) over a ring R is connected if for all distinct vertices
u,w there exists a path from u to w. The diameter of a graph (denoted by
diam(Γ(R))) is the supremum of d(u,w) for all distinct vertices u and w. If
d(u, u) = k in a graph, then the path is called the cycle of length k. In
particular, a cycle of length 2 in a graph is called a loop (i.e., an edge from
some vertex to itself). In this paper, a loop can be considered an edge in a
graph. If there is a cycle in a graph, then the girth of the graph (denoted by
g(Γ(R))) (denoted by diam(Γ(R)) is defined by the length of the shortest cycle
in Γ(R), otherwise, the girth of the graph is ∞. In [6, Proposition 1.3.2], if
Γ(R) contains a cycle, then 1 + 2diam(Γ(R)) ≥ g(Γ(R)). We say that a graph
is complete if there is an edge from u to w for any distinct vertices u,w of the
graph.

In Section 3, we will show that (1) for a unit-duo ring R such that X 6= ∅,

if Γ̃(R) is a finite graph (i.e., a graph with a finite number of vertices), then

Γ̃(R) is connected and diam(Γ̃(R)) (resp. g(Γ̃(R)) is equal to or less than 3;
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(2) for a semisimple unit-duo ring R, R is an artinian ring if and only if Γ̃(R)
is a finite graph.

Let Zn be the ring of integer of modulo n. In Section 3, we show that

all vertices of Γ̃(Zn) are equivalences of all nonunit proper divisors of n. Let

m = pα1

1 · · · pαs

s and n = qβ1

1 · · · qβt

t be the prime factorization of m and n
respectively. Then we have an equivalence relation ≃ on the ring of integers
defined by m ≃ n if s = t and each αi = βi by reordering q′is. We also show

that m ≃ n if and only if Γ̃(Zm) is isomorphic to Γ̃(Zn).

2. Properties of unit-duo rings

In [8], it was shown that any right (left) unit-duo ring R is abelian (i.e.,
every idempotent in R is central). In [11], it was also shown that if a ring R
has a finite number of equivalence classes under ≃ℓ, then R is an artinian ring
with J(R)n+1 = 0 where n is the number of classes under ≃ℓ.

Proposition 2.1. Let R be a right (resp. left) unit-duo ring such that X(R) is
a finite union of equivalence classes under ∼ℓ (resp. ∼r). Then every x ∈ X(R)
is a two-sided zero divisor.

Proof. Let R be a right unit-duo ring and x ∈ X(R) be arbitrary. If x is
nilpotent, then clearly, x is a two-sided zero divisor. Suppose that x is not
nilpotent and consider x, x2, . . . . Note that xk ∈ X(R) for all k ≥ 1. Since
X(R) is a finite union of equivalence classes under ∼ℓ, [x

r ]ℓ = [xs]ℓ for some
positive integers r, s (r > s). Then xr = uxs for some unit u ∈ R, i.e.,
(xr−s − u)xs−1x = 0. If (xr−s − u)xs−1 6= 0, then x is a right zero divisor. If
(xr−s − u)xs−1 = 0, then by continuing in this way, we can deduce that x is
a right zero divisor. Since R is right unit-duo, xr = uxs = xsv for some unit
v ∈ R. By the similar argument, we have that x is a left zero divisor. Hence
every x ∈ X is a two-sided zero divisor. �

Theorem 2.2. Let F be a field. Then there are just only two types of unit-duo

subrings of Matn(R) (n ≥ 2) up to isomorphism as follows:
(1) The ring of all diagonal matrices in R;

(2) Vn(R).

Proof. Let S be a unit-duo subring of R. Note that if there is no nonzero
nilpotent in S, then S is the ring of all diagonal matrices in R. Suppose
that there is some nonzero nilpotent in S. First, we will show that every
g = (gij) ∈ G(S) is upper triangular by proceeding by induction on n. Take



UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS 1633

x0 = e1n ∈ X(S). Then

gx0 =




0 0 · · · g11
0 0 · · · g21
· · · ·
· · · ·
· · · ·
0 0 · · · gn1




.

