UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

Juncheol Han, Yang Lee, and Sangwon Park

Abstract

Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_{r}$ for all $x \in X$ where $[x]_{\ell}=\{u x \mid u \in G\}$ (resp. $\left.[x]_{r}=\{x u \mid u \in G\}\right)$ which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted $\widetilde{\Gamma}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that $\widetilde{\Gamma}(R)$ is a finite graph, R is local if and only if $\operatorname{diam}(\widetilde{\Gamma}(R))=2$.

1. Introduction and basic definitions

Throughout this paper all rings are associative with identity unless otherwise stated. Let R be a ring. $X(R)$ (or simply, X) denotes the set of all nonzero nonunits in R, and $G(R)$ (or simply, G) denotes the group of all units in R. Let $J(R)$ (or simply, J) denote the Jacobson radical of R. $|S|$ denotes the cardinality of any set $S . G F\left(p^{n}\right)$ denotes the Galois field of order p^{n}.

Denote the n by n full (resp., upper triangular) matrix ring over R by $\operatorname{Mat}_{n}(R)$ (resp., $U_{n}(R)$) and use $e_{i j}$ for the matrix with (i, j)-entry 1 and elsewhere 0. Following the literature, we write $D_{n}(R)=\left\{\left(a_{i j}\right) \in U_{n}(R) \mid\right.$ all diagonal entries are equal $\}$ and $V_{n}(R)=\left\{\left(a_{i j}\right) \in D_{n}(R) \mid a_{1 k}=a_{2(k+1)}=\right.$ $\cdots=a_{h n}$ for $h=1,2, \ldots, n-1$ and $\left.k=2, \ldots, n\right\}$. Note $V_{n}(R) \cong \frac{R[x]}{x^{n} R[x]}$, so $V_{n}(R)$ is commutative if so is R.

For $x, y \in R$, we say that $x \sim_{\ell} y$ (resp. $x \sim_{r} y$) if and only if $y=u x$ (resp. $y=x u$) for some unit $u \in R$. Then both \sim_{ℓ} (resp. \sim_{r}) is an equivalence relation on R. Let $[x]_{\ell}$ (resp. $[x]_{r}$) be the equivalence class containing $x \in R$ under $\sim_{\ell}\left(\right.$ resp. $\left.\sim_{r}\right)$. A ring R is called unit-duo if $[x]_{\ell}=[x]_{r}$ for all $x \in R$ (refer [8]). Any commutative ring and a finite direct product of division rings

[^0]are unit-duo rings. Note that a ring R in which X is not an empty set is a unit-duo ring if and only if $[x]_{\ell}=[x]_{r}$ for all $x \in X$. Indeed, $[u]_{\ell}=[u]_{r}=G$ for all units $u \in R$, and $[0]_{\ell}=[0]_{r}=\{0\}$. For a unit-duo ring R, we denote $[x]_{\ell}=[x]_{r}$ by $[x]$ for each $x \in R$ and denote $\sim_{\ell}\left(=\sim_{r}\right)$ by \sim.

In Section 2, we will show that (i) if R is a right (resp. left) unit-duo ring such that $X(R)$ is a finite union of equivalence classes under $\sim_{\ell}\left(\right.$ resp. $\left.\sim_{r}\right)$, then every $x \in X(R)$ is a two-sided zero divisor; (ii) for a field F, there are just only two types of unit-duo subrings of $\operatorname{Mat}_{n}(F)(n \geq 2)$ up to isomorphism, say, the ring of all diagonal matrices in $\operatorname{Mat}_{n}(R)$ and $V_{n}(F)$; (iii) for a strong regular ring R (which is unit-duo), the followings are equivalent:
(1) There exist a finite number of idempotents of R;
(2) There exist a finite number of equivalence classes under relation \sim;
(3) R is artinian;
(4) $R \simeq D_{1} \times D_{2} \times \cdots \times D_{t}$ for some positive integer t.

On the other hand, the zero divisor graph of a commutative ring has been studied extensively by Akbari, Mohammadian [1], Anderson, Livingston [2] since its concept had been introduced by Beck in [3]. The zero-divisor graph of a noncommutative ring (resp. a semigroup) has studied by Redmond and Wu (resp., F. DeMeyer and L. Demeyer) in [12, 13, 15] (resp., [5]). Zero divisor graph is very useful to find the algebraic structures and properties of rings. Recently, the graph of equivalence classes of zero divisors of a commutative Noetherian ring was studied by Spiroff and Wickham in [14]. Note that if R is a unit-duo ring, then for all $x, y \in R,[x y]=[x][y]$, i.e., multiplication is well defined on $\{[x] \mid x \in R\}$. For a ring R, let $Z(R)$ be the set of all left or right zero divisors of R and $Z(R)^{*}=Z(R) \backslash\{0\}$. In this article, loops (i.e., edges from some vertex to itself) can be considered edges in a zero-divisor graph and we study the graph of equivalence classes of zero-divisor of a unit-duo by considering the following definition:

Definition 1.1. Let R be a unit-duo ring. The graph of equivalence classes of elements in $Z(R)^{*}$, denoted $\widetilde{\Gamma}(R)$, is the graph associated to R whose vertices are the classes of elements in $Z(R)^{*}$, and edges $[x] \longrightarrow[y]$, which means that $[x][y]=[0]$ for each pair of vertices $[x],[y]$ (not necessarily distinct).

Example 1.2. Let D be a noncommutative division ring, and consider a ring

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & b \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c \in D\right\}
$$

Let $e_{i j}$ denote the matrix in the R with 1 in the (i, j)-position and 0 elsewhere. Then R is a noncommutative local ring with $J^{2} \neq 0=J^{3}$ and there exist two equivalence classes $[x]_{\ell}=[x]_{r}=[x],[y]_{\ell}=[y]_{r}=[y]$ in X such that $X=[x] \cup[y]$ where $x=e_{13}, y=e_{12}+e_{23}$. Thus R is a unit-duo ring and $\widetilde{\Gamma}(R)$ is a graph with two vertices in which there is just one loop.

Also note that even though $\Gamma(R)$ is infinite graph (a graph with infinite set of vertices), $\widetilde{\Gamma}(R)$ is a finite graph with two vertices.

Example 1.3. Let D be a noncommutative division ring, and consider a ring

$$
R=\left\{\left.\left(\begin{array}{ccc}
a & b & c \\
0 & a & 0 \\
0 & 0 & a
\end{array}\right) \right\rvert\, a, b, c \in D\right\}
$$

Then R is a noncommutative local ring with $J \neq 0=J^{2}$ and there exists the only one equivalence class $\left[e_{12}+e_{13}\right]_{\ell}=\left[e_{12}+e_{13}\right]_{r}=X$. Thus R is a unit-duo ring and $\widetilde{\Gamma}(R)$ is a graph with just one vertex and one edge which is a loop.