Since [x0]ℓ = [x0]r, gx0 = x0h for some h = (hij) ∈ G(S). Note that

x0h =




hn1 hn2 · · · hnn

0 0 · · · 0
· · · ·
· · · ·
· · · ·
0 0 · · · 0




,

yielding that g21 = g31 = · · · = gn1 = 0. and so

g =




g11 g12 · · · g1n
0 g22 · · · g2n
· · · ·
· · · ·
· · · ·
0 gn2 · · · gnn




.

Consider x1 = e1(n−1) + e2n ∈ X(S). Since [x1]ℓ = [x1]r, gx1 = x1k for
some k = (kij) ∈ G(S), yielding that g32 = g42 = · · · = gn2 = 0. Consider
xt = e1(n−t) + e2(n−t+1) + · · · + etn ∈ X(S) for each t ≥ 2. By the similar
argument, we have g(t+1)t = g(t+2)t = · · · = gnt = 0. Continuing in this way,
we have that every g ∈ G(S) is upper triangular.

Second, we will show that any a = (aij) ∈ X(S) is upper triangular. Note
that there exists g ∈ G(S) such that ga is upper triangular. Since S is unit-
duo, there exists h = (hij) ∈ G(S) such that ah = ga. By the above argument,
h is upper triangular, i.e., hij = 0 (i > j). Let ah = (brs). Since (brs) ∈
X(S) is upper triangular, brs = 0 for all r, s = 1, . . . , n (r > s). For each
r = 2, . . . , n, we will show that ars = 0 for all s = 1, . . . , n with r > s by using
the mathematical induction on s. For s = 1, since 0 = br1 = ar1h11, ari = 0.
Assume that ar1 = ar2 = · · · = ar(s−i) = 0. Then, for r > s, we have

0 = brs = ar1h1s + ar2h2s + · · ·+ ar(s−1)h(s−1)s + arshss.

By induction hypothesis, we have arshss = 0, and so ars = 0 because 0 6= hss ∈
F . Therefore, any a = (aij) ∈ X(S) is upper triangular.

Note that

a = diag1(a11, a22, . . . , ann) + diag2(a12, a23, . . . , a(n−1)n) + · · ·+ diagn(a1n),



1634 J. HAN, Y. LEE, AND S. PARK

where diagj(a1j , a2(j+1), . . . , a(n−j+1)n), for each j, is a matrix such that ars =
0 for all (r, s) 6= (1, j), (2, j + 1), . . . , (n − j + 1, n). Third, we will show that
diagj(a1j , a2(j+1), . . . , a(n−j+1)n) is a matrix satisfying a1j = a2(j+1) = · · · =
a(n−j+1)n for each j = 1, . . . , n− 1.

Let a(j) = diagj(a1j , a2(j+1), . . . , a(n−j+1)n) ∈ X(S) for each j = 1, . . . , n−1.
Assume that there exists ai(j+i−1) 6= 0, ak(j+k−1) = 0 for some i, k (i 6= k).

Then (i, j + k + 1)-entry of ga(j) is zero for all g ∈ G(S), but (i, j + k + 1)-
entry of a(j)h is ai(j+i−1)h(j+i+1)(j+k+1) 6= 0 for some h = (hij) ∈ G(S) with

h(i+1)(k+1) 6= 0, which implies that [a(j)]ℓ 6= [a(j)]r, a contradiction to the
assumption that S is unit-duo. Hence there exists no

diagj(a1j , a2(j+1), . . . , a(n−j+1)n) ∈ X(S)

such that ai(j+i−1) 6= 0, ak(j+k−1) = 0 for some i, k (i 6= k). On the other hand,

assume that there exists a(j) = diagj(a1j , a2(j+1), . . . , a(n−j+1)n) ∈ X(S) such
that ai(j+i−1), ak(j+k−1) 6= 0 and ai(j+i−1) 6= ak(j+k−1) for some i, k (i 6= k).

Consider b(j) = diagj(b1j , b2(j+1), . . . , b(n−j+1)n) ∈ X(S) such that bi(i+j−1)

= ak(k+j−1) − ai(i+j−1), bs(s+j−1) = as(s+j−1) for all s 6= i. Then

b(j) − a(j) = diagj(c1j , c2(j+1), . . . , c(n−j+1)n) ∈ X(S),

having ci(i+j−1) = ak(k+j−1) 6= 0, cs(s+j−1) = 0 for all s 6= i, a contradiction

by the above argument. Therefore, a(j) is a matrix satisfying a1j = a2(j+1) =
· · · = a(n−j+1)n for each j.

Finally, it remains to show that for any g = (gij) ∈ G(S), g11 = g22 =
· · · = gnn. Let p = g · diag2(1, 1, . . . , 1), q = diag2(1, 1, . . . , 1) · g ∈ X(S). Since
n− 1 ≥ 2, we have that

p(2) = diag2(g11, g22, . . . , g(n−1)(n−1)) ∈ X(S),

which yields g11 = g22 = · · · = g(n−1)(n−1), by the above argument. Similarly,

q(2) = diag2(g22, g33, . . . , gnn) ∈ X(S)

also yields g22 = g33 = · · · = gnn. Hence we have that g11 = g22 = · · · = gnn.
Hence S is equal to Vn(R) as desired. �

Remark 2.3. For a ring Vn(R) as given Theorem 2.2, we note that Vn(R) is a
local ring with J(R)n−1 6= 0 = J(R)n and there exist (n−1) equivalence classes

such as [x], [x2], . . . , [xn−1] where x = e12+e23+· · ·+e(n−1)n, x
k =

∑n−k

i=1 ei(i+k)

(1 ≤ k ≤ n− 1).

In Theorem 2.2, we can easily check that two types of unit-duo subrings of
R are commutative. Also we can note that if R is a finite semisimple unit-duo
ring, then R is a finite product of finite fields by help of Theorem 2.2, entailing
that R is commutative. Hence we can raise a question:

Question 1. Is a finite unit-duo ring commutative?
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The answer to Question 1 is negative by the following example. We use
GF (4) to denote the Galois field of order 22.

Example 2.4. We use the ring

R =

{(
a b
0 a2

)
|a, b ∈ GF (4)

}
,

constructed by Xue [16, Example 2].
Then R is a noncommutative ring of order 16 with

J(R) =

{(
0 b
0 0

)
|b ∈ GF (4)

}
6= 0.

Note that X(R) = J(R) \ {0}. Let GF (4) = {0, 1, a, a2} with a3 = 1. For
every ( 0 b

0 0 ) ∈ X(R), we have
(
0 b
0 0

)
=

(
b 0
0 b

)(
0 1
0 0

)
.

This yields

[

(
0 1
0 0

)
]ℓ = [

(
0 b
0 0

)
]ℓ = X(R).

On the other hand, we also obtain
(
0 a
0 0

)
=

(
0 1
0 0

)(
a2 0
0 a

)
=

(
0 1
0 0

)(
a2 0
0 a4

)
,

(
0 a2

0 0

)
=

(
0 1
0 0

)(
a 0
0 a2

)
,

which implies that

[

(
0 1
0 0

)
]r = [

(
0 b
0 0

)
]r = X(R)

for all ( 0 b
0 0 ) ∈ X(R). Therefore,

[

(
0 b
0 0

)
]ℓ = [

(
0 b
0 0

)
]r = X(R)

for all ( 0 b
0 0 ) ∈ X(R), and hence R is unit-duo.

Lemma 2.5 ([11, Lemma 3.10]). Let R be a ring such that X(R) 6= ∅. If there
exist finitely many equivalence classes under the relation ∼ℓ, then R is a left

artinian ring with J(R)n+1 = 0, where n is the number of equivalence classes

under the relation ∼ℓ.

But the converse of Lemma 2.5 does not hold true, as the following example
shows.
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Example 2.6. Let R be a full matrix ring of 2 by 2 matrices over the quater-
nions H. Then clearly R is a left (right) artinian ring. Let

xα =

(
1 α
0 0

)
, yα =

(
1 0
α 0

)

for all α ∈ H. Then we note that [xα]ℓ 6= [xβ ]ℓ, (resp. [xα]r 6= [xβ ]r) for all
α, β ∈ H (α 6= β), and so there exist an uncountable equivalence classes under
the relation ∼ℓ (resp. ∼r). Also note that [xα]ℓ 6= [xα]r, i.e., R is not unit-duo.