Example 1.4. Let $R=D_{1} \oplus D_{2}$ be a direct product of two division rings D_{1} and D_{2}. Then there exist two equivalences $[(1,0)]_{\ell}=[(1,0)]_{r}=[(1,0)]$, $[(0,1)]_{\ell}=[(0,1)]_{r}=[(0,1)]$ in X such that $X=[(1,0)] \cup[(0,1)]$, and so R is a unit-duo ring and $\widetilde{\Gamma}(R)$ is a graph with two vertices in which there is no loop.

The indegree of a vertex v in a graph, denoted indegree (v), is the number of edges arriving at v. Similarly, the outdegree of v, denoted outdegree (v), is the number of edges leaving at v. That is, indegree $(v)=\left|a n n_{\ell}(v) \backslash\{0\}\right|$ and $\operatorname{outdegree}(v)=\left|a n n_{r}(v) \backslash\{0\}\right|$ where $a n n_{\ell}(v)\left(\right.$ resp. $\left.a n n_{r}(v)\right)$ is a left (resp. right) annihilator of v. Of course, for a commutative ring case, indegree $(v)=$ outdegree (v) for any vertex of v in a graph, which is called the degree of v, denoted degree (v). A vertex of indegree 0 (resp. outdegree 0) is called a source (resp. sink). A path of length n from a vertex u to a vertex w is a sequence of distinct vertices v_{i} of the form $u=v_{0} \longrightarrow v_{1} \longrightarrow \cdots v_{n}=w$ such that $v_{i} \longrightarrow v_{i+1}$ is an edge for each $i=0, \ldots, n-1$. The distance from a vertex u to a vertex w, denoted $d(u, w)$, is the length of the shortest path from u to w. When there is no path from a vertex u to a vertex w, we let $d(u, w)=\infty$.

Recall that a graph $\Gamma(R)$ over a ring R is connected if for all distinct vertices u, w there exists a path from u to w. The diameter of a graph (denoted by $\operatorname{diam}(\Gamma(R)))$ is the supremum of $d(u, w)$ for all distinct vertices u and w. If $d(u, u)=k$ in a graph, then the path is called the cycle of length k. In particular, a cycle of length 2 in a graph is called a loop (i.e., an edge from some vertex to itself). In this paper, a loop can be considered an edge in a graph. If there is a cycle in a graph, then the girth of the graph (denoted by $g(\Gamma(R))$) (denoted by $\operatorname{diam}(\Gamma(R))$ is defined by the length of the shortest cycle in $\Gamma(R)$, otherwise, the girth of the graph is ∞. In [6, Proposition 1.3.2], if $\Gamma(R)$ contains a cycle, then $1+2 \operatorname{diam}(\Gamma(R)) \geq g(\Gamma(R))$. We say that a graph is complete if there is an edge from u to w for any distinct vertices u, w of the graph.

In Section 3, we will show that (1) for a unit-duo ring R such that $X \neq \emptyset$, if $\widetilde{\Gamma}(R)$ is a finite graph (i.e., a graph with a finite number of vertices), then $\widetilde{\Gamma}(R)$ is connected and $\operatorname{diam}(\widetilde{\Gamma}(R))($ resp. $\mathrm{g}(\widetilde{\Gamma}(R))$ is equal to or less than 3 ;
(2) for a semisimple unit-duo ring R, R is an artinian ring if and only if $\widetilde{\Gamma}(R)$ is a finite graph.

Let \mathbb{Z}_{n} be the ring of integer of modulo n. In Section 3, we show that all vertices of $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$ are equivalences of all nonunit proper divisors of n. Let $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}$ and $n=q_{1}^{\beta_{1}} \cdots q_{t}^{\beta_{t}}$ be the prime factorization of m and n respectively. Then we have an equivalence relation \simeq on the ring of integers defined by $m \simeq n$ if $s=t$ and each $\alpha_{i}=\beta_{i}$ by reordering $q_{i}^{\prime} s$. We also show that $m \simeq n$ if and only if $\widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ is isomorphic to $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$.

2. Properties of unit-duo rings

In [8], it was shown that any right (left) unit-duo ring R is abelian (i.e., every idempotent in R is central). In [11], it was also shown that if a ring R has a finite number of equivalence classes under \simeq_{ℓ}, then R is an artinian ring with $J(R)^{n+1}=0$ where n is the number of classes under \simeq_{ℓ}.

Proposition 2.1. Let R be a right (resp. left) unit-duo ring such that $X(R)$ is a finite union of equivalence classes under $\sim_{\ell}\left(r e s p . \sim_{r}\right)$. Then every $x \in X(R)$ is a two-sided zero divisor.

Proof. Let R be a right unit-duo ring and $x \in X(R)$ be arbitrary. If x is nilpotent, then clearly, x is a two-sided zero divisor. Suppose that x is not nilpotent and consider x, x^{2}, \ldots. Note that $x^{k} \in X(R)$ for all $k \geq 1$. Since $X(R)$ is a finite union of equivalence classes under $\sim_{\ell},\left[x^{r}\right]_{\ell}=\left[x^{s}\right]_{\ell}$ for some positive integers $r, s(r>s)$. Then $x^{r}=u x^{s}$ for some unit $u \in R$, i.e., $\left(x^{r-s}-u\right) x^{s-1} x=0$. If $\left(x^{r-s}-u\right) x^{s-1} \neq 0$, then x is a right zero divisor. If $\left(x^{r-s}-u\right) x^{s-1}=0$, then by continuing in this way, we can deduce that x is a right zero divisor. Since R is right unit-duo, $x^{r}=u x^{s}=x^{s} v$ for some unit $v \in R$. By the similar argument, we have that x is a left zero divisor. Hence every $x \in X$ is a two-sided zero divisor.

Theorem 2.2. Let F be a field. Then there are just only two types of unit-duo subrings of $\operatorname{Mat}_{n}(R)(n \geq 2)$ up to isomorphism as follows:
(1) The ring of all diagonal matrices in R;
(2) $V_{n}(R)$.