Remark 2.7. Note that the class of unit-duo rings is closed under direct product
and homomorphic images. Note also that if R is a unit-duo ring and J is the
Jacobson radical of R, then R/J is a unit-duo ring. But the converse may not
be true. For example, consider R, the ring of 2 by 2 upper triangular matrices
over Z2, where Z2 is the ring of integers modulo 2. Then [e11]ℓ = {e11} 6=
{e11, e11 + e12} = [e11]r, and so R is not unit-duo. On the other hand, R/J is
isomorphic to Z2 ⊕ Z2, and so R/J is unit-duo.

Proposition 2.8. Let R be a semisimple unit-duo ring. Then there exist a

finite number of equivalence classes under ∼ if and only if R is an artinian

ring.

Proof. (⇒) It follows from Lemma 2.5.
(⇐) Suppose that R is an artinian ring. Since J = 0, by the Wedderburn-

Artin Theorem there exist division rings D1, . . . , Dt and positive integers n1,
. . . , nt such that R is isomorphic to the ringMn1

(D1)×Mn1
(D1)×· · ·×Mnt

(Dt)
where eachMni

(Di) is the full matrix ring of all ni by ni matrices over a division
ring Di. We note that since R is unit-duo, ni = 1 for each i = 1, . . . , t. Indeed,
assume that ni ≥ 2 for some i. For some nonunit x = e11 ∈ Mni

(Di) and some
unit g = (gij) ∈ Mni

(Di) with g21 6= 0 in Di, there exists no unit h ∈ Mni
(Di)

so that gx = xh, which is a contradiction to that R is unit-duo. Hence R is
isomorphic to D1 × · · · × Dt, and then clearly, there exist a finite number of
equivalence classes under ∼. �

Recall that a ring R is called von Neumann regular (simply, regular) (resp.
unit-regular) if for every x ∈ R there exists y ∈ R (resp. u ∈ G) such that
xyx = x (resp. xux = x). A ring R is called strongly regular if for every x ∈ R
there exists y ∈ R such that x2y = x. It is well-known that R is strongly
regular if and only if R is abelian regular (a regular ring whose all idempotents
are central).

Proposition 2.9. Let R be a unit-regular ring. Then R is unit-duo if and only

if R is strongly regular.

Proof. If R is unit-duo, then clearly R is strongly regular. Suppose that R
is strongly regular. Then every idempotent of R is central. Let x ∈ X be
arbitrary. Since R is unit-regular, there exists a unit u ∈ R such that xux = x.
Since R is strongly regular, ux ∈ X is a central idempotent. Let e = ux.
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Clearly, [x]ℓ = [e]ℓ = [e]r. Since e = ux, x = u−1e = eu−1, and then x ∼r e,
i.e., [x]r = [e]r. Thus [x]ℓ = [x]r, and so R is unit-duo. �

Lemma 2.10. Let R be a unit-duo ring, and let e ∈ R be a nonzero nonunit

idempotent. If f ∈ [e] for any idempotent f of R, then e = f .

Proof. Since f ∈ [e] and R is unit-duo, f = ue = ev for some units u, v ∈ R.
Then we have fe = ef = f . Since e = u−1f = fv−1, we also have ef = fe = e.
Thus e = f . �

Proposition 2.11. Let R be a strongly regular ring. Then we have the follow-

ing equivalent conditions:

(1) There exist a finite number of idempotents in R;
(2) There exist a finite number of equivalence classes under relation ∼;
(3) R is artinian;
(4) R ≃ D1 ×D2 × · · · ×Dt for some positive integer t.

Proof. (1) ⇒ (2). Suppose that there exist a finite number of idempotents in
R. Since R is strongly regular, R is unit-duo and every idempotent of R is
central. Let x ∈ X be arbitrary. Then x = ue for some idempotent e ∈ R and
some unit u ∈ R, and so [x] = [e]. Since the number of idempotents of R is
finite, There exist a finite number of equivalence classes under relation ∼ by
Lemma 2.10.

(2) ⇒ (3). It follows from Lemma 2.5.
(3) ⇔ (4). Since R is unit-duo and J = 0, it follows from the proof of

Proposition 2.8.
(4) ⇒ (1). Clear. �

3. Zero divisor graphs of unit-duo rings

For a ring R, let Γ(R) be the zero divisor graph of R consisting of all vertices
in Z(R) and edges x → y, which means that xy = 0 for all x, y ∈ Z(R)∗.