Proof. Let S be a unit-duo subring of R. Note that if there is no nonzero nilpotent in S, then S is the ring of all diagonal matrices in R. Suppose that there is some nonzero nilpotent in S. First, we will show that every $g=\left(g_{i j}\right) \in G(S)$ is upper triangular by proceeding by induction on n. Take
$x_{0}=e_{1 n} \in X(S)$. Then

$$
g x_{0}=\left(\begin{array}{cccc}
0 & 0 & \cdots & g_{11} \\
0 & 0 & \cdots & g_{21} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdots & g_{n 1}
\end{array}\right) .
$$

Since $\left[x_{0}\right]_{\ell}=\left[x_{0}\right]_{r}, g x_{0}=x_{0} h$ for some $h=\left(h_{i j}\right) \in G(S)$. Note that

$$
x_{0} h=\left(\begin{array}{cccc}
h_{n 1} & h_{n 2} & \cdots & h_{n n} \\
0 & 0 & \cdots & 0 \\
\cdot & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & \cdot \\
0 & 0 & \cdots & 0
\end{array}\right),
$$

yielding that $g_{21}=g_{31}=\cdots=g_{n 1}=0$. and so

$$
g=\left(\begin{array}{cccc}
g_{11} & g_{12} & \cdots & g_{1 n} \\
0 & g_{22} & \cdots & g_{2 n} \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
0 & g_{n 2} & \cdots & g_{n n}
\end{array}\right)
$$

Consider $x_{1}=e_{1(n-1)}+e_{2 n} \in X(S)$. Since $\left[x_{1}\right]_{\ell}=\left[x_{1}\right]_{r}, g x_{1}=x_{1} k$ for some $k=\left(k_{i j}\right) \in G(S)$, yielding that $g_{32}=g_{42}=\cdots=g_{n 2}=0$. Consider $x_{t}=e_{1(n-t)}+e_{2(n-t+1)}+\cdots+e_{t n} \in X(S)$ for each $t \geq 2$. By the similar argument, we have $g_{(t+1) t}=g_{(t+2) t}=\cdots=g_{n t}=0$. Continuing in this way, we have that every $g \in G(S)$ is upper triangular.

Second, we will show that any $a=\left(a_{i j}\right) \in X(S)$ is upper triangular. Note that there exists $g \in G(S)$ such that $g a$ is upper triangular. Since S is unitduo, there exists $h=\left(h_{i j}\right) \in G(S)$ such that $a h=g a$. By the above argument, h is upper triangular, i.e., $h_{i j}=0(i>j)$. Let $a h=\left(b_{r s}\right)$. Since $\left(b_{r s}\right) \in$ $X(S)$ is upper triangular, $b_{r s}=0$ for all $r, s=1, \ldots, n(r>s)$. For each $r=2, \ldots, n$, we will show that $a_{r s}=0$ for all $s=1, \ldots, n$ with $r>s$ by using the mathematical induction on s. For $s=1$, since $0=b_{r 1}=a_{r 1} h_{11}, a_{r i}=0$. Assume that $a_{r 1}=a_{r 2}=\cdots=a_{r(s-i)}=0$. Then, for $r>s$, we have

$$
0=b_{r s}=a_{r 1} h_{1 s}+a_{r 2} h_{2 s}+\cdots+a_{r(s-1)} h_{(s-1) s}+a_{r s} h_{s s} .
$$

By induction hypothesis, we have $a_{r s} h_{s s}=0$, and so $a_{r s}=0$ because $0 \neq h_{s s} \in$ F. Therefore, any $a=\left(a_{i j}\right) \in X(S)$ is upper triangular.

Note that

$$
a=\operatorname{diag}_{1}\left(a_{11}, a_{22}, \ldots, a_{n n}\right)+\operatorname{diag}_{2}\left(a_{12}, a_{23}, \ldots, a_{(n-1) n}\right)+\cdots+\operatorname{diag}_{n}\left(a_{1 n}\right),
$$

where $\operatorname{diag}_{j}\left(a_{1 j}, a_{2(j+1)}, \ldots, a_{(n-j+1) n}\right)$, for each j, is a matrix such that $a_{r s}=$ 0 for all $(r, s) \neq(1, j),(2, j+1), \ldots,(n-j+1, n)$. Third, we will show that $\operatorname{diag}_{j}\left(a_{1 j}, a_{2(j+1)}, \ldots, a_{(n-j+1) n}\right)$ is a matrix satisfying $a_{1 j}=a_{2(j+1)}=\cdots=$ $a_{(n-j+1) n}$ for each $j=1, \ldots, n-1$.

Let $a^{(j)}=\operatorname{diag}_{j}\left(a_{1 j}, a_{2(j+1)}, \ldots, a_{(n-j+1) n}\right) \in X(S)$ for each $j=1, \ldots, n-1$. Assume that there exists $a_{i(j+i-1)} \neq 0, a_{k(j+k-1)}=0$ for some $i, k(i \neq k)$. Then $(i, j+k+1)$-entry of $g a^{(j)}$ is zero for all $g \in G(S)$, but $(i, j+k+1)$ entry of $a^{(j)} h$ is $a_{i(j+i-1)} h_{(j+i+1)(j+k+1)} \neq 0$ for some $h=\left(h_{i j}\right) \in G(S)$ with $h_{(i+1)(k+1)} \neq 0$, which implies that $\left[a^{(j)}\right]_{\ell} \neq\left[a^{(j)}\right]_{r}$, a contradiction to the assumption that S is unit-duo. Hence there exists no

$$
\operatorname{diag}_{j}\left(a_{1 j}, a_{2(j+1)}, \ldots, a_{(n-j+1) n}\right) \in X(S)
$$

such that $a_{i(j+i-1)} \neq 0, a_{k(j+k-1)}=0$ for some $i, k(i \neq k)$. On the other hand, assume that there exists $a^{(j)}=\operatorname{diag}_{j}\left(a_{1 j}, a_{2(j+1)}, \ldots, a_{(n-j+1) n}\right) \in X(S)$ such that $a_{i(j+i-1)}, a_{k(j+k-1)} \neq 0$ and $a_{i(j+i-1)} \neq a_{k(j+k-1)}$ for some $i, k(i \neq k)$.

Consider $b^{(j)}=\operatorname{diag}_{j}\left(b_{1 j}, b_{2(j+1)}, \ldots, b_{(n-j+1) n}\right) \in X(S)$ such that $b_{i(i+j-1)}$ $=a_{k(k+j-1)}-a_{i(i+j-1)}, b_{s(s+j-1)}=a_{s(s+j-1)}$ for all $s \neq i$. Then

$$
b^{(j)}-a^{(j)}=\operatorname{diag}_{j}\left(c_{1 j}, c_{2(j+1)}, \ldots, c_{(n-j+1) n}\right) \in X(S),
$$

having $c_{i(i+j-1)}=a_{k(k+j-1)} \neq 0, c_{s(s+j-1)}=0$ for all $s \neq i$, a contradiction by the above argument. Therefore, $a^{(j)}$ is a matrix satisfying $a_{1 j}=a_{2(j+1)}=$ $\cdots=a_{(n-j+1) n}$ for each j.