Proposition 3.1. Let R be a unit-duo ring. Then

(1) Γ(R) has no sources and no sinks if and only if Γ̃(R) has no sources

and no sinks;

(2) Γ(R) is connected if and only if Γ̃(R) is connected;

(3) diam(Γ(R)) = diam(Γ̃(R)) and g(Γ(R)) = g(Γ̃(R));

(4) Γ(R) is complete if and only if Γ̃(R) is complete.

Proof. It follows from that for x, y ∈ Z(R)∗ xy = 0 if and only if [x][y] = [0]. �

In fact, we note that for a unit-duo ring R, there seems no distinction be-

tween Γ(R) and Γ̃(R) except the number of vertices. Hence it is more efficient

to consider Γ̃(R) than to consider Γ(R) for a unit-duo ring R.
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Proposition 3.2. Let R be a unit-duo ring. If Γ̃(R) has no sources and no

sinks, then Γ̃(R) is connected and diam(Γ̃(R)) (resp. g(Γ̃(R)) is equal to or

less than 3.

Proof. Let [x], [y] ([x] 6= [y]) be arbitrary vertices of Γ̃(R). Since Γ̃(R) has no
sources and sinks, there exists a vertex [a] (resp. [b]) such that [x][a] = [xa] = [0]
(resp. [b][y] = [by] = [0]). If [a][b] = [ab] = [0], then [x] −→ [a] −→ [b] −→ [y]
is a path of length 3. If [a][b] = [ab] 6= [0], then [x] −→ [ab] −→ [y] is a path

of length 2. Hence diam(Γ̃(R)) (resp. g(Γ̃(R)) is equal to or less than 3. In

particular, if we let [x] = [y], then g(Γ̃(R) is equal to or less than 3. �

Corollary 3.3. Let R be a commutative ring such that Z(R)∗ 6= ∅. Then Γ(R)
is connected and diam(Γ(R)) (resp. g(Γ(R)) is equal to or less than 3.

Proof. Since R is a commutative ring, R is unit-duo and Γ(R) has no sources
and no sinks. Hence it follows from Proposition 3.1 and Proposition 3.2. �

Theorem 3.4. Let R be a unit-duo ring such that X 6= ∅. If Γ̃(R) is a finite

graph (i.e., a graph with a finite number of vertices), then Γ̃(R) is connected

and diam(Γ̃(R)) (resp. g(Γ̃(R)) is equal to or less than 3.

Proof. Since Γ̃(R) is a finite graph, there exist a finite number of equivalence
classes under ∼, any x ∈ X is a two-sided zero divisor, i.e., X = Z(R)∗ by
Proposition 2.1. Since for x, y ∈ Z(R)∗ xy = 0 if and only if [x][y] = [0],

there is no origin and no sink in Γ̃(R). Hence we have the desired result by
Proposition 3.2. �

It was shown in [4, Lemma 2.2] that if there exists the only one equivalence
[x]ℓ in a ring R such that X(R) 6= ∅ under ∼ℓ, then R is local. In this case,
[x]ℓ = [x]r = X(R) by [10, Theorem 2.9], and so R is a unit-duo ring.

Proposition 3.5. If R and S are unit-duo rings, then Γ̃(R×S) is isomorphic

to Γ̃(R)× Γ̃(S) as graphs.

Proof. Clearly, R×S is also a unit-duo ring. Define φ : Γ̃(R×S) → Γ̃(R)×Γ̃(S)

by φ([(x, y)] = ([x], [y]) for all [(x, y)] ∈ Γ̃(R×S). It is straightforward to show
that φ is a graph isomorphism. �

On other hand, it was also shown in [9, Proposition 3.3] that if R is an
abelian ring with a finite number of equivalence classes under ∼ℓ, then R is a

finite product of local rings. Hence it is enough to consider Γ̃(R) for a local
unit-duo ring R.

For a given unit-duo ring R, we denote a loop in Γ̃(R) from a vertex [x] to

itself by [̂x].