Finally, it remains to show that for any $g=\left(g_{i j}\right) \in G(S), g_{11}=g_{22}=$ $\cdots=g_{n n}$. Let $p=g \cdot \operatorname{diag}_{2}(1,1, \ldots, 1), q=\operatorname{diag}_{2}(1,1, \ldots, 1) \cdot g \in X(S)$. Since $n-1 \geq 2$, we have that

$$
p^{(2)}=\operatorname{diag}_{2}\left(g_{11}, g_{22}, \ldots, g_{(n-1)(n-1)}\right) \in X(S)
$$

which yields $g_{11}=g_{22}=\cdots=g_{(n-1)(n-1)}$, by the above argument. Similarly,

$$
q^{(2)}=\operatorname{diag}_{2}\left(g_{22}, g_{33}, \ldots, g_{n n}\right) \in X(S)
$$

also yields $g_{22}=g_{33}=\cdots=g_{n n}$. Hence we have that $g_{11}=g_{22}=\cdots=g_{n n}$.
Hence S is equal to $V_{n}(R)$ as desired.
Remark 2.3. For a ring $V_{n}(R)$ as given Theorem 2.2, we note that $V_{n}(R)$ is a local ring with $J(R)^{n-1} \neq 0=J(R)^{n}$ and there exist $(n-1)$ equivalence classes such as $[x],\left[x^{2}\right], \ldots,\left[x^{n-1}\right]$ where $x=e_{12}+e_{23}+\cdots+e_{(n-1) n}, x^{k}=\sum_{i=1}^{n-k} e_{i(i+k)}$ $(1 \leq k \leq n-1)$.

In Theorem 2.2, we can easily check that two types of unit-duo subrings of R are commutative. Also we can note that if R is a finite semisimple unit-duo ring, then R is a finite product of finite fields by help of Theorem 2.2, entailing that R is commutative. Hence we can raise a question:

Question 1. Is a finite unit-duo ring commutative?

The answer to Question 1 is negative by the following example. We use $G F(4)$ to denote the Galois field of order 2^{2}.

Example 2.4. We use the ring

$$
R=\left\{\left.\left(\begin{array}{cc}
a & b \\
0 & a^{2}
\end{array}\right) \right\rvert\, a, b \in G F(4)\right\}
$$

constructed by Xue [16, Example 2].
Then R is a noncommutative ring of order 16 with

$$
J(R)=\left\{\left.\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right) \right\rvert\, b \in G F(4)\right\} \neq 0 .
$$

Note that $X(R)=J(R) \backslash\{0\}$. Let $G F(4)=\left\{0,1, a, a^{2}\right\}$ with $a^{3}=1$. For every $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \in X(R)$, we have

$$
\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)=\left(\begin{array}{ll}
b & 0 \\
0 & b
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right) .
$$

This yields

$$
\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right]_{\ell}=\left[\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right]_{\ell}=X(R)
$$

On the other hand, we also obtain

$$
\begin{aligned}
\left(\begin{array}{ll}
0 & a \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a^{2} & 0 \\
0 & a
\end{array}\right)=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a^{2} & 0 \\
0 & a^{4}
\end{array}\right), \\
\left(\begin{array}{cc}
0 & a^{2} \\
0 & 0
\end{array}\right) & =\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{cc}
a & 0 \\
0 & a^{2}
\end{array}\right),
\end{aligned}
$$

which implies that

$$
\left[\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right]_{r}=\left[\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right]_{r}=X(R)
$$

for all $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \in X(R)$. Therefore,

$$
\left[\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right]_{\ell}=\left[\left(\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right)\right]_{r}=X(R)
$$

for all $\left(\begin{array}{ll}0 & b \\ 0 & 0\end{array}\right) \in X(R)$, and hence R is unit-duo.
Lemma 2.5 ([11, Lemma 3.10]). Let R be a ring such that $X(R) \neq \emptyset$. If there exist finitely many equivalence classes under the relation \sim_{ℓ}, then R is a left artinian ring with $J(R)^{n+1}=0$, where n is the number of equivalence classes under the relation \sim_{ℓ}.

But the converse of Lemma 2.5 does not hold true, as the following example shows.

Example 2.6. Let R be a full matrix ring of 2 by 2 matrices over the quaternions \mathbb{H}. Then clearly R is a left (right) artinian ring. Let

$$
x_{\alpha}=\left(\begin{array}{cc}
1 & \alpha \\
0 & 0
\end{array}\right), y_{\alpha}=\left(\begin{array}{cc}
1 & 0 \\
\alpha & 0
\end{array}\right)
$$

for all $\alpha \in \mathbb{H}$. Then we note that $\left[x_{\alpha}\right]_{\ell} \neq\left[x_{\beta}\right]_{\ell},\left(\right.$ resp. $\left.\left[x_{\alpha}\right]_{r} \neq\left[x_{\beta}\right]_{r}\right)$ for all $\alpha, \beta \in \mathbb{H}(\alpha \neq \beta)$, and so there exist an uncountable equivalence classes under the relation $\sim_{\ell}\left(\right.$ resp. $\left.\sim_{r}\right)$. Also note that $\left[x_{\alpha}\right]_{\ell} \neq\left[x_{\alpha}\right]_{r}$, i.e., R is not unit-duo.

Remark 2.7. Note that the class of unit-duo rings is closed under direct product and homomorphic images. Note also that if R is a unit-duo ring and J is the Jacobson radical of R, then R / J is a unit-duo ring. But the converse may not be true. For example, consider R, the ring of 2 by 2 upper triangular matrices over \mathbb{Z}_{2}, where \mathbb{Z}_{2} is the ring of integers modulo 2 . Then $\left[e_{11}\right]_{\ell}=\left\{e_{11}\right\} \neq$ $\left\{e_{11}, e_{11}+e_{12}\right\}=\left[e_{11}\right]_{r}$, and so R is not unit-duo. On the other hand, R / J is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, and so R / J is unit-duo.

Proposition 2.8. Let R be a semisimple unit-duo ring. Then there exist a finite number of equivalence classes under \sim if and only if R is an artinian ring.
Proof. (\Rightarrow) It follows from Lemma 2.5.
(\Leftarrow) Suppose that R is an artinian ring. Since $J=0$, by the WedderburnArtin Theorem there exist division rings D_{1}, \ldots, D_{t} and positive integers n_{1}, \ldots, n_{t} such that R is isomorphic to the ring $M_{n_{1}}\left(D_{1}\right) \times M_{n_{1}}\left(D_{1}\right) \times \cdots \times M_{n_{t}}\left(D_{t}\right)$ where each $M_{n_{i}}\left(D_{i}\right)$ is the full matrix ring of all n_{i} by n_{i} matrices over a division $\operatorname{ring} D_{i}$. We note that since R is unit-duo, $n_{i}=1$ for each $i=1, \ldots, t$. Indeed, assume that $n_{i} \geq 2$ for some i. For some nonunit $x=e_{11} \in M_{n_{i}}\left(D_{i}\right)$ and some unit $g=\left(g_{i j}\right) \in M_{n_{i}}\left(D_{i}\right)$ with $g_{21} \neq 0$ in D_{i}, there exists no unit $h \in M_{n_{i}}\left(D_{i}\right)$ so that $g x=x h$, which is a contradiction to that R is unit-duo. Hence R is isomorphic to $D_{1} \times \cdots \times D_{t}$, and then clearly, there exist a finite number of equivalence classes under \sim.

Recall that a ring R is called von Neumann regular (simply, regular) (resp. unit-regular) if for every $x \in R$ there exists $y \in R$ (resp. $u \in G$) such that $x y x=x$ (resp. $x u x=x$). A ring R is called strongly regular if for every $x \in R$ there exists $y \in R$ such that $x^{2} y=x$. It is well-known that R is strongly regular if and only if R is abelian regular (a regular ring whose all idempotents are central).

Proposition 2.9. Let R be a unit-regular ring. Then R is unit-duo if and only if R is strongly regular.

Proof. If R is unit-duo, then clearly R is strongly regular. Suppose that R is strongly regular. Then every idempotent of R is central. Let $x \in X$ be arbitrary. Since R is unit-regular, there exists a unit $u \in R$ such that $x u x=x$. Since R is strongly regular, $u x \in X$ is a central idempotent. Let $e=u x$.

Clearly, $[x]_{\ell}=[e]_{\ell}=[e]_{r}$. Since $e=u x, x=u^{-1} e=e u^{-1}$, and then $x \sim_{r} e$, i.e., $[x]_{r}=[e]_{r}$. Thus $[x]_{\ell}=[x]_{r}$, and so R is unit-duo.

Lemma 2.10. Let R be a unit-duo ring, and let $e \in R$ be a nonzero nonunit idempotent. If $f \in[e]$ for any idempotent f of R, then $e=f$.

Proof. Since $f \in[e]$ and R is unit-duo, $f=u e=e v$ for some units $u, v \in R$. Then we have $f e=e f=f$. Since $e=u^{-1} f=f v^{-1}$, we also have $e f=f e=e$. Thus $e=f$.

Proposition 2.11. Let R be a strongly regular ring. Then we have the following equivalent conditions:
(1) There exist a finite number of idempotents in R;
(2) There exist a finite number of equivalence classes under relation \sim;
(3) R is artinian;
(4) $R \simeq D_{1} \times D_{2} \times \cdots \times D_{t}$ for some positive integer t.

Proof. (1) \Rightarrow (2). Suppose that there exist a finite number of idempotents in R. Since R is strongly regular, R is unit-duo and every idempotent of R is central. Let $x \in X$ be arbitrary. Then $x=u e$ for some idempotent $e \in R$ and some unit $u \in R$, and so $[x]=[e]$. Since the number of idempotents of R is finite, There exist a finite number of equivalence classes under relation \sim by Lemma 2.10.
(2) \Rightarrow (3). It follows from Lemma 2.5 .
(3) $\Leftrightarrow(4)$. Since R is unit-duo and $J=0$, it follows from the proof of Proposition 2.8.
$(4) \Rightarrow(1)$. Clear.

3. Zero divisor graphs of unit-duo rings

For a ring R, let $\Gamma(R)$ be the zero divisor graph of R consisting of all vertices in $Z(R)$ and edges $x \rightarrow y$, which means that $x y=0$ for all $x, y \in Z(R)^{*}$.

Proposition 3.1. Let R be a unit-duo ring. Then
(1) $\Gamma(R)$ has no sources and no sinks if and only if $\widetilde{\Gamma}(R)$ has no sources and no sinks;
(2) $\Gamma(R)$ is connected if and only if $\widetilde{\Gamma}(R)$ is connected;
(3) $\operatorname{diam}(\Gamma(R))=\operatorname{diam}(\widetilde{\Gamma}(R))$ and $g(\Gamma(R))=g(\widetilde{\Gamma}(R))$;
(4) $\Gamma(R)$ is complete if and only if $\widetilde{\Gamma}(R)$ is complete.

Proof. It follows from that for $x, y \in Z(R)^{*} x y=0$ if and only if $[x][y]=[0]$.
In fact, we note that for a unit-duo ring R, there seems no distinction between $\Gamma(R)$ and $\widetilde{\Gamma}(R)$ except the number of vertices. Hence it is more efficient to consider $\widetilde{\Gamma}(R)$ than to consider $\Gamma(R)$ for a unit-duo ring R.

Proposition 3.2. Let R be a unit-duo ring. If $\widetilde{\Gamma}(R)$ has no sources and no sinks, then $\widetilde{\Gamma}(R)$ is connected and $\operatorname{diam}(\widetilde{\Gamma}(R))$ (resp. $g(\widetilde{\Gamma}(R))$ is equal to or less than 3.
Proof. Let $[x],[y]([x] \neq[y])$ be arbitrary vertices of $\widetilde{\Gamma}(R)$. Since $\widetilde{\Gamma}(R)$ has no sources and sinks, there exists a vertex $[a]$ (resp. $[b]$) such that $[x][a]=[x a]=[0]$ (resp. $[b][y]=[b y]=[0]$). If $[a][b]=[a b]=[0]$, then $[x] \longrightarrow[a] \longrightarrow[b] \longrightarrow[y]$ is a path of length 3 . If $[a][b]=[a b] \neq[0]$, then $[x] \longrightarrow[a b] \longrightarrow[y]$ is a path of length 2. Hence $\operatorname{diam}(\widetilde{\Gamma}(R))$ (resp. $\mathrm{g}(\widetilde{\Gamma}(R))$ is equal to or less than 3. In particular, if we let $[x]=[y]$, then $g(\widetilde{\Gamma}(R)$ is equal to or less than 3 .

Corollary 3.3. Let R be a commutative ring such that $Z(R)^{*} \neq \emptyset$. Then $\Gamma(R)$ is connected and diam $(\Gamma(R)$) (resp. $g(\Gamma(R)$) is equal to or less than 3.
Proof. Since R is a commutative ring, R is unit-duo and $\Gamma(R)$ has no sources and no sinks. Hence it follows from Proposition 3.1 and Proposition 3.2.
Theorem 3.4. Let R be a unit-duo ring such that $X \neq \emptyset$. If $\widetilde{\Gamma}(R)$ is a finite graph (i.e., a graph with a finite number of vertices), then $\widetilde{\Gamma}(R)$ is connected and $\operatorname{diam}(\widetilde{\Gamma}(R))($ resp. $g(\widetilde{\Gamma}(R))$ is equal to or less than 3.

Proof. Since $\widetilde{\Gamma}(R)$ is a finite graph, there exist a finite number of equivalence classes under \sim, any $x \in X$ is a two-sided zero divisor, i.e., $X=Z(R)^{*}$ by Proposition 2.1. Since for $x, y \in Z(R)^{*} x y=0$ if and only if $[x][y]=[0]$, there is no origin and no sink in $\widetilde{\Gamma}(R)$. Hence we have the desired result by Proposition 3.2.

It was shown in [4, Lemma 2.2] that if there exists the only one equivalence $[x]_{\ell}$ in a ring R such that $X(R) \neq \emptyset$ under \sim_{ℓ}, then R is local. In this case, $[x]_{\ell}=[x]_{r}=X(R)$ by [10, Theorem 2.9], and so R is a unit-duo ring.