Lemma 3.6 ([7, Lemma 2.9]). Let R be a ring such that X(R) is a union of

n equivalence classes under ∼ℓ. Then the following are equivalent:
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(i) There exists x ∈ J(R) such that xn 6= 0;
(ii) R is a local ring, Jn 6= 0 = Jn+1;
(iii) J > J2 > · · · > Jn−1 > Jn 6= 0.

Theorem 3.7. Let R be a ring such that X(R) is a finite union of equivalence

classes under ∼. Then R is local if and only if there exists an element b ∈ X(R)
such that ann(b) = X ∪ {0}.

Proof. Suppose that R is local. Since Jn+1 = 0 by Lemma 2.5 where n is
the number of equivalence classes under ∼. Let r be the least positive integer
so that Jr 6= 0 = Jr+1. Let R̄ = R/Jr and X̄ = X(R̄). Note that R̄ is
local. First, we will show that X̄ is a union of (r− 1) classes under the regular
action. Take ai ∈ J i \ J i+1 for each i = 1, 2, . . . , r. Observe that [āi] are all
distinct. Indeed, assume that [āj ] = [āk] for some j, k (1 ≤ j < k ≤ r). Then
āj = ūāk for some unit ū of R̄, and so aj − uak ∈ Jr. Since ak ∈ Jk ⊆ Jj ,
aj ∈ Jk ⊆ Jj+1, which is a contradiction. Hence there are at least (r − 1)
classes in X̄ . Let s be the number of classes in X̄. To show s = r − 1, assume
that s ≥ r. Since R̄ is local, by Lemma 3.6, there exists x̄ ∈ J(R̄) = J/Jr such
that x̄s 6= 0̄ = Jr, i.e., xs /∈ Jr. But xs ∈ Js ⊆ Jr, a contradiction. Thus if
Jr 6= 0 = Jr+1, X̄ is a union of (r − 1) classes under the regular action, and
so by Lemma 3.6, there exists x̄ ∈ J(R̄) = J/Jr such that x̄r−1 6= 0̄ = Jr,
i.e., xr−1 /∈ Jr, yielding that 0 6= xr−1 ∈ J(R). Since Jr 6= 0, we can have the
following two cases:

Case 1. There exists a ∈ J such that axr−1 6= 0 or xr−1a 6= 0, say,
axr−1 6= 0.

Let x0 = axr−1 ∈ Jr. Since Jr+1 = 0, yx0 = x0y = 0 for all y ∈ X(R),
which yields that ann(x0) = X ∪ {0}.

Case 2. yxr−1 = xr−1y = 0 for all y ∈ J .
Hence we have that ann(xr−1) = X ∪ {0} in this case.
The converse is clear. �

Corollary 3.8. Let R be a finite ring. Then R is local if and only if there

exists an element b ∈ X(R) such that ann(b) = X ∪ {0}.

Proof. It follows from Theorem 3.7. �

Corollary 3.9. Let R be a unit-duo ring such that Γ̃(R)) is a finite graph.

Then R is local if and only if diam(Γ̃(R)) = 2.

Proof. Let Γ̃(R) be a finite graph with n vertices [v1], . . . , [vn]. Note that X(R)
is a union of [v1], . . . , [vn]. If R is local, there exists an element b ∈ X(R) such
that ann(b) = X ∪ {0} by Theorem 3.7, yielding that [b][vi] = [v][b] = [0] for

all vertices [vi] of Γ̃(R), and so diam(Γ̃(R)) = 2. Conversely, suppose that

diam(Γ̃(R)) = 2. Then there exists a vertex [b] of Γ̃(R) such that [b][vi] =

[vi][b] = [0] for all vertices [vi] of Γ̃(R), i.e., bvi = vib = 0. Let y ∈ X(R) be
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arbitrary. Since Γ̃(R) is a finite graph, [y] = [vi] for some [vi]. Since R is unit-
duo, y = uvi = viw for some units u,w of R. Thus yb = (uvi)b = u(vib) = 0
and by = b(viw) = (bvi)w = 0, which implies that ann(b) = X ∪ {0}, and then
R is local as desired. �

4. Graph of equivalence classes of zero divisors of Zn

Throughout this section, n is considered as any positive non-prime integer
otherwise stated. Let Zn = {0, 1, . . . , n− 1} be the ring of integers modulo n.
For all a, b ∈ Zn, ab means the product of a and b under the multiplication
modulo n. We will denote the greatest common divisor of any two positive
integers s and t by (s, t) and s | t means that s is a divisor of t.