Proposition 3.5. If R and S are unit-duo rings, then $\widetilde{\Gamma}(R \times S)$ is isomorphic to $\widetilde{\Gamma}(R) \times \widetilde{\Gamma}(S)$ as graphs.

Proof. Clearly, $R \times S$ is also a unit-duo ring. Define $\phi: \widetilde{\Gamma}(R \times S) \rightarrow \widetilde{\Gamma}(R) \times \widetilde{\Gamma}(S)$ by $\phi([(x, y)]=([x],[y])$ for all $[(x, y)] \in \widetilde{\Gamma}(R \times S)$. It is straightforward to show that ϕ is a graph isomorphism.

On other hand, it was also shown in [9, Proposition 3.3] that if R is an abelian ring with a finite number of equivalence classes under \sim_{ℓ}, then R is a finite product of local rings. Hence it is enough to consider $\widetilde{\Gamma}(R)$ for a local unit-duo ring R.

For a given unit-duo ring R, we denote a loop in $\widetilde{\Gamma}(R)$ from a vertex $[x]$ to itself by $\widehat{[x]}$.
Lemma 3.6 ([7, Lemma 2.9]). Let R be a ring such that $X(R)$ is a union of n equivalence classes under \sim_{ℓ}. Then the following are equivalent:
(i) There exists $x \in J(R)$ such that $x^{n} \neq 0$;
(ii) R is a local ring, $J^{n} \neq 0=J^{n+1}$;
(iii) $J>J^{2}>\cdots>J^{n-1}>J^{n} \neq 0$.

Theorem 3.7. Let R be a ring such that $X(R)$ is a finite union of equivalence classes under \sim. Then R is local if and only if there exists an element $b \in X(R)$ such that ann $(b)=X \cup\{0\}$.

Proof. Suppose that R is local. Since $J^{n+1}=0$ by Lemma 2.5 where n is the number of equivalence classes under \sim. Let r be the least positive integer so that $J^{r} \neq 0=J^{r+1}$. Let $\bar{R}=R / J^{r}$ and $\bar{X}=X(\bar{R})$. Note that \bar{R} is local. First, we will show that \bar{X} is a union of $(r-1)$ classes under the regular action. Take $a_{i} \in J^{i} \backslash J^{i+1}$ for each $i=1,2, \ldots, r$. Observe that $\left[\overline{a_{i}}\right]$ are all distinct. Indeed, assume that $\left[\overline{a_{j}}\right]=\left[\overline{a_{k}}\right]$ for some $j, k(1 \leq j<k \leq r)$. Then $\overline{a_{j}}=\bar{u} \overline{a_{k}}$ for some unit \bar{u} of \bar{R}, and so $a_{j}-u a_{k} \in J^{r}$. Since $a_{k} \in J^{k} \subseteq J^{j}$, $a_{j} \in J^{k} \subseteq J^{j+1}$, which is a contradiction. Hence there are at least $(r-1)$ classes in \bar{X}. Let s be the number of classes in \bar{X}. To show $s=r-1$, assume that $s \geq r$. Since \bar{R} is local, by Lemma 3.6, there exists $\bar{x} \in J(\bar{R})=J / J^{r}$ such that $\bar{x}^{s} \neq \overline{0}=J^{r}$, i.e., $x^{s} \notin J^{r}$. But $x^{s} \in J^{s} \subseteq J^{r}$, a contradiction. Thus if $J^{r} \neq 0=J^{r+1}, \bar{X}$ is a union of $(r-1)$ classes under the regular action, and so by Lemma 3.6, there exists $\bar{x} \in J(\bar{R})=J / J^{r}$ such that $\bar{x}^{r-1} \neq \overline{0}=J^{r}$, i.e., $x^{r-1} \notin J^{r}$, yielding that $0 \neq x^{r-1} \in J(R)$. Since $J^{r} \neq 0$, we can have the following two cases:

Case 1. There exists $a \in J$ such that $a x^{r-1} \neq 0$ or $x^{r-1} a \neq 0$, say, $a x^{r-1} \neq 0$.

Let $x_{0}=a x^{r-1} \in J^{r}$. Since $J^{r+1}=0, y x_{0}=x_{0} y=0$ for all $y \in X(R)$, which yields that $\operatorname{ann}\left(x_{0}\right)=X \cup\{0\}$.

Case 2. $y x^{r-1}=x^{r-1} y=0$ for all $y \in J$.
Hence we have that $\operatorname{ann}\left(x^{r-1}\right)=X \cup\{0\}$ in this case.
The converse is clear.
Corollary 3.8. Let R be a finite ring. Then R is local if and only if there exists an element $b \in X(R)$ such that ann $(b)=X \cup\{0\}$.

Proof. It follows from Theorem 3.7.
Corollary 3.9. Let R be a unit-duo ring such that $\widetilde{\Gamma}(R)$) is a finite graph. Then R is local if and only if $\operatorname{diam}(\widetilde{\Gamma}(R))=2$.

Proof. Let $\widetilde{\Gamma}(R)$ be a finite graph with n vertices $\left[v_{1}\right], \ldots,\left[v_{n}\right]$. Note that $X(R)$ is a union of $\left[v_{1}\right], \ldots,\left[v_{n}\right]$. If R is local, there exists an element $b \in X(R)$ such that $\operatorname{ann}(b)=X \cup\{0\}$ by Theorem 3.7, yielding that $[b]\left[v_{i}\right]=[v][b]=[0]$ for all vertices $\left[v_{i}\right]$ of $\widetilde{\Gamma}(R)$, and so $\operatorname{diam}(\widetilde{\Gamma}(R))=2$. Conversely, suppose that $\operatorname{diam}(\widetilde{\Gamma}(R))=2$. Then there exists a vertex $[b]$ of $\widetilde{\Gamma}(R)$ such that $[b]\left[v_{i}\right]=$ $\left[v_{i}\right][b]=[0]$ for all vertices $\left[v_{i}\right]$ of $\widetilde{\Gamma}(R)$, i.e., $b v_{i}=v_{i} b=0$. Let $y \in X(R)$ be
arbitrary. Since $\widetilde{\Gamma}(R)$ is a finite graph, $[y]=\left[v_{i}\right]$ for some $\left[v_{i}\right]$. Since R is unitduo, $y=u v_{i}=v_{i} w$ for some units u, w of R. Thus $y b=\left(u v_{i}\right) b=u\left(v_{i} b\right)=0$ and $b y=b\left(v_{i} w\right)=\left(b v_{i}\right) w=0$, which implies that $\operatorname{ann}(b)=X \cup\{0\}$, and then R is local as desired.

4. Graph of equivalence classes of zero divisors of $\mathbb{Z}_{\boldsymbol{n}}$

Throughout this section, n is considered as any positive non-prime integer otherwise stated. Let $\mathbb{Z}_{n}=\{0,1, \ldots, n-1\}$ be the ring of integers modulo n. For all $a, b \in \mathbb{Z}_{n}, a b$ means the product of a and b under the multiplication modulo n. We will denote the greatest common divisor of any two positive integers s and t by (s, t) and $s \mid t$ means that s is a divisor of t.

Lemma 4.1. Let n be any positive integer and $x, y \in X\left(\mathbb{Z}_{n}\right)$ be distinct divisors of n such that $x<y$. Then $[x] \neq[y]$.

Proof. Assume that $[x]=[y]$. Then $y=g x$ for some $g \in G\left(\mathbb{Z}_{n}\right)$. Since x, y are distinct divisors of n such that $x<y$, we can choose an element $a \in X\left(\mathbb{Z}_{n}\right)$ so that $a x \neq 0, a y=0$. On the other hand, since $0=a y=a(g x)$ and $g \in G\left(\mathbb{Z}_{n}\right)$, we have $a x=0$, which is a contradiction. Hence $[x] \neq[y]$.

Lemma 4.2. Let n be any positive integer and $y \in X\left(\mathbb{Z}_{n}\right)$ be arbitrary. Then there exists $x \in X\left(\mathbb{Z}_{n}\right)$ such that $x \mid n$ and $(x, n)=(y, n)$.

Proof. Let $x=(y, n)$. Then clearly, $x \mid n$ and $(x, n)=((y, n), n)=(y, n)$.
Lemma 4.3. Let n be any positive integer and k be a divisor of n. If $\bar{g} \in G\left(\mathbb{Z}_{k}\right)$, then there exists $g \in G\left(\mathbb{Z}_{n}\right)$ such that $g \equiv \bar{g}(\bmod k)$.
Proof. Note that since k is a divisor of $n, \mathbb{Z}_{n} /\langle k\rangle$ is isomorphic to \mathbb{Z}_{k} where $\langle k\rangle$ is an ideal of \mathbb{Z}_{n} generated by k. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$ be the prime factorization of n where $p_{1}, p_{2}, \ldots, p_{t}$ are distinct primes for some positive integer t. Then $k=p_{1}^{\beta_{1}} p_{2}^{\beta_{2}} \cdots p_{t}^{\beta_{t}}$ with $\alpha_{i} \geq \beta_{i} \geq 0$ for all $i=1, \ldots, t$. Without loss of generality, we can assume that $\mathbb{Z}_{n}=\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ (resp. $\mathbb{Z}_{k}=$ $\left.\mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}\right)$. Then we can consider a ring epimorphism $\pi: \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times$ $\mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}} \rightarrow \mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$ given by $\pi\left(a_{1}, \ldots, a_{t}\right)=\left(\bar{a}_{1}, \ldots, \bar{a}_{t}\right)$ for all $\left(a_{1}, \ldots, a_{t}\right) \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \mathbb{Z}_{p_{2}^{\alpha_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ where \bar{a}_{i} is the remainder obtained from dividing a_{i} by $p_{i}^{\beta_{i}}$ for all i.

Case 1. Suppose that $\beta_{i} \geq 1$ for all $i=1, \ldots, t$.
Let $\bar{g}=\left(\bar{g}_{1}, \ldots, \bar{g}_{t}\right) \in \mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$ be an arbitrary unit. Then there exists an element $g=\left(g_{1}, \ldots, g_{t}\right) \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ such that $\pi(g)=\bar{g}$ i.e., $g_{i} \equiv \bar{g}_{i}\left(\bmod p_{i}^{\beta_{i}}\right)$ for all i. Since \bar{g} is a unit in $\mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$, we have $\left(\bar{g}_{i}, p_{i}^{\beta_{i}}\right)=1$ and so $\left(g_{i}, p_{i}^{\alpha_{i}}\right)=1$ for all $i=1, \ldots, t$, which implies that $g \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ is a unit.

Case 2. Suppose that $\beta_{i}=0$ for some i.

Let $I_{1}=\left\{i \in\{1, \ldots, t\}: \beta_{i} \geq 1\right\}$ and $I_{2}=\left\{i \in\{1, \ldots, t\}: \beta_{i}=0\right\}$. Consider $R=R_{1} \times R_{2}$ where $R_{1}=\prod_{i \in I_{1}} \mathbb{Z}_{p_{i}^{\beta_{i}}}$ and $R_{2}=\prod_{i \in I_{2}}\left\{1_{i}\right\}$ where 1_{i} is the unity of $\mathbb{Z}_{p_{i}^{\beta_{i}}}$. By changing the order of the $\mathbb{Z}_{p_{i}^{\beta_{i}}}$ if necessary we can assume that $R=\mathbb{Z}_{k}=\mathbb{Z}_{p_{1}^{\beta_{1}}} \times \mathbb{Z}_{p_{2}^{\beta_{2}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\beta_{t}}}$. Let $G(R)$ be the group of all units in R. Let $\bar{g}=\left(\bar{g}_{1}, \ldots, \bar{g}_{\left|I_{1}\right|}, 1_{1}, \ldots, 1_{\left|I_{2}\right|}\right) \in G(R)$ be arbitrary. Then by the similar argument given in Case 1 , there exists a unit $g_{i} \in \mathbb{Z}_{p_{1}^{\alpha_{1}}}$ such that $g_{i} \equiv \bar{g}_{i}(\bmod$ $\left.p_{i}^{\beta_{i}}\right)$ for all $i=1, \ldots,\left|I_{1}\right|$. Let $g=\left(g_{1}, \ldots, g_{\left|I_{1}\right|}, 1_{1}, \ldots, 1_{\left|I_{2}\right|}\right) \in \mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$. Then g is a unit in $\mathbb{Z}_{p_{1}^{\alpha_{1}}} \times \cdots \times \mathbb{Z}_{p_{t}^{\alpha_{t}}}$ such that $\pi(g)=\bar{g}$.
Theorem 4.4. Let n be any positive integer. Then for all $x, y \in X\left(\mathbb{Z}_{n}\right)$, $[x]=[y]$ if and only if $(x, n)=(y, n)$.
Proof. (\Rightarrow) Suppose that for all $x, y \in X\left(\mathbb{Z}_{n}\right),[x]=[y]$. Then $y=g x$ for some $g \in G\left(\mathbb{Z}_{n}\right)$. Since $(g, n)=1$, we have $(y, n)=(g x, n)=(x, n)$.
(\Leftarrow) Suppose that for all $x, y \in X\left(\mathbb{Z}_{n}\right),(x, n)=(y, n)$. It is enough to consider $x \mid n$, i.e., $x=(x, n)$ by Lemma 4.1. Since $x \mid y, y=a x$ for some integer a. Since $x=(y, n), x=b y+c n$ for some integers b and c. Hence $x \equiv b y \equiv b a x(\bmod n)$, and then $1 \equiv b a\left(\bmod \frac{n}{x}\right)$. Let \bar{a} be an element of $\mathbb{Z}_{\frac{n}{x}}$ so that $a \equiv \bar{a}\left(\bmod \frac{n}{x}\right)$. Then $1 \equiv b \bar{a}\left(\bmod \frac{n}{x}\right)$, which implies that $\bar{a} \in G\left(\mathbb{Z}_{\frac{n}{x}}\right)^{x}$. By Lemma 4.2, there exists $a_{0} \in G\left(\mathbb{Z}_{n}\right)$ such that $a_{0} \equiv \bar{a}\left(\bmod \frac{n}{x}\right)$. Since $a_{0}=\bar{a}+k\left(\frac{n}{x}\right)$ for some integer k, we have $a_{0} x \equiv\left(\bar{a}+k\left(\frac{n}{x}\right)\right) x \equiv \bar{a} x \equiv a x \equiv y$ $(\bmod n)$, which implies that $o(x)=o(y)$.