Lemma 4.1. Let n be any positive integer and x, y ∈ X(Zn) be distinct divisors
of n such that x < y. Then [x] 6= [y].

Proof. Assume that [x] = [y]. Then y = gx for some g ∈ G(Zn). Since x, y are
distinct divisors of n such that x < y, we can choose an element a ∈ X(Zn) so
that ax 6= 0, ay = 0. On the other hand, since 0 = ay = a(gx) and g ∈ G(Zn),
we have ax = 0, which is a contradiction. Hence [x] 6= [y]. �

Lemma 4.2. Let n be any positive integer and y ∈ X(Zn) be arbitrary. Then

there exists x ∈ X(Zn) such that x | n and (x, n) = (y, n).

Proof. Let x = (y, n). Then clearly, x | n and (x, n) = ((y, n), n) = (y, n). �

Lemma 4.3. Let n be any positive integer and k be a divisor of n. If ḡ ∈ G(Zk),
then there exists g ∈ G(Zn) such that g ≡ ḡ (mod k).

Proof. Note that since k is a divisor of n, Zn/〈k〉 is isomorphic to Zk where 〈k〉 is
an ideal of Zn generated by k. Let n = pα1

1 pα2

2 · · · pαt

t be the prime factorization
of n where p1, p2, . . . , pt are distinct primes for some positive integer t. Then

k = pβ1

1 pβ2

2 · · · pβt

t with αi ≥ βi ≥ 0 for all i = 1, . . . , t. Without loss of
generality, we can assume that Zn = Zp

α1

1

× Zp
α2

2

× · · · × Zp
αt

t

(resp. Zk =

Z
p
β1

1

×Z
p
β2

2

× · · ·×Z
p
βt

t

). Then we can consider a ring epimorphism π : Zp
α1

1

×

Zp
α2

2

×· · ·×Zp
αt

t

→ Z
p
β1

1

×Z
p
β2

2

×· · ·×Z
p
βt

t

given by π(a1, . . . , at) = (ā1, . . . , āt)

for all (a1, . . . , at) ∈ Zp
α1

1

×Zp
α2

2

×· · ·×Zp
αt

t

where āi is the remainder obtained

from dividing ai by pβi

i for all i.
Case 1. Suppose that βi ≥ 1 for all i = 1, . . . , t.
Let ḡ = (ḡ1, . . . , ḡt) ∈ Z

p
β1

1

× Z
p
β2

2

× · · · × Z
p
βt

t

be an arbitrary unit. Then

there exists an element g = (g1, . . . , gt) ∈ Zp
α1

1

× · · · ×Zp
αt

t

such that π(g) = ḡ

i.e., gi ≡ ḡi (mod pβi

i ) for all i. Since ḡ is a unit in Z
p
β1

1

× Z
p
β2

2

× · · · × Z
p
βt

t

,

we have (ḡi, p
βi

i ) = 1 and so (gi, p
αi

i ) = 1 for all i = 1, . . . , t, which implies that
g ∈ Zp

α1

1

× · · · × Zp
αt

t

is a unit.

Case 2. Suppose that βi = 0 for some i.
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Let I1 = {i ∈ {1, . . . , t} : βi ≥ 1} and I2 = {i ∈ {1, . . . , t} : βi = 0}.
Consider R = R1×R2 where R1 =

∏
i∈I1

Z
p
βi

i

and R2 =
∏

i∈I2
{1i} where 1i is

the unity of Z
p
βi

i

. By changing the order of the Z
p
βi

i

if necessary we can assume

that R = Zk = Z
p
β1

1

×Z
p
β2

2

×· · ·×Z
p
βt

t

. Let G(R) be the group of all units in R.