Let $V_{n}=\{[x]|x| n, x \neq 1, n\}$. By Theorem 3.4, $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$ is the graph of equivalence with vertices in V_{n} and edges $[x] \longrightarrow[y]$, which means that $[x][y]=$ $[0]$ (i.e., $x y=0$) for each pair of vertices $[x],[y] \in V_{n}$ (not necessarily distinct). Let m, n be non-prime positive integers, and $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, n=q_{1}^{\beta_{1}} \cdots q_{t}^{\beta_{t}}$ be the prime factorizations of m and n. Define $m \simeq n(m$ is similar to $n)$ if $s=t$ and each $\alpha_{i}=\beta_{i}$ by reordering $q_{i}^{\prime} s$ if necessary. For example, $12 \simeq 18 \simeq 245$. Then \simeq is clearly an equivalence relation on \mathbb{Z}, the ring of integers.

Theorem 4.5. Let m, n be non-prime positive integers. Then $m \simeq n$ if and only if $\widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ is isomorphic to $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$.
Proof. (\Rightarrow) Suppose that $m \simeq n$. Then we can let $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, n=$ $q_{1}^{\alpha_{1}} \cdots q_{1}^{\alpha_{s}}$ be the prime factorization of m and n respectively. Then clearly $\left|V_{m}\right|=\left|V_{n}\right|$. Define $\theta: V_{m} \rightarrow V_{n}$ by $\theta\left(\left[p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}\right]\right)=\left[q_{1}^{\beta_{1}} \cdots q_{s}^{\beta_{s}}\right]$ for all $\left[p_{1}^{\beta_{1}} \cdots p_{s}^{\beta_{s}}\right] \in V_{m}$ where $1 \leq \beta_{i} \leq \alpha_{i}$ for each $i=1, \ldots, s$. We note that $[x][y]=0$ for all $[x],[y] \in V_{m}$ if and only if $\theta([x]) \theta([y])=0$, and so θ is isomorphism.
(\Leftarrow) Assume that m is not similar to n. Let $m=p_{1}^{\alpha_{1}} \cdots p_{s}^{\alpha_{s}}, n=q_{1}^{\beta_{1}} \cdots q_{t}^{\beta_{t}}$ be the prime factorization of m and n respectively.

Case 1. $r=s$
Since m is not similar to $n, \alpha_{i} \neq \beta_{i}$ for some i. Let k be the smallest positive integer so that $\alpha_{k} \neq \beta_{k}$. Without loss of generality, we assume that $\alpha_{k}<\beta_{k}$.

We can also assume that $\alpha_{1} \leq \alpha_{2} \leq \cdots \leq \alpha_{s}$ and $\beta_{1} \leq \beta_{2} \leq \cdots \leq \beta_{s}$. Note that the number of vertices in $\widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ having degree β_{k} is less than $(s-k+1)$ which is equal to the number of vertices in $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$ having degree β_{k}. Hence $\widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ is not isomorphic to $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$.

Case 2. $r \neq s$

Note that the number of vertices in $\widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ (resp. $\left.\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)\right)$ having degree 1 is r (resp. s). Since $r \neq s, \widetilde{\Gamma}\left(\mathbb{Z}_{m}\right)$ is not isomorphic to $\widetilde{\Gamma}\left(\mathbb{Z}_{n}\right)$.
Acknowledgements. The authors would like to thank the referee for his/her careful checking of the details and helpful comments for making the paper more readable.

References

[1] S. Akbari and A. Mohammadian, On the zero-divisor graph of a commutative ring, J. Algebra 274 (2004), no. 2, 847-855.
[2] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), no. 2, 434-447.
[3] I. Beck and P. S. Livingston, Coloring of a commutative ring, J. Algebra 116 (1998), 208-226.
[4] J. Cohen and K. Koh, Half-transitive group action in a compact ring, J. Pure Appl. Algebra 60 (1989), no. 2, 139-153.
[5] F. DeMeyer and L. DeMeyer, Zero divisor graphs of semigroups, J. Algebra 283 (2005), no. 1, 190-198.
[6] R. Diestel, Graph Theory, Springer-Verlag, New York, 1997.
[7] J. Han, Regular action in a ring with a finite number of orbits, Comm. Algebra 25 (1997), no. 7, 2227-2236.
[8] J. Han, Y. Lee, and S. Park, Duo ring property restricted to groups of units, J. Korean Math. Soc. 52 (2015), no. 3, 489-501.
[9] , On the structure of abelian rings, Front. Math. China, To appear.
[10] J. Han and S. Park, Regular action in rings, Comm. Algebra 42 (2014), no. 2, 872-879.
[11] \qquad , Rings with a finite number of orbits under the regular action, J. Korean Math. Soc. 51 (2014), no. 4, 655-663.
[12] S. P. Redmond, The zero-divisor graph of non-commutative ring, Internat. J. Commutative Rings 1 (2002), 203-211.
[13] , Structure in the zero-divisor graph of non-commutative ring, Houston J. Math. 30 (2004), no. 2, 345-355.
[14] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra 39 (2011), no. 7, 2338-2348.
[15] T. Wu, On directed zero-divisor graphs of finite rings, Discrete Math. 296 (2005), no. 1, 73-86.
[16] W. Xue, Structure of minimal noncommutative duo rings and minimal strongly bounded non-duo rings, Comm. Algebra 20 (1992), no. 9, 2777-2788.

Juncheol Han
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: jchan@pusan.ac.kr

Yang Lee
Department of Mathematics Education
Pusan National University
Pusan 609-735, Korea
E-mail address: ylee@pusan.ac.kr
Sangwon Park
Department of Mathematics
Dong-A University
Pusan 604-714, Korea
E-mail address: swpark@donga.ac.kr

[^0]: Received August 24, 2015; Revised February 15, 2016.
 2010 Mathematics Subject Classification. Primary 05C20, 16W22.
 Key words and phrases. graph-designable ring, zero divisor graph.
 This study was supported by research funds from Dong-A University.