Let ḡ = (ḡ1, . . . , ḡ|I1|, 11, . . . , 1|I2|) ∈ G(R) be arbitrary. Then by the similar
argument given in Case 1, there exists a unit gi ∈ Zp

α1

1

such that gi ≡ ḡi (mod

pβi

i ) for all i = 1, . . . , |I1|. Let g = (g1, . . . , g|I1|, 11, . . . , 1|I2|) ∈ Zp
α1

1

×· · ·×Zp
αt

t

.

Then g is a unit in Zp
α1

1

× · · · × Zp
αt

t

such that π(g) = ḡ. �

Theorem 4.4. Let n be any positive integer. Then for all x, y ∈ X(Zn),
[x] = [y] if and only if (x, n) = (y, n).

Proof. (⇒) Suppose that for all x, y ∈ X(Zn), [x] = [y]. Then y = gx for some
g ∈ G(Zn). Since (g, n) = 1, we have (y, n) = (gx, n) = (x, n).

(⇐) Suppose that for all x, y ∈ X(Zn), (x, n) = (y, n). It is enough to
consider x | n, i.e., x = (x, n) by Lemma 4.1. Since x | y, y = ax for some
integer a. Since x = (y, n), x = by + cn for some integers b and c. Hence
x ≡ by ≡ bax (mod n), and then 1 ≡ ba (mod n

x
). Let ā be an element of Zn

x

so that a ≡ ā (mod n
x
). Then 1 ≡ bā (mod n

x
), which implies that ā ∈ G(Zn

x
).

By Lemma 4.2, there exists a0 ∈ G(Zn) such that a0 ≡ ā (mod n
x
). Since

a0 = ā + k(n
x
) for some integer k, we have a0x ≡ (ā + k(n

x
))x ≡ āx ≡ ax ≡ y

(mod n), which implies that o(x) = o(y). �

Let Vn = {[x] |x | n, x 6= 1, n}. By Theorem 3.4, Γ̃(Zn) is the graph of
equivalence with vertices in Vn and edges [x] −→ [y], which means that [x][y] =
[0] (i.e., xy = 0) for each pair of vertices [x], [y] ∈ Vn (not necessarily distinct).

Let m,n be non-prime positive integers, and m = pα1

1 · · · pαs

s , n = qβ1

1 · · · qβt

t be
the prime factorizations of m and n. Define m ≃ n (m is similar to n) if s = t
and each αi = βi by reordering q′is if necessary. For example, 12 ≃ 18 ≃ 245.
Then ≃ is clearly an equivalence relation on Z, the ring of integers.

Theorem 4.5. Let m,n be non-prime positive integers. Then m ≃ n if and

only if Γ̃(Zm) is isomorphic to Γ̃(Zn).

Proof. (⇒) Suppose that m ≃ n. Then we can let m = pα1

1 · · · pαs

s , n =
qα1

1 · · · qαs

1 be the prime factorization of m and n respectively. Then clearly

|Vm| = |Vn|. Define θ : Vm → Vn by θ([pβ1

1 · · · pβs

s ]) = [qβ1

1 · · · qβs

s ] for all

[pβ1

1 · · · pβs

s ] ∈ Vm where 1 ≤ βi ≤ αi for each i = 1, . . . , s. We note that
[x][y] = 0 for all [x], [y] ∈ Vm if and only if θ([x])θ([y]) = 0, and so θ is isomor-
phism.

(⇐) Assume that m is not similar to n. Let m = pα1

1 · · · pαs

s , n = qβ1

1 · · · qβt

t

be the prime factorization of m and n respectively.
Case 1. r = s
Since m is not similar to n, αi 6= βi for some i. Let k be the smallest positive

integer so that αk 6= βk. Without loss of generality, we assume that αk < βk.
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We can also assume that α1 ≤ α2 ≤ · · · ≤ αs and β1 ≤ β2 ≤ · · · ≤ βs. Note

that the number of vertices in Γ̃(Zm) having degree βk is less than (s− k + 1)

which is equal to the number of vertices in Γ̃(Zn) having degree βk. Hence

Γ̃(Zm) is not isomorphic to Γ̃(Zn).
Case 2. r 6= s

Note that the number of vertices in Γ̃(Zm) (resp. Γ̃(Zn)) having degree 1 is

r (resp. s). Since r 6= s, Γ̃(Zm) is not isomorphic to Γ̃(Zn). �
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